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1 SEM implementations in 3D

1.1 3-D Wave Equations: Strong and Weak form
1.1.1 Strong form

Elastodynamics PDEs
ρ∂2

t s = ∇ ·T + f in Ω (1)

where the stress is related to strain based on the linear constitutive relation

T = C : ε = C : ∇s (2)

and the wavefield satisifies the free surface boundary condition

n̂ ·T = 0 on ∂Ω (3)

and initial condition
s(x, t = 0) = 0, ṡ(x, t = 0) = 0. (4)

1.1.2 Weak form (Variational form)

Multiply a global test function W (x) to both sides and integrate over Ω to obtain the weak form:∫
Ω

ρWs̈i dV =

∫
Σ

Wn̂jTji dΣ−
∫

Ω

∂jWTji dΩ +

∫
Ω

Wfi dΩ (5)

1.2 Meshing
The computational domain Ω is discretized into quadrangles in 2D, or hexahedra in 3D (iteration
index ispec), defined with respect to a reference unit domain (also called reference element), square
in 2D and cube in 3D by an invertible local mapping.

Each standard element (cube in 3D) has GLL grid points in 3 directions (index α,β,γ). Globally
number all grid points (index I) and establish the projection

(α, β, γ; ispec) −→ (I) (6)

Notice this projection is one-to-one for grid points inside any element (valence = 0), and multiple-
to-one for grid points on the boundaries that are shared by elements (valence ≥ 1).
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Figure 1: Shape functions in 3D

1.2.1 Interpolation of Shapes

For boundary and volumetric elements, we not only need to access location of grid points of the
element, but also the location of any arbitrary point inside the element. We can interpolate the
shape of the element by given ‘anchors’ xa.

1. For boundary element:

x(ξ, η) =
N∑
a=1

Na(ξ, η)xa (7)

and the Jacobian matrix associated with this transformation

Jb(ξ, η) = (
∂x

∂ξ
× ∂x

∂η
) (8)
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and the scalar Jacobian Jb = ‖Jb‖. The inverse transform is given by

(
∂ξ

∂x
× ∂η

∂x
) = J−1

b (9)

and the normal to the boundary is described by

n(ξ, η) =

∂x
∂ξ
× ∂x

∂η∣∣∣∂x∂ξ × ∂x
∂η

∣∣∣ (10)

2. For volumetric element:

x(ξ, η, ζ) =
N∑
a=1

Na(ξ, η, ζ)xa (11)

Ja(ξ, η, ζ) = (
∂x(ξ, η, ζ)

∂(ξ, η, ζ)
) (12)

Ja = ‖Ja‖ (13)
∂(ξ, η, ζ)

∂x(ξ, η, ζ)
= J−1

a (14)

Na(ξ, η) and Na(ξ, η, ζ) are the 2-D and 3-D shape functions. They are double or triple
products of degree 1 or 2 Lagrangian polynomials. For example, degree 1 Lagrangian poly-
nomials are N1(ξ) = 1

2
(1 + ξ) and N2(ξ) = 1

2
(1− ξ) for given anchors at −1 and 1.

1.3 Interpolation of Function Field
Numerical integration is based on the tensor-product of a Gauss-Lobatto-Legendre (GLL) 1-D
quadrature and the solution is expanded onto a discrete polynomial basis using Lagrange inter-
polants.

We interpolate function field on GLL points that satisfy:

(1− ξ2)ṖN(ξ) = 0 (15)

and

f(x(ξ, η))|Σe =
∑
αβ

fαβ lα(ξ)lβ(η)

f(x(ξ, η, ζ))|Ωe =
∑
αβγ

fαβγ lα(ξ)lβ(η)lγ(ζ) (16)
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1.3.1 Derivatives

∂if(x(ξ, η, ζ)) =
∑
αβγ

fαβγ
[
l̇α(ξ)lβ(η)lγ(ζ)

∂ξ

∂xi
+ lα(ξ)l̇β(η)lγ(ζ)

∂η

∂xi
+ lα(ξ)lβ(η)l̇γ(ζ)

∂ζ

∂xi

]
(17)

Notice ∂ξ
∂xi

, ∂η
∂xi

, ∂ζ
∂xi

values can be calculated from the 2D and 3D shape functions. Specifically, to
compute derivatives on GLL points:

∂if |αβγ =

[∑
σ

fσβγ l̇σ(ξα)

]
∂αβγi ξ +

[∑
σ

fασγ l̇σ(ηβ)

]
∂iη

αβγ +

[∑
σ

fαβσ l̇σ(ζγ)

]
∂iζ

αβγ (18)

1.3.2 Integration

Integration quadrature ∫
Σe

f(x) dx =
∑
αβ

ωαωβf
αβJαβb (19)∫

Ωe

f(x) dx =
∑
αβγ

ωαωβωγf
αβγJαβγa (20)

1.4 Global Test Functions
Define global test functions W I(x), such that

W I(x)|Ωe =

{
lα(ξ)lβ(η)lγ(ζ) if I ∈ Ωe, and I|Ωe = (α, β, γ)

0 if I 6∈ Ωe

(21)

If I|Ωe = (α, β, γ) has zero valence, then W I(x) is simply a 3-D local Lagrangian function ex-
tended to the whole space; otherwise it consists several pieces (valence+1) of local lagrangian
function (edge ones). Therefore, for integration, one needs to loop over spectral elements, then all
the GLL points, and adds contributions to the corresponding global grid point.
Notice

W I |Ωe(α
′, β′, ζ ′) = δαα′δββ′δζζ′ (22)

this simplifies the integration results.
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1.5 Application to the Wave Equation
1.5.1 LHS ∫

Ω

ρW I s̈i(t) dx =
∑
e

∫
Ωe

ρW I |Ωe s̈i(t) dx (23)

=
∑
e

∑
α′β′γ′

ωα′ωβ′ωγ′ρ
α′β′γ′Jα

′β′γ′ s̈α
′β′γ′

i δαα′δββ′δζζ′ (24)

=
∑
e

ωαωβωγρ
αβγJαβγ s̈αβγi (t) (25)

1.5.2 Spatial Derivatives

For example,

∂isj(x)|αβγΩe
= ∂i

[∑
α′β′γ′

sα
′β′γ′

j lα′(ξ)lβ′(η)lγ′(ζ)

]
|αβγΩe

= [
∑
σ

sσβγj l̇σ(ξα)]∂iξ(ξα, ηβ, ζγ)

+ [
∑
σ

sασγj l̇σ(ηβ)]∂iη(ξα, ηβ, ζγ)

+ [
∑
σ

sαβσj l̇σ(ζγ)]∂iζ(ξα, ηβ, ζγ) (26)

in the SEM code, hprime(α, σ) = l̇σ(ξα). The stress tensor is given by:

Tkl = Cklij∂isj −Rkl (27)

For isotropic and no pre-stress case,

Tkl = (κ− 2

3
µ)δklεii + µ(εkl + εlk) (28)

1.5.3 Boundary terms

∫
Σ

W I n̂jTji dΣ =
∑
e

∫
Σe

W Iti dΣe

=
∑
e

ωαωβt
αβ
i Jαβ (29)

Where Ith global grid point is on Σe elements, with local GLL index (α, β). Obviously, this term
does not need to be computed for free surface boundary where the normal stress ti vanishes. The
normal stress is also continuous for any solid-solid internal boundaries. For fluid-solid coupling
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problems, we may solve both side as independent domains, and the interchange of two fields will
occur through this boundary condition. For regional problems, other boundaries are ‘absorbing’,
where

t = n̂ ·T = −[ρα(v · n̂)n̂+ ρβ(v − vnn̂)], ti = −[ρα(n̂j ṡj)n̂i + ρβ(δij − n̂in̂j)ṡj] (30)

Note the − sign seems to be missing from all Dimitri’s papers. Clearly the − sign should be there
due to the paraxial approximation ut +αuz = 0, which gurantees that the waves propagates in the
positive z direction u = u(t− z/α). The traction boundary condition is a natural type of boundary
condition for FEM type of methods. This is also known as Neumann BC.

Sometimes the boundary conditions may be given in terms of displacement (i.e. Dirichlet BC)

s(x, t)
∣∣
Σ

= g(x, t) (31)

Much less often seen is the Robin BC:

as(x, t) + b
∂s

∂n
= g (32)

The initial condition is given as Cauchy data

s(x, t = 0) = a(x), ṡ(x, t = 0) = b(x) (33)

1.5.4 Volumetric integral terms

∫
Ω

∂jW
ITji dΩ =

∑
e

∫
Ωe

∂jW
I |ΩeTji dΩe

=
∑
e

∫
Ωe

[l̇α∂jξlβlγ + lαl̇β∂jηlγ + lαlβ l̇γ∂jζ]Tji dx

=
∑
e

{[∑
σ

ωσ l̇α(ξσ)∂jξ(ξσ, ηβ, ζγ)T
σβγ
ji Jσβγ

]
ωβωγ

+

[∑
σ

ωσ l̇β(ησ)∂jη(ξα, ησ, ζγ)T
ασγ
ji Jασγ

]
ωαωγ

+

[∑
σ

ωσ l̇γ(ζσ)∂jζ(ξα, ηβ, ζσ)Tαβσji Jαβσ

]
ωαωβ

}
(34)

in the SEM code, sums over σ are named as temp[x|y|z][1|2|3].
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1.5.5 Forcing terms

The forcing term for a point force

fi(x, t) = fig(t)δ(x− x0) (35)

and for a distributed moment tensor source (i.e., related to faulting)

f(x, t) = −∇m(x, t), (36)

and for a point moment tensor it is reduced to

m(x, t) = M0δ(x− x0)g(t), f(x, t) = −M0g(t)∇δ(x− x0) (37)

where g(t) is the rise time function, and ġ(t) is the source time function for this moment tensor
source.

1. For point force fi(x, t) = fi(t)δ(x− x0),∫
Ω

W Ifi dΩ = W I(x0)fi(t)

=


fi(t) if x0 → I

0 if x0 → other grid point
lα(ξ(x0))lβ(ξ(x0))lγ(ξ(x0))fi(t) else x0 ∈ Ωe

(38)

if x0 has local parameter {ispec; ξ, η, ζ}, then compute the Lagrange polynomial at the
source location.

2. For Moment tensor point force fi(x, t) = −Mij∂jδ(x− x0)g(t),∫
Ω

W Ifi dΩ = Mij∂jW
I(x0)g(t) (39)

Since ∂jW = ∂W
∂ξk

∂ξk
∂xj

and define Gik(ξ, η, ζ) = Mij
∂ξk
∂xj

,

Mij∂jW
I(x0) = Gik

∂W

∂ξk
(ξ0)

=
∑
r,t,v

lr(ξ0)lt(η0)lv(ζ0)Gik(ξr, ηt, ζv)∂ξk(lα(ξr)lβ(ηt)lγ(ζv))

=
∑
r,t,v

lr(ξ0)lt(η0)lv(ζ0) [Gi1(ξr, ηt, ζv)l
′
α(ξr)lβ(ηt)lγ(ζv)) + · · · ] (40)
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3. For body force field fi(x, t),∫
Ω

W Ifi dΩ =
∑
e

∫
Ωe

W I |ΩeFi dΩe

=
∑
e

ωαωβωγF
αβγ
i (t)Jαβγ (41)

4. For surface force field fi(x, t) =
∫

Σ0
τi(x, t)δ(x− x0)dΣ0, (monopoles on Σ0)∫

Ω

W Ifi dΩ =

∫
Ω

W I(x)

[∫
Σ0

τi(x, t)δ(x− x0)dΣ0

]
dΩ (42)

=

∫
Σ0

τi(x0, t)W
I(x0) dΣ0 (43)

to compute this in practice, loop over surface elements, and then for each surface GLL point
I = (α, β),

Contr. to I’th test function + = ωαωβταβJ
αβ (44)

5. For surface double couple force field fp(x, t) = −
∫

Σ0
ui(x, t)njCijpq∂qδ(x − x0) dΣ0, as-

sume that Σ0 do not overlap with the surface Σ that encompasses Ω, then∫
Ω

W Ifp dΩ = −
∫

Ω

W I(x)

[∫
Σ0

ui(x, t)njCijpq∂qδ dΣ0

]
dΩ

= −
∫

Σ0

[∫
Ω

W I(x)ui(x, t)njCijpq∂qδ(x− x0) dΩ

] ∫
Ω

W I(x)

=

∫
Σ0

∂q
(
ui(t)njCijpqW

I
)

(x0) dΣ0 (45)

We define the corresponding moment density tensor mpq(t) = ui(t)njCijpq on Σ0. In the
case of a fault in an isotropic medium where u is perpendicular to n, mpq = µ(upnq + uqnp)
is the standard moment density tensor that describes a seismic source. Now rewrite the above
expression: ∫

Ω

W Ifi dΩ =

∫
Σ0

[∂qmpq(t)W
I +mpq(t)∂qW

I ] dΣ0 (46)

In practice, we store fp(t) = ∂qmpq and mpq(t) in advance for each grid point of the surface
Σ0, then the above two terms can be calculated with ease in runtime.

1.5.6 Assembling

M s̈(t) = B + T + F(t) (47)

We can update the acceleration at time t by

s̈(t) = (M)−1(B + T + F(t)) (48)
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Notice that M is diagonal (I × I), B,T,F, s̈(t) are all vectors (I × 1). Try loop over ispec and
then (α, β, γ) to assemble the contribution of each grid point (in an element) into global matrices.
This is true for all matrices, except the forcing term in which the contribution is added by looping
over only elements that contain the forces and related GLL points.

1.6 Time Marching Schemes
Time marching based on explicit-implicit predictor-multicorrector format as in Newmark scheme
Predictor:

dn+1 = dn + vn∆t+
1

2
an(∆t)2

vn+1 = vn +
1

2
an∆t

an+1 = 0 (49)

Corrector:

an+1 = (M)−1(B + T + Fn+1)

vn+1 = vn+1 +
1

2
an+1∆t

dn+1 = dn+1 (50)

1.7 Advantages and Disadvantages
Advantages: diagnoal mass matrix (δ operator), exponential convergence of spectral methods,
accurate and fast.

Disadvantages: use hexhedral mesh, difficult to adapt to arbitrary interfaces. Currently a
predictor-corrector Newmark scheme is used, after 40 minutes, dispersion may appear due to the
inaccurate timing marching. A Runge-Kutta method may be more natural, requiring the storage of
snapshots from 3-4 previous steps.

Another huge hinderance that makes it slow (or in other words cancels the benefit of the di-
agnonal matrix) is that fact that too many grid points requires too much storage to form the explicit
stiffness matrix, therefore evaluation of stress is done in every step instead of a simple matrix-
vector multiplication.
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