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FD vs. FEM



FD vs. FEM

The key of FD method (pseudospectral methods are an extreme
example of FD where derivatives involve all global points): discretize
the continuous PDE into discrete form by replacing space/time
derivatives with finite difference based on regular grids

FEM is a complete paradiam shift from FD:

• originated in solid mechanics and structural engineering (stiffness,
mass matrix), based on solid mathematical foundation: weak form
(variational form) of the PDE

• divide structures into elements linked at element corners and can be all
joined into a complete system (assembly).

• suited for problems with geometrically complex structures (e.g.,
surface topography or internal structures); free-surface boundary
condition is implicitly fulfilled (accurate for surface waves)

• more compute-intensive than other low-order methods such as finite
differences
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History of FEM



History of FEM in seismology

• First introduced for surface-wave propagation (Lysmer and
Drake, 1972, Schlue, 1979), and seismic scattering problem
(Day 1977)

• introduced to exploration seismology (Marfurt, 1984), later
low-order implementation for more efficiency (Seron et al.,
1990)

• seismic hazard analysis and engineering seismology:
ground motion simulation (Bielak et al., 1998, Bielak and Xu
1999), FWI (Askan and Bielak, 2008, Epanomeritakis et al.,
2008).

• hybrid methods of FEM and FD: Moczo et al. (2010b).
• Large linear system requiring global communications→
high-order variations of FEM using Lagrange/Chebyshev
polynomials as basis functions→ SEM
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FEM in a nutshell



Finite-element: basis functions

We again take the 1D elastic wave equation for the
displacement field u(x, t) as an example

ρ∂2
t u = ∂x(µ∂xu) + f (1)

Instead of solving u by discretization, we replace it by a finite
sum over basis function φi(x), i = 1, · · · ,N

u(x, t) ≈ u(x, t) =
N∑
i=1

ui(t)φi(x) (2)

For a particular time t, we solve the coefficients ui(t)
corresponding to basis function φi(x). These local basis
functions are often related to the discrete displacement value
at node xi, i.e., ui = u(xi).
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FEM: Weak form

Weak form of the wave equation can be formed by multiplying the
original strong form with a test function φj(x) the same as the basis
functions (Galerkin principle) and integrate over space.∫

D
ρ∂2

t uφj dx+
∫
D
µ∂xu ∂xφj dx =

∫
D
fφj dx+ b.c. (0 for free surface)

To solve the approximate field u for the given model parameterization,
it can be rewritten into a linear system for vector field u (N× 1)

Mü(t) = −KTu+ f (3)

where MN×N is the mass matrix and KN×N is the stiffness matrix

Mij =

∫
D
ρ φiφj dx, Kij =

∫
D
µ φ̇iφ̇j dx (4)

which are computed (analytically) at elemental level and then
assembled, even for arbitrary element shapes.

Challenge: solving a large linear system. Remedy: a specific choice
of basis functions and a numerical integration scheme (SEM) 5



FEM examples

• (up) Tetrahedral FEM mesh for velocity
structure of the Grenoble basin
(sedimentary basin, bedrocks are
meshed separately)

• (right) FEM simulation of 1D elastic
waves in a domain with 3 velocities. 6



Static elasticity



FEM: Static elasticity

By assuming displacement does not depend on time,
∂2
t u(x, t) = 0, 1D elastic wave equation becomes the 1D static

elasticity equation (Possion’s equation) for u(x)

−∂x(µ∂xu) = f, (5)

equivalent to the displacement distribution along a string when
pulled with forcing f. Multiplying the test vector v(x), integrate
over space (domain D on a 1D line) and apply integration by
parts:

−
∫
D
v ∂x(µ∂xu) dx =

∫
D
µ∂xu∂xv dx−[µv∂xu]xmax

xmin =

∫
D
fv dx (6)

The term in [] is related to B.C.. For free surface B.C., stress
σ = µ∂xu vanishes at on the boundary, which means the term in
[] vanishes. We get the free-surface boundary condition FOR
FREE (also known as natural boundary condition). 7



FEM: static elasticity

After applying free-surface boundary condition, the weak form
of 1D static elasticity equation becomes∫

D
µ∂xu∂xv dx =

∫
D
fv dx (7)

Now we discretize this continuous integral form by expanding
the displacement field over the basis functions:

u(x, t) ≈ u(x, t) =
N∑
i=1

ui(t)φi(x) (8)

and by the Galerkin method, we choose N number of test
functions the same as the basis functions v(x)→ φj(x). A
simple choice of φi(x) can be local: φi(xj) = δij, and linear inside
an element

φi(x) =


x−xi−1
xi−xi−1

for xi−1 ≤ x ≤ xi
xi+1−x
xi+1−xi for xi ≤ x ≤ xi+1

0 elsewhere

(9)
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FEM: Linear basis function

For example, discretize the domain into N = 10 points and 9
elements. An arbitrary function can be exactly interpolated at
the element boundary points xj, j = 1, · · · ,N
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FEM

Note: adjacent elements share the same value at the
boundaries (different from finite-volume and discontinous
Galerkin methods)

Assemble the discrete version of the weak form (for test
function φj(x)∫

D
µ∂x

( N∑
i=1

uiφi

)
∂xφj dx =

∫
D
fφj dx (10)

or
N∑
i=1

ui

∫
D
µ∂xφi∂xφj dx =

∫
D
fφj dx (11)

and form N system of equations in vector form

KTu = f (12)
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FEM: linear system

N unknowns and N equations form the linear system

KTu = f (13)

where

u =


u1

u2
...
uN

 , f =


∫
D fφ1 dx∫
D fφ2 dx

...∫
D fφN dx

 , Kij =

∫
D
µ∂xφi∂xφj dx (14)

and K is the stiffness matrix. If K is positive definite, then the
solution becomes

u = (KT)−1f (15)

Solving a large system of linear equations (with non-diagonal
system matrix) can be numerically very expensive; to run it on
parallel computers is by itself a field of research (LAPACK). 11

https://hpc.llnl.gov/software/mathematical-software/lapack


Boundary conditions

• Free surface boundary condition→ nothing to do as it is
implicitly fullfilled

• Fixed boundary condition (e.g., at i = 1 and i = N)

u = u1φ1 +
N−1∑
i=2

uiφi + uNφN (16)

The weak form becomes

N−1∑
i=2

ui

∫
D
µ∂xφi∂xφj dx =

∫
D
fφj dx

− u1

∫
D
µ∂xφ1∂xφj dx− uN

∫
D
µ∂xφN∂xφj dx

where B.Cs are turned into source terms
and the number of unknowns become N− 2
instead of N.
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Reference element

All the integrals are carried out on the entire domain D with the
global basis function: e.g.,

∫
D µ∂xφi∂xφj dx, which can be

performed at local element level and assembled through a
standard procedure.

Introduce coordinate transformations from x→ ξ at elemental
level (which is different for different elements), e.g.,

x ∈ Di ≡ [xi, xi+1]→ ξ =
x− xi
hi
∈ [0, 1], hi = xi+1 − xi

and the basis function becomes locally as

φi(ξ) =

ξ for x ∈ Di−1

1− ξ for x ∈ Di

and derivatives
∂ξφi(ξ) =

1 for x ∈ Di−1

−1 for x ∈ Di
13



Integral evaluations over elements: analytical

The stiffness matrix (assuming µ=const)

Kij = µ

∫
D
∂xφi∂xφj dx (17)

For example:

K11 = µ

∫
D
∂xφ1∂xφ1 dx =

µ

h1

∫
D1

∂ξφ1∂ξφ1 dξ

=
µ

h1

∫ 1

0
(−1)2dξ = µ

h1
(18)

K22 = µ

∫
D
∂xφ2∂xφ2 dx =

µ

h1

∫
D1

∂ξφ2∂ξφ2 dξ

+
µ

h2

∫
D2

∂ξφ2∂ξφ2 dξ =
µ

h1

∫ 1

0
12dξ

+
µ

h2

∫ 1

0
(−1)2dξ = µ

h1
+

µ

h2
(19) 14



Integration and Assembly

And

K12 = µ

∫
D
∂xφ1∂xφ2 dx =

µ

h1

∫
D1

∂ξφ1∂ξφ2 dξ

=
µ

h1

∫ 1

0
(−1) · 1dξ = − µ

h1
(20)

If we assume uniform grid size h, then

Kij =
µ

h


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 1

 (21)

very similar to FD coefficients for 2nd order spatial derivatives.
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1D FEM Example

Example: x ∈ [0, 1], unit forcing at x = 0.75, h = 0.0526, N = 20,
fixed b.c. u(0) = 0.15, u(x = 1) = 0.05.

FEM: solve u = (KT)−1f
Recall how it is solved in FD: −µ∂2

xu = f

−µu(x− h)− 2u(x) + u(x+ h)
h2 = f (22)

u(x) =
u(x− h) + u(x+ h)

2
+

h2

2µ
f (23)

Solved through iterative procedures
k→ k + 1 (relaxation method)

uk+1
i =

uk
i+1 + uk

i−1
2

+
h2

2µ
fi (24)

with an initial guess of uk=1
i = 0.

Comparison of FEM (thick
line) with converging FD
(thin lines) solutions by
relaxation method
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Python codes: FEM vs FD

u is only solved between 1:N-2 points;
(Left) @ is used for conventional
matrix multiplication (after Python
3.5).
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1D elastic wave equation

For 1D elastic wave equation

ρ∂2
t u = ∂x(µ∂xu) + f (25)

where both ρ and µ are space-dependent. Its weak form using
the basis functions as test functions becomes∫

D
ρ∂2

t uφj dx = −
∫
D
µ∂xu∂xφj dx+

∫
D
fφj dx+ [µ∂xuφj]

xmax
xmin (26)

Given stress-free b.c., the term in [ ] vanishes. Inserting in the
expansion of the displacement field by basis functions

u(x, t) ≈ u(x, t) =
N∑
i=1

ui(t)φi(x) (27)

N∑
i=1

∂2
t ui(t)

∫
D
ρφiφj dx+

N∑
i=1

ui(t)
∫
D
µ∂xφi∂xφj dx =

∫
D
fφj dx
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FEM: Assembly into a linear system

In matrix-vector notation

MT∂2
t u+ KTu = f (28)

where

Mass matrix: M→ Mij =

∫
D
ρφiφj dx

Stiffness matrix: K→ Kij =

∫
D
µ∂xφi∂xφj dx

Source vector: fj =
∫
D
fφj dx (29)

and can be solved through time extrapolation

MT u(t+ dt)− 2u(t) + u(t− dt)
dt2

= f− KTu (30)
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Global system matrix

It requires the inversion of global mass matrix M, which
involves global communications and is computationally costly
unless M is diagonal. It is possible with the right choice of

• basis functions (Lagrange polynomials)

• a corresponding numerical integration scheme (Gauss
integration)

which leads to the spectral-element methods (SEM).

Also M and K do not depend on time. The mass matrix M can
be computed and inverted once for all before time iterations.
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System matrices

Again introduce transformations x→ ξ at elemental level, e.g.,

x ∈ Di ≡ [xi, xi+1]→ ξ =
x− xi
hi
∈ [0, 1], hi = xi+1 − xi

and the basis function and its derivative become

φi(ξ) =

{
ξ for x ∈ Di−1

1− ξ for x ∈ Di
∂ξφi(ξ) =

{
1 for x ∈ Di−1

−1 for x ∈ Di
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Assemble the mass matrix

The mass matrix has only non-zero entries Mi,i−1, Mii, Mi,i+1 (M11 and
MNN treated separately; density const within an element)

Mii =

∫
D
ρφiφi dx =

∫
Di−1+Di

ρφiφi dξ

= ρi−1hi−1

∫ 1

0
ξ2dξ + ρihi

∫ 1

0
(1− ξ)2dξ = 1

3
(ρi−1hi−1 + ρihi)

Mi,i−1 =

∫
Di−1

ρφiφi−1 dξ = ρi−1hi−1

∫ 1

0
ξ(1− ξ)dξ = 1

6
ρi−1hi−1

Mi,i+1 =

∫
Di

ρφiφi+1 dξ = ρihi

∫ 1

0
(1− ξ)ξdξ = 1

6
ρihi (31)

With constant h and ρ

M =
ρh
6



. . . 0
1 4 1

1 1 1
1 4 1

0
. . .


(32)
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Stiffness matrix

Similarly the stiffness matrix have values at Ki,i−1, Kii and Ki,i+1

Kii = =

∫
D
µ∂xφi∂xφi dx =

∫
Di−1+Di

ρ∂xφi∂xφi dξ

=
µi−1
hi−1

∫ 1

0
(1)2dξ +

µi
hi

∫ 1

0
(−1)2dξ = µi−1

hi−1
+
µi
hi

Ki,i−1 =

∫
Di−1

µ∂xφi∂xφi−1 dξ =
µi−1
hi−1

∫ 1

0
1 · (−1)dξ = −µi−1

hi−1

Ki,i+1 =

∫
Di

µ∂xφi∂xφi+1 dξ =
µi
hi

∫ 1

0
(−1) · 1dξ = −µi

hi
(33)

K =
µ

h



. . . 0
−1 2 1

−1 2 1
−1 2 1

0 . . .


(34)
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FEM 1D: python codes
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FEM Simulation example: Homogeneous

FEM: 1D Domain [0, 10,000] m,
with nx = 1000, h = 10 m;
Vs = 3000 m/s and ρ = 2500
kg/m3, f0 = 20 Hz, ε = 0.5 (related
to CFL). (Right) Snapshots of FEM

simulations (solid lines) with FD
(dotted lines) as a function of
propagation distance. Note the
numerical dispersion. The most

important advantages of the FEM:
element size can vary (maintain
similar NPW throughout the
model).
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FEM for Strong heterogeneities: h-adaptive mesh

A fault zone model with central LVZ of damaged zone has three
subdomains (Vs=6000/1500/3000 m/s, dx=40/10/20, NPW ∼ 30).
Injection at the centre of LVZ, free-surface B.C., f0 = 5 Hz. Note
wavelength difference and non-differentiable wavefield at boundary.
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Shape functions: from 1D to 2D and
3D



Shape functions: 1D linear

Recall the expansion of wavefield by basis functions

u(x) =
N∑
i=1

ciφi(x) (35)

A standard procedure in FEM is to map all elements to a
standard element to make integration easier. For example,

x ∈ Di ≡ [xi, xi+1]→ ξ =
x− xi

xi+1 − xi
∈ [0, 1]

We now derive the so-called shape functions used to describe
the wavefield at element level in ξ. First let us look at a
wavefield that is linear over the element

u(ξ) = c1 + c2ξ (36)

and satisfies the condition that u(ξ = 0) = u1 and u(ξ = 1) = u2.
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linear shape function

Hence c1 = u1 and c2 = −u1 + u2, or u = Ac, and(
c1
c2

)
=

(
1 0
−1 1

)(
u1

u2

)
(37)

or c = A−1u. And

u(ξ) = u1+(−u1+u2)ξ = u1(1−ξ)+u2ξ = u1N1(ξ)+u2N2(ξ) (38)

where the shape functions are defined as

N1(ξ) = 1− ξ, N2(ξ) = ξ (39)

and in general, the shape functions of general order N satisfy

u(ξ) =
N∑
i=1

ui Ni(ξ) (40)

which is the approximate continuous representation of the
solution field u(ξ) inside the element. 28



1D shape functions

Extending the concept to higher
order (N > 2), e.g.,

u(ξ) = c1 + c2ξ + c3ξ2

which satisfy the field exactly
at three points ξ = 0, 1

2 , 1 as
u1,2,3 then u = Ac and

u(ξ) =
3∑

i=1

ui Ni(ξ)

N1(ξ) = 1− 3ξ + 2ξ2,

N2(ξ) = 4ξ − 4ξ2,

N3(ξ) = −ξ + 2ξ2
29



Shape functions in 2D

The most frequently used element shapes in 2D are triangles
(e.g. after Delauney triangulation of arbitrary point clouds) and
rectangles. We limit to only look at linear case. Transformation
from (x, y) to (ξ, η)

x = x1 + (x2 − x1)ξ + (x3 − x1)η

y = y1 + (y2 − y1)ξ + (y3 − y1)η

Assuming u(ξ, η) = c1 + c2ξ + c3η, where ci’s are solved by
using u(ξ = 0, 1, η = 0, 1)

N1(ξ, η) = 1− ξ − η
N2(ξ, η) = ξ,

N3(ξ, η) = η

30



2D shape function

u(ξ, η) = u(0,0)N1(ξ, η) + u(1,0)N2(ξ, η)

+ u(0, 1)N3(ξ, η)

N1(ξ, η) = 1− ξ − η
N2(ξ, η) = ξ

N3(ξ, η) = η
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Rectangular shape functions

Shape functions for quadrilateral elements can be derived by a
mapping to a standard square element

x = x1 + (x2 − x1)ξ + (x4 − x1)η + (x3 − x2)ξη

y = y1 + (y2 − y1)ξ + (y4 − y1)η + (y3 − y2)ξη

u(ξ, η) = u(0,0)N1(ξ, η) + u(1,0)N2(ξ, η)

+ u(1, 1)N3(ξ, η) + u(0, 1)N4(ξ, η)

N1(ξ, η) = (1− ξ)(1− η)
N2(ξ, η) = ξ(1− η)
N3(ξ, η) = ξη

N4(ξ, η) = (1− ξ)η
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2D quadrilateral shape functions
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3D Shape functions

• 1D to 2D/3D extension is substantially more involved than
for 3D FD.

• References: Bao et al. (1996) and Bielak et al. (1998), Bielak
et al. (2005) for adaptive mesh using Octree approach.

• Finite-element discontinuous Galerkin method, have
recently been introduced to seismic wave propagation, in
particular for dynamic rupture problems and wave
propagation through media with highly complex
geometrical features.
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