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1D wave equation: strong form

1D wave equation that allows shear modulus to vary spatially
for x ∈ Ω = [0, L],

ρs̈ = ∂x(µ∂xs) (1)

with boundary condition for fixed ends (Dirichlet B.C.)

s(0, t) = s(L, t) = 0 (2)

or given traction on the ends (Neumannn B.C.)

µ∂xs(0, t) = B0(t), µ∂xs(L, t) = BL(t) (3)

and initial condition

s(x, t = 0) = f(x), ṡ(x, t = 0) = 0, (4)

Weak form by multiplying test function/integration by parts∫
Ω
ρw s̈ dx =

∫
w ∂x(µ∂xs) dx = −

∫
Ω
µ(∂x w)(∂x s) dx+[µw∂xs]

∣∣x=L
x=0
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Meshing

Discretize the simulation domain Ω into small elements
Ω = ∪Ωe, which in the case of 1D domain [0, L] is composed of
small line segment Ωi = [xi, xi+1], i = 1, · · ·Ne. Define mapping
onto standard domain x→ ξ ∈ [−1, 1] through the two end
anchors (ξ = −1 and ξ = 1)

N1(ξ) =
1
2

(1− ξ), N2(ξ) =
1
2

(1 + ξ); Na(ξb) = δab (5)

in order to describe the shape of the elements

x(ξ) =
2∑

a=1

Na(ξ)xa = N1(ξ)x1 + N2(ξ)x2, (6)

which recover the anchor coordinates x(−1) = x1, x(1) = x2.
The jacobian of mapping (for integration) requires Ṅa(ξ)

∂x
∂ξ

=
2∑

a=1

Ṅa(ξ) xa = − 1
2
x1 +

1
2
x2 (7) 3



Shape functions Extension in 2D

For a 2D element with 9 anchors (3 in x and 3 in z direction),
Na(ξ, η) are defined as second-order Lagrangian polynomial,
and the mapping between the element and standard square is

x(ξ, η) =
9∑

a=1

Na(ξ, η)xa, (8)

and computing ∂x
∂ξ will involve the shape functions ∂ξNa’s.
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Interpolation and integration

We need to represent a function, f(x(ξ)), within an element, and
integrate it over the standard element [−1, 1].

In the classical FEM, the shape functions Na(ξ) are also used as
the basis function to expand the function f(x(ξ)). Although it
may be sufficient for some deformation problems with very
small strain, it is often not enough for the wave propagation
problem. Instead we use higher-order Lagrangian polynomials
(order N) to expand the field functions

f(x(ξ)) =
N∑

α=0

fαlNα(ξ) (9)

∫
Ω

f(x) dx =
⋃
e

∫
Ωe

f(x) dx =
⋃
e

∫ 1

−1
f(x(ξ))J(ξ) dξ =

⋃
e

∑
α

ωαfαJα
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Derivatives on GLL points

∂f
∂x

= ∂x

( N∑
α=0

fαlNα(ξ)

)
=

( N∑
α=0

fα l̇Nα(ξ)

)
∂ξ

∂x
. (10)

If we evaluate the derivative at a GLL point ξβ

∂f
∂x

(x(ξβ)) =

( N∑
α=0

fα l̇Nα(ξβ)

)
∂ξ

∂x
(x(ξβ)). (11)

For 1D, ∂ξ∂x = 1/|J|, however, in 2D and 3D, the entire ∂ξ
∂x matrix

(size 3× 3) needs to be stored at all GLL points.
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Meshing summary

Meshing summary:

1. Choose a degree number N, and use the GLL libraries to obtain the
GLL points ξβ , β = 0, · · · ,N, GLL quadrature weights ωβ , as well as
the derivative evaluated at the GLL points l̇Nα(ξβ).

2. mesh the simulation domain, and store coordinates xi at the anchors
for each element.

3. Over an element, store the material property ρ, µ, Jacobian J and the
inverse of the Jacobian matrix ∂ξ

∂x over all the GLL points ξβ .

4. setup the mapping from local to global nodal points for assembling
later.
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Codes for meshing
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Mass matrix

LHS of EOM weak form∫
Ωe

ρw s̈ dx =

∫ 1

−1
ρ(x(ξ))w(x(ξ))s̈(x(ξ))J dξ =

N∑
α=0

ραwαs̈αJαωα

And assume the I’th w(x) is at elemental level the Lagrange
polynomial:

wI(x)
∣∣
Ωe

= lNβ (ξ). (12)

and the LHS over a particular e′ becomes∫
Ωe′

ρlNα(ξ) s̈ dx =
N∑

α=0

ραlNβw
αs̈αJαωα = ρβ s̈βJβωβδe′e (13)

For this test function wI(x) corresponding to a particular global
nodal point, only those elements including this nodal point xI,
will have contribution to the LHS.
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Integration at global level

∫
Ω
ρwI s̈ dx =

 ∑
e;xI∈Ωe

ρβJβωβ

 s̈I (14)

which means that when we assemble the LHS into a matrix
form Ms̈ for all the global nodal points I, M is diagonal matrix.
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RHS

The RHS of the weak form requires the spatial derivative of the
displacement field (i.e, strain)

∂s
∂x

(x(ξ), t)) =
N∑

α=0

sα(t)l̇Nα(ξ)
∂ξ

∂x
(15)

and the RHS involving the stiffness matrix becomes∫
Ωe

µ∂xw∂xs dx =

∫ 1

−1
µ∂xw∂xs J dx (16)

=
N∑

α=0

ωαJαµα l̇Nβ (ξα)
∂ξ

∂x
(ξα)

 N∑
γ=0

sγ(t)l̇Nγ (ξα)

 ∂ξ
∂x

(ξα)

Try write the corresponding code in your PS 3.
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B.C.

If the boundary values are not given as natural boundary
(traction), we need to evaluate wµ∂xs values on the left
boundary (in the first element)

w0µ0
N∑
γ=0

sγ(t)l̇Nγ (ξ0)
∂ξ

∂x
(ξ0) (17)

and the right boundary (in the last element)

wNµN
N∑
γ=0

sγ(t)l̇Nγ (ξN)
∂ξ

∂x
(ξN) (18)

where s0(t) = 0 and sN(t) = 0 will be supplied as the prescribed
boundary condition.
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ABCs

Absorbing boundary condition utilizes the one-way equation,
and for the right boundary, waves can only propagate towards
the right, and no reflections should be generated at this
absorbing boundary.

ω2 s =
µ

ρ
k2s, ⇒ −iω s = ±β(−ik) s (19)

which in the time domain becomes

ṡ = −β∂xs (20)

for right travelling waves s(x− βt). Hence

µ∂xs = −ρβṡ = −√ρµṡ (21)
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Assemble and time extrapolation

With all the above, we can symbolically assemble the system
into

MIJs̈J = KIJSJ + B.C.(S, Ṡ) + Forcing term (22)

The time marching scheme used is a special Newmark scheme
(more advanced time schemes have been used) Assuming we
already know the dn = sn, vn = ṡn, an = s̈n from last time step,
for time step n + 1,

• Predictor at the beginning of time loop

dn+1 = dn+vn∆t+
1
2
an(∆t)2, vn+1 = vn+

1
2
an∆t, an+1 = 0

• Corrector after solving the assembled linear system (with
diagonal mass matrix)

M∆a = F(dn+1, vn+1), an+1 = ∆a, vn+1 = v
1
2
n+1a

n+1∆t, dn+1 = dn+1
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Time marching: newmark scheme
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Mesh design specifics

1. Based on the accuracy requirement (and/or the shortest period of the
source) τ , as well as smallest wavespeed (S or surface waves), design
mesh so that at least 5 points (7-8 points are recommended) per
wavelength is achieved by the mesh.

N = τ(vmin/∆h) > 5, ∆h < 5∆h/vmin

a rule of thumb is that if you use 5 points per wavelength (which is a bit
on the low side) and NGLL = 5, the 5∆h is about 1.25∆H, where ∆H is
the element size.

2. If the grid (GLL) point spacing ∆h has been determined, then the time
stepping needs to satisfy that each time step the field only advances
less than a fraction of the grid spacing.

∆(v/∆h)max < c

where c is the Courant number, typically taken around 0.3.
3. Also the mapping between elements and the reference element ∂ξ

∂x
needs to be fairly well behaved so that J > 0. Also the mesh quality can
be controlled by requiring the skewness of the mesh elements to be
below 0.75. This can be an issue for complex 3D models. 16
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