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History of FD



Finite-difference method

1. Conceptually simple: brute-force (strong formulation)
2. Quickly adaptable to specific problems (exploration

geophysics, strong ground motion dynamic rupture
simulations, FWI).

Figure 1: A magnitude 7.8 scenario eqk (South California ShakeOut) ruptures
300 km of the San Andreas fault with final slip ranging from 2-7 m ). 2

https://escweb.wr.usgs.gov/content/learn/topics/shakingsimulations/shakeout/ShakeOut_mapview.mp4


History of Finite-difference - 1

• First applications of FD: layered medium in cylindrical
coordinates (Alterman and Karal 1968); simulate Love
waves (snapshots) by Boore (1970)

• Acoustic equations (Alford et al 1974), elastic equations
(Kelly et al 1976)

• Staggered-grid formulation: introduced to solve ruture
propagation problem (Madariaga 1976, Virieux and
Madariaga, 1982), elastic SH/P-SV waves (Virieux, 1984,
1986)

• Parallel computing allowed for 3D applications: Frankel
and Vidale (1992), Graves (1993), Olsen and Archuleta
(1996), and Pitarka and Irikura (1996)

• Other rheology: viscoelastic (Day and Minster, 1984,
Emmerich and Korn, 1987, Robertsson et al., 1994) and
anisotropic (Igel et al., 1995)
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History of Finite-difference - 2

• Spherical coordinates for global waves: first with the
axisymmetric approximation (Igel and Weber, 1995, Igel
and Weber, 1996, Chaljub and Tarantola, 1997), 3D
spherical sections (Igel et al., 2002).

• Frictional boundary condition for dyanmic rupture analysis
(Olsen et al., 1997); Failed node based on threshold
criterion (Nielsen and Tarantola 1992)

• Free-surface boundary with strong topography:
volcanology (Ohminato and Chouet, 1997), viscoelastic
(Robertsson and Holliger, 1997), modified operators or
hybrid schemes (Moczo et al., 2014); strongly
heterogeneous media (Moczo et al. 2002)

• FWI: in 2D Crase et al. (1990), and in 3D (Chen et al., 2007).
FD is the prevailing method for forward solver for FWI in
exploration seismology (Virieux and Operto, 2009).
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Finite-difference approximation to
derivatives



Finite-difference method: introduction

In a nutshell, space and time are both discretized (usually) on
regular space–time grids in FD. It is a grid-based method as
field values are ONLY known at these grid points. Partial
derivatives are replaced by finite-difference formulas.

∂2
t p(x, t) = c2(x)∂2

xp(x, t) + s(x, t) (1)

∂2
t p(x, t) ≈ p(x, t + dt)− 2p(x, t) + p(x, t− dt)

dt2
(2)

Extrapolation in time: The pressure field at t + dt updated from
field at t and t-dt at the nearest neighbours (easily adaptable in
parallel).
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Finite Differencing formulas

Forward differencing

df+

dx
≈ f(x + dx)− f(x)

dx
(3)

Centered differencing

dfc

dx
≈ f(x + dx)− f(x− dx)

2dx
(4)

Backward differencing

df−

dx
≈ f(x)− f(x− dx)

dx
(5)

How accurate are these differencing formulas?
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Accuracy of differencing formulas

Based on Taylor expansion

f(x + dx) = f(x) + f ′(x)dx +
1
2
f”(x)dx2 + O(dx3) (6)

Hence the central differencing scheme is an order of magnitude
more accurate (converges more rapidly as dx→ 0):

dxf+ = f ′(x)+O(dx), dxf− = f ′(x)+O(dx), dxfc = f ′(x)+O(dx2),

Higher-order derivatives

∂2
x f ≈

f(x + dx)− 2f(x) + f(x− dx)

dx2
(7)

which can be obtained through Taylor expansion by solving for
a, b, c that

af(x + dx) + bf(x) + cf(x− dx)

dx2
∝ f”(x) + O(dx2) (8)

where [a, b, c] = [1,−2, 1]. 7



General differencing formulas

More neighbouring points (domain of influence) can be used.
For example, a five-point approximation

f”(x) + O(dx4) =

[af(x + 2dx) + bf(x + dx) + cf(x) + df(x− dx) + ef(x− 2dx)]/dx2

Coefficients can be determined by matching the coefficients of
different orders in the Taylor expansion

[a, b, c, d, e] = [−1/12,4/3,−5/2,4/3,−1/12] (9)

In practice, always use 5-point operator (4-point) for 2nd (1st)
order derivatives.
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Differencing formula

The differential weights rapidly decrease with distance from the
central point of evaluation (white).
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FD for 1D Acoustic wave equation



1D Acoustic equation for Pressure waves

1D Acoustic waves for pressure p(x, t) or waves on a 1D string:

∂2
t p(x, t) = c(x)2∂2

xp(x, t) + s(x, t) (10)

with I.C., p(x, t = 0) = ∂tp(x, t = 0) = 0 and B.C. such as
p(x)|x=0,L = 0 or others to be specified later.

Discretization in time and space xj = jdx, j = 0, · · · , jmax,
tn = ndt, n = 0, · · · nmax, pn

j = p(xj, tn) (upper index for time
discretization and lower index for spatial discretization).

Discretization of the PDE by replacing the PD with FD at pn
j :

pn+1
j − 2pn

j + pn−1
j

dt2
= c2j

[
pn
j+1 − 2pn

j + pn
j−1

dx2

]
+ snj (11)

which can be reorganized into a formula for advancing in time

pn+1
j = c2j

dt2

dx2
[pn

j+1 − 2pn
j + pn

j−1] + 2pn
j − pn−1

j + dt2snj (12) 10



Advancing of wavefield in time

The field at n + 1’th time can be computed based on the field at
n’th time and n− 1’th time, starting from the I.C.
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Source time function

The wavefield is generated by enacting the source s(x, t), e.g.,
source for Greens function s(x, t) = δ(x− xs)δ(t− ts), or a
band-limited point source s(x, t) = δ(x− xs)f(t).

Discretization of the spatial delta into boxcar

δ(x)→ δbc(x) =

1/dx |x| < dx/2

0 elsewhere
(13)

and discretization of temporal delta into Gaussian functions

δ(t)→ δa(t) =
1√
2πa

e−t2/(2a) (14)
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How to choose discretization

What determine the discretization scheme?

• what is the dominant frequency of the waves to be
simulated?

• What is the minimum velocity inside the medium? Hence
what is the minimum spatial wavelength that propagates
inside the medium? c = ω

k = λ
T = λf , λ = cT = c/f.

• What is the propagation distance (in terms of number of
dominant wavelength)?

Example: sound waves with f0 = 20 Hz (or 50 Hz) propagating
in atomsphere with c = 343 m/s gives λ = 17m (or λ = 7 m), a
choice of dx = 0.5 m gives ∼ 34 (or 14) points-per-wavelength.
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Python codes and snapshots for 1D acoustic waves by FD

Input STF: 1st der of Gaussian; nt
nx = 20,000 total number grid points in x; numerical dispersion
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Stability of the numerical solution

von Neumann analysis: assuming a trial solution
p(x, t) = ei(kx−ωt) and plug it into the FD formula (such that
pn+1
j → pn

j e
−iω dt and pn

j+1 → pn
j e

ik dx) and ignoring the source
term:

sin(ω dt/2) = c
dt
dx

sin(k dx/2) (15)

• Courant-Friedrichs-Lewy (CFL) stability condition on the
dependency of space-time discretization (necessary but
not sufficient)

ε = c
dt
dx
≤ 1 (16)

Therefore, num-pts-per-wavelength (NPW) determines dx,
and CFL then determines dt.
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Stability analysis
sin(ω dt/2) = ε sin(k dx/2) (17)

• (unphysical) numerical dispersion: for a physical wavenumber k,
FD will result in frequency ω of waves that depends on the choice
of dx (kdx = 2π/npw). The phase velocity of these waves is
dispersive and not identical to c. As npw ↑, k dx ↓, cnum(k)→ c.

cnum(k) =
ω

k
=

2
k dt

sin−1[ε sin(k dx/2)] 6= c (18)

Simulation accuracy: depends on the NPW and overall propagation
distance (more error accumulation). Convergence: dt, dx→ 0,
cnum(k)→ c 16



FD for 2D Acoustic wave equation



Acoustic wave equation in 2D (with constant velocity)

Acoustic wave propagation in X-Z (vertical) plane

∂2
t p(x, z, t) = c(x, z)2(∂2

xp(x, z, t) + ∂2
xp(x, z, t)) + s(x, z, t) (19)

Discretization p(x, z, t)→ pn
j,k = p(ndt, jdx, kdz). Again using

central differencing formula (for both time and space) for pn
j,k

on a regular grid

pn+1
j,k − 2pn

j,k + pn−1
j,k

dt2
= c2j (∂2

xp + ∂2
zp) + snj,k (20)

where

∂2
xp =

pn
j+1,k − 2pn

j,k + pn
j−1,k

dx2
, ∂2

zp =
pn
j,k+1 − 2pn

j,k + pn
j,k−1

dz2
(21)
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2D Example: P-wave propagation

P-wave propagation in a reservoir scale model: cmax = 5 km/s
and cmin = 3 km/s, fdom = 20 Hz (energy up to 50 Hz can be
present in the waveforms), dominant wavelength is at least
λdom=cmin/fdom=150 m.

Simulation domain 5km × 5km, grid spacin dx = 10 m, resulting
in 15 NPW for the dominant frequency.
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Numerical Anisotropy

Numerical anisotropy can be observed for high-frequency
waves: in certain directions the wavefield deteriorates faster
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Stability analysis: Numerical anisotropy

Assuming p(x, z, t) = ei(k·x−ωt) = ei(kxx+kzz−ωt), we obtain
numerical dispersion relationship

cnum(kx, kz) =
2
|k|dt

sin−1

[
ε

(
sin2(

kxdx
2

) + sin2(
kzdz
2

)

)1/2
]

Phase velocity errors as a function of propagation direction
k = [kx, kz] = |k|[cosα, sinα]. Error decrease with increasing
NPW, most accurate at α = 45◦. Physical vs numerical
dispersion.
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Example: fault-zone trapped waves

Trapped waves can be observed right above fault zones. Model
setup and snapshot at t = 2 s (head waves at the edge of host
medium, and amplified trapped waves in the fault zone)
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1D elastic wave equations

Constitutive relationship in 1D for uy(x, t)

σij = λεkkδij + 2µεij (22)

becomes
σxy = σyx = 2µεxy = µ∂xuy (23)

For simplicity, just use u(x, t) to represent uy(x, t), and the 1D
elastic wave equation becomes

ρ∂2
t u = ∂x(µ∂xu) + f (24)

and under discretization uj
i = u(idx, jdt),

ρi
uj+1
i − 2uj

i + uj−1
i

dt2
=
µi+1u

j
i+2 − µi+1u

j
i − µi−1u

j
i + µi−1u

j
i−2

4 dx2
+ f ji

Note u values on i± 1 are not used due to the asymmetry in
central difference formula for 1st order derivatives. This
inefficiency can be improved by velocity-stress formulation. 22



Velocity–stress formulation

Goal: as error ∼ O(dx2), reducing dx by half, will give 1/4 of the
error. Rewrite the wave equation into a coupled first-order PDE
system for (v, σ)

ρ∂tv = ∂xσ + f (25)

∂tσ = µ∂xv (26)

and still discretize on the regular grid in time and space:
centered at (vji, σ

j
i+1/2 by staggered-grid for

vj+1/2
i = v(i dx, (j + 1/2) dt), and σj

i+1/2 = σ((i + 1/2) dx, j dt).

vj+1/2
i − vj−1/2

i
dt

=
σ
j
i+1/2 − σ

j
i−1/2

ρidx
+

f ji
ρi

(27)

σ
j+1
i+1/2 − σ

j
i+1/2

dt
= µi+1/2

vj+1/2
i+1 − vj+1/2

i
dx

(28)
23



Staggered-grid scheme and Sample code

Extrapolation scheme

vj+1/2
i = vj−1/2

i +
dt
ρidx

(
σ
j
i+1/2 − σ

j
i−1/2

)
+

dt
ρi

f ji

σ
j+1
i+1/2 = σ

j
i+1/2 +

µi+1/2dt
dx

(
vj+1/2
i+1 − vj+1/2

i

)
(29)
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Numerical Dispersion for velocity-stress formulation

Plug in v = ei(kx−ωt) to the velocity-stress FD formulas

sin(
ωdt
2

) =

√
µ

ρ

dt
dx

sin

(
kdx
2

)
(30)

which gives the numerical dispersion relation

cnum(k) =
ω

k
=

λ

πdt
sin−1

(
c0

dt
dx

sin
πdx
λ

)
6= c0 ≡

√
µ

ρ
(31)

Or in terms of group velocity dispersion

cg(k) =
dω
dk

=
c0 cos πdxλ[

1−
(
c0 dt

dx sin πdx
λ

)2]1/2 (32)
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Numerical dispersion

Plot numerical dispersion c(k) and cg(k) as a function of NPW
(= λ/dx = 2π/kdx)

Source spectrum with dominant
frequency at f0 = 1/15 Hz
(npw=66). The results can be
substantially improved by using
a 4-point operator for derivatives.
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Elastic wave propagation in 2D



Staggered grid formulation

In 2D, vx,z(x, z; t), the time-derivative of Stress-strain relation
∂tσij = λ∂tεkkδij + 2µεij, becomes (ε is the strain-rate tensor)

∂tσxx = (λ+ 2µ)∂xvx + λ∂zvz
∂tσzz = (λ+ 2µ)∂zvz + λ∂xvx
∂tσxz = µ(∂xvz + ∂zvx)

And EOM becomes

ρ∂tvx = ∂xσxx + ∂zσxz

ρ∂tvz = ∂zσxz + ∂zσzz

27



Boundary Condition

Free-surface boundary condition assumes zero traction at the
surface z = 0

∂tσzz = λ∂xvx + (λ+ 2µ)∂zvz = 0

∂tσzz = µ(∂xvz + ∂zvx) = 0

FD implementation: medium is extended
beyond (above) the interior domain for as
many points as required by the length of
the FD operator.
Velocities are imposed to be symmetric
(so that traction vanishes at the surface);
stresses are extended beyond the free
surface in an anti-symmetric way.
Not accurate enough for surface waves:
one-sided approximation, hybrid solution
etc
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FD for 3D wave propagation



Staggered-grid in 3D

The classic 3D staggered grid
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Miscellaneous Subjects related to FD



Higher-order time extrapolation scheme

So far the time extrapolation scheme is of lowest order. Take
the first-order system equation as an example

∂tq = L(q, t) ≡ c∂xq(x, t) + s(x, t) (33)

The lowerest order time extrapolation is equivalent to the
Euler’s method

qn+1 = qn + L(qn, tn)dt (34)

Extending it to high-order scheme (most packages use
second-order extrapolation), such as the family of Runge-Kutta
methods. One of them is the predictor-corrector method

q+ = qn + L(qn, tn)dt

k1 = L(qn, t) predictor

k2 = L(q+, t + dt) corrector

qn+1 = qn + (k1 + k2)dt/2 (35) 30

https://mathworld.wolfram.com/EulerForwardMethod.html


Newmark scheme

The Newmark scheme (1959) is also a method of integration
used to solve differential equations and used widely in
finite-element analysis for structural dynamics. For the
second-order equation

ü = L(u, u̇, t) (36)

the explicit Newmark scheme (with special choice of
parameters) is as follows:

1. Given un, u̇n, ün, first compute the intermediate velocity and
displacement u̇+ = u̇n + ün ∗ dt/2, and u+ = un + u̇n ∗ dt

2. then calculate the new acceleration based on the 2nd-order
equation ün+1 = L(u+, u̇+, tn)

3. Update velocity and displacement u̇n+1 = u̇+ + ün+1 ∗ dt/2
and un+1 = u+ + ün ∗ dt2/2

31
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Explicit vs. implicit scheme

For simplicity, let us first consider the heat equation

Qt = D∇2Q, (37)

where D = k
ρC is the thermal diffusivity. In 1D,

Qt = DQxx. (38)

We introduce a compact way of writing all the wavefield at one time
instance as a vector Qn = {Qn

j }, j = 1, · · · ,N, we can then write the
approximate spatial derivative ∂2

∂x2 as

∂2Q
∂x2

≈ 1
h2 [1,−2, 1] ∗ Q =

1
h2TQ (39)

where T is the tri-diagonal matrix
−2 1 0

1
. . . . . .
. . . . . . 1

0 1 −2

 (40)
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Implicit scheme

To get more centered derivatives, use central difference for the
spatial derivatives

Qn+1 − Qn

∆t
=

D
h2T

(
Qn + Qn+1

2

)
(41)

which upon rearrangement gives the Crank-Nicholson methods(
I− D∆t

2h2 T
)
Qn+1 =

(
I +

D∆t
2h2 T

)
Qn. (42)

Both matrices in blue are tri-diagonal, and the solution at the
same level (x) are solved simultaneously→ implicit method. 33



Cauchy-Kowaleski procedure

Ignoring the source term, the derivatives of q also satisfies the
equation

∂
j+1
t q(x, t) = c∂x[∂ j

tq(x, t)] (43)

The time derivative of q(x, t) of any order can be replaced by the
spatial derivative recursively. It has been used to Arbitrary
high-orDER (ADER) schemes for the finite-volume and
discontinuous Galerkin methods (e.g. Titarev and Toro 2002;
Dumbser and Munz, 2005a)
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Heteogeneous Earth Model

For cases where interfaces (i.e. material discontinuities) are
not aligned with the regular grid, the geometry of the interfaces
are not accurately modelled. One solution is the finite
(spectral)-element method. But there are remedies that can
improve the FD approach

• Equivalent medium theory (Muir et al
1992): isotropic→ anisotropic
parameters

• discontinuous FD grid (Moczo et al
2010)

• spatially varying time steps for very
heterogeneous models (Tessmer
2000)

• Homogenization (Capdeville et al
2010ab)
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Optimization Operators

Artificially make errors in the space derivatives that compensate for
the errors committed by the time extrapolation, to obtain a truly
high-order scheme (Emmerich and Korn 1987). Another approach is
to use derivative operators that are optimized for seismic wave
equation:

Smearing out conventional operator in space and time: leading to a
locally implicit scheme, but also one order of magnitude more
accurate.
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Irregular grids for FD?

Is it possible to use irregular grid for FD schemes?

• in 2D: two staggered
equilateral triangular grids;
does not exist in 3D.

• differential weights for
unstructured grid: near
neighbour coordinates
(Braun and Sambridge
1995, Kaser et al 2001, etc):
low-order accuracy→
discontinous Galerkin
method for unstructured
tetrahedral mesh.

FD on unstructured grids using Delauney
triangulation and Voronoi cells.
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Other coordinate systems

For the acoustic wave equation, assuming spherical coordinate
system (r, θ, φ), and a model c(r, θ) and source s(r, θ) invariant
in φ (i.e., zonal model or axisymmetric)

p̈ = c2
[
1
r2
∂r(r2∂rp) +

1
r2 sin θ

∂θ(sin θ∂θp)

]
+ s (44)

which is much more complicated than the cartesian case.

• Singularity at θ = 0 (the pole)

• Regular discretization on r and theta leads to grid spacing
decrease with depth, while given the velocity in the mantle,
we want grid spacing to increase with depth→ grid
refinement towards the surface, smaller time steps
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FD in spherical coordinate system

Axisymmetric mesh for
staggered-grid 2D FD.

SH waves in the Earth’s
mantle (2D FD accurate
to 25 s).

More wave simulation animations can be found online.
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