Adjoint Method

Qinya Liu

March 16, 2007

1 General Principle

Define Hilbert space $\mathcal{F}, \mathbf{S} \in \mathcal{F}$.
Define a functional φ on $\mathcal{F}: \mathbf{S} \rightarrow \varphi(\mathbf{S})$.

$$
\delta \varphi=\left(\nabla_{\mathbf{S}} \varphi, \delta \mathbf{S}\right)
$$

Define another Hilbert space $\mathcal{C}, \mathbf{m} \in \mathcal{C}$, and a linear operator $L: \mathcal{C} \rightarrow \mathcal{F}$ such that

$$
\delta \mathbf{S}=L \delta \mathbf{m}
$$

then

$$
\begin{aligned}
\delta \varphi & =\left(\nabla_{\mathbf{S}} \varphi, L \delta \mathbf{m}\right) \\
& =\left\langle L^{*} \nabla_{\mathbf{S}} \varphi, \delta \mathbf{m}\right\rangle
\end{aligned}
$$

where L^{*} is the adjoint operator of L. Formally,

$$
\nabla_{\mathbf{m}} \varphi=L^{*} \nabla_{\mathbf{S}} \varphi
$$

Note: $\nabla_{\mathbf{S}}$ is the input adjoint source, L is the forward Green's operator, and L^{*} is the corresponding adjoint operator.

2 Application to Seismology

2.1 Introduction

For one earthquake, we have N observations:

$$
\mathbf{D}=\left[\mathbf{d}\left(\mathbf{x}^{1}, t\right), \ldots, \mathbf{d}\left(\mathbf{x}^{I}, t\right), \ldots, \mathbf{d}\left(\mathbf{x}^{N}, t\right)\right]
$$

and for model $\mathbf{m}(\mathbf{x})$, we have synthetics
$\mathbf{S}(\mathbf{m})=\left[\mathbf{s}\left(\mathbf{m}, \mathbf{x}^{1}, t\right), \ldots, \mathbf{s}\left(\mathbf{m}, \mathbf{x}^{I}, t\right), \ldots, \mathbf{s}\left(\mathbf{m}, \mathbf{x}^{N}, t\right)\right]$
and $\mathbf{D}, \mathbf{S} \in \mathcal{F}$.
Define measure of misfit in \mathcal{F} :

$$
\begin{aligned}
\varphi & =\frac{1}{2}(\mathbf{S}-\mathbf{D}, \mathbf{S}-\mathbf{D}) \\
& =\frac{1}{2} \sum_{I=1}^{N} \int\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)-d_{i}\left(\mathbf{x}^{I}, t\right)\right]^{2} d t,
\end{aligned}
$$

and

$$
\begin{aligned}
\delta \varphi & =\left(\nabla_{\mathbf{S}} \varphi, \delta \mathbf{S}\right) \\
& =\sum_{I=1}^{N} \int\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)-d_{i}\left(\mathbf{x}^{I}, t\right)\right] \delta s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right) d t
\end{aligned}
$$

Note that $\nabla_{\mathbf{S}} \varphi$ will become the back-propagated adjoint source.
Suppose we can express the variations of \mathbf{s} as

$$
\delta \mathbf{s}_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)=\int_{0}^{t} \int G_{i j}\left(\mathbf{x}^{I}, t-t^{\prime}, \mathbf{x}^{\prime}\right) \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right) d \mathbf{x}^{\prime} d t^{\prime}
$$

where $\delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right)$ is the equivalent perturbation in the force term due to the
variations in the model parameters \mathbf{m}. Therefore,

$$
\begin{aligned}
\delta \varphi & =\sum_{I=1}^{N} \int_{0}^{T}\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)-d_{i}\left(\mathbf{x}^{I}, t\right)\right] \\
& \left\{\int_{0}^{t} \int G_{i j}\left(\mathbf{x}^{I}, t-t^{\prime}, \mathbf{x}^{\prime}\right) \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right) d \mathbf{x}^{\prime} d t^{\prime}\right\} d t .
\end{aligned}
$$

Do integration over t and summation over I first

$$
\begin{aligned}
\delta \varphi & =\iint_{0}^{T} \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right) \\
& \left\{\int_{t^{\prime}}^{T} d t \sum_{I=1}^{N} G_{i j}\left(\mathbf{x}^{I}, t-t^{\prime}, \mathbf{x}^{\prime}\right)\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)-d_{i}\left(\mathbf{x}^{I}, t\right)\right]\right\} d t^{\prime} d \mathbf{x}^{\prime} .
\end{aligned}
$$

Define

$$
\begin{aligned}
P_{j} & \left(\mathbf{x}^{\prime}, t^{\prime}\right) \\
& =\int_{t^{\prime}}^{T} \sum_{I=1}^{N} G_{i j}\left(\mathbf{x}^{I}, t-t^{\prime}, \mathbf{x}^{\prime}\right)\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)-d_{i}\left(\mathbf{x}^{I}, t\right)\right] d t \\
& =\int_{t^{\prime}}^{T} \sum_{I=1}^{N} G_{j i}\left(\mathbf{x}^{\prime}, t-t^{\prime}, \mathbf{x}^{I}\right)\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)-d_{i}\left(\mathbf{x}^{I}, t\right)\right] d t \\
& =\int_{0}^{T-t^{\prime}} \sum_{I=1}^{N} G_{j i}\left(\mathbf{x}^{\prime}, T-t^{\prime}-t, \mathbf{x}^{I}\right)\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, T-t\right)-d_{i}\left(\mathbf{x}^{I}, T-t\right)\right] d t .
\end{aligned}
$$

Define force field

$$
F_{i}(\mathbf{x}, t)=\sum_{I=1}^{N}\left[s_{i}\left(\mathbf{m}, \mathbf{x}^{I}, T-t\right)-d_{i}\left(\mathbf{x}^{I}, T-t\right)\right] \delta\left(\mathbf{x}-\mathbf{x}^{I}\right),
$$

and adjoint field associated with this force field:

$$
s_{j}^{\dagger}\left(\mathbf{x}^{\prime}, t^{\prime}\right)=\int_{0}^{t^{\prime}} \int G_{j i}\left(\mathbf{x}^{\prime}, t^{\prime}-t, \mathbf{x}\right) F_{i}(\mathbf{x}, t) d \mathbf{x} d t
$$

then

$$
P_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right)=s_{j}^{\dagger}\left(\mathbf{x}^{\prime}, T-t^{\prime}\right)
$$

and

$$
\delta \varphi=\int\left[\int_{0}^{T} \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right) s_{j}^{\dagger}\left(\mathbf{x}^{\prime}, T-t^{\prime}\right) d t^{\prime}\right] d \mathbf{x}^{\prime}
$$

Note: A useful formula is $\int[f(t) * g(t)] h(t) d t=\int f(t)[g(t) * h(-t)] d t$.

2.2 Waveform Tomography

In waveform tomography, \mathbf{m} denotes the perturbation in structural parameters, including ρ and \mathbf{c}.
$\mathbf{s}(\mathbf{m}, \mathbf{x}, t)$ satsifies the wave equation

$$
\begin{array}{rlr}
\rho \partial_{t}^{2} \mathbf{s}= & \nabla \cdot(\mathbf{c}: \nabla \mathbf{s})+\mathbf{F}_{\mathbf{0}} & \text { in } V \\
\mathbf{n} \cdot(\mathbf{c}: \nabla \mathbf{s})=0 & \text { on } \Sigma
\end{array}
$$

and

$$
\begin{aligned}
& \rho \partial_{t}^{2} \delta \mathbf{s}= \nabla \cdot(\mathbf{c}: \nabla \delta \mathbf{s})-\delta \rho \partial_{t}^{2} \mathbf{s}+\nabla \cdot(\delta \mathbf{c}: \nabla \mathbf{s}) \\
& \mathbf{n} \cdot(\mathbf{c}: \nabla \delta \mathbf{s})=-\mathbf{n} \cdot(\delta \mathbf{c}: \nabla \mathbf{s})
\end{aligned}
$$

Using the symmetry of \mathbf{c} and define (a little bit tricky with b.c.)

$$
\delta \mathbf{f}=-\delta \rho \partial_{t}^{2} \mathbf{s}-(\nabla \mathbf{s}: \delta \mathbf{c}) \cdot \nabla
$$

Invoke Green's function, we obtain

$$
\delta \mathbf{s}_{i}\left(\mathbf{m}, \mathbf{x}^{I}, t\right)=\int_{0}^{t} \int \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right) G_{i j}\left(\mathbf{x}^{I}, t-t^{\prime}, \mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime} d t^{\prime}
$$

Substitute in the expression for $\delta \varphi$,

$$
\delta \varphi=\int\left\{\left.\int_{0}^{T}\left[-\delta \rho \partial_{t}^{2} \mathbf{s}-(\nabla \mathbf{s}: \delta \mathbf{c}) \cdot \nabla\right]\right|_{\left(\mathbf{x}^{\prime}, t^{\prime}\right)} \cdot \mathbf{s}^{\dagger}\left(\mathbf{x}^{\prime}, T-t^{\prime}\right) d t^{\prime}\right\} d \mathbf{x}^{\prime}
$$

Then we can define ρ and \mathbf{c} kernels:

$$
\begin{aligned}
K_{\rho}(\mathbf{x}) & =-\rho(\mathbf{x}) \int_{0}^{T}\left[\partial_{t}^{2} \mathbf{s}(\mathbf{x}, t) \cdot \mathbf{s}^{\dagger}\left(\mathbf{x}, T-t^{\prime}\right)\right] d t^{\prime} \\
K_{c_{j k l m}}(\mathbf{x}) & =-c_{j k l m}(\mathbf{x}) \int_{0}^{T}\left[\epsilon_{j k}(\mathbf{x}, t) \epsilon_{l m}^{\dagger}(\mathbf{x}, T-t)\right] d t
\end{aligned}
$$

and $\delta \varphi$ evolves into

$$
\delta \varphi=\int\left[K_{\rho}(\mathbf{x}) \delta \ln \rho(\mathbf{x})+K_{c_{j k l m}}(\mathbf{x}) \delta \ln c_{j k l m}(\mathbf{x})\right] d \mathbf{x}
$$

A simpler version

$$
\delta \varphi=\int\left[K_{\rho^{\prime}}(\mathbf{x}) \delta \ln \rho(\mathbf{x})+K_{\alpha}(\mathbf{x}) \delta \ln \alpha(\mathbf{x})+K_{\beta}(\mathbf{x}) \delta \ln \beta(\mathbf{x})\right] d \mathbf{x}
$$

Where

$$
\begin{aligned}
K_{\mu}(\mathbf{x}) & =-2 \mu(\mathbf{x}) \int_{0}^{T} \mathbf{D}(\mathbf{x}, t): \mathbf{D}^{\dagger}(\mathbf{x}, T-t) d t \\
K_{\kappa}(\mathbf{x}) & =-\kappa(\mathbf{x}) \int_{0}^{T}[\nabla \cdot \mathbf{s}(\mathbf{x}, t)]\left[\nabla \cdot \mathbf{s}^{\dagger}(\mathbf{x}, T-t)\right] d t \\
K_{\rho^{\prime}} & =K_{\rho}+K_{\kappa}+K_{\mu} \\
K_{\beta} & =2\left(K_{\mu}-\frac{4 \mu}{3 \kappa} K_{\kappa}\right) \\
K_{\alpha} & =2\left(1+\frac{4 \mu}{3 \kappa}\right) K_{\kappa}
\end{aligned}
$$

Notice that these K kernels will have the same units as φ / V.

2.3 Travel-time Tomography

Let the misfit function be

$$
\delta \varphi=\frac{1}{2} \sum_{I=1}^{N} \sum_{i=1}^{L_{I}} \tau_{i}^{2}\left(\mathbf{x}^{I}, \mathbf{m}\right)
$$

where I is the number of receivers, L_{I} is the number of wave packets for the I th receiver, and $\tau_{i}\left(\mathbf{x}^{I}, \mathbf{m}\right)$ is the time shift bwtween the data and the synthetics for the i th wave packet of the I th receiver for model \mathbf{m}. Use the formula derived in the 'Travel-time tomography' notes

$$
\begin{aligned}
\delta \varphi & =\sum_{I} \sum_{L_{I}} \tau_{i}\left(\mathbf{x}^{I}, \mathbf{m}\right) \delta \tau_{i}\left(\mathbf{x}^{I}, \mathbf{m}\right) \\
& =\sum \tau_{i}\left(\mathbf{x}^{I}, \mathbf{m}\right) N_{i} \int_{0}^{T} w_{i}(t) \dot{s}\left(\mathbf{x}^{I}, t\right) w_{i}(t) \delta s\left(\mathbf{x}^{I}, t\right) d t \\
& =\sum \tau_{i}\left(\mathbf{x}^{I}, \mathbf{m}\right) N_{i} \int_{0}^{T} w_{i}^{2}(t) \dot{s}\left(\mathbf{x}^{I}, t\right)\left[\int_{0}^{t} \int G_{\cdot j}\left(\mathbf{x}^{I}, t-t^{\prime}, \mathbf{x}^{\prime}\right) \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right) d \mathbf{x}^{\prime} d t^{\prime}\right] d t \\
& =\int_{0}^{T} \int \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\left[\int_{0}^{T-t^{\prime}} \sum \tau_{i}\left(\mathbf{x}^{I}, \mathbf{m}\right) N_{i} w_{i}^{2}(T-t) \dot{s}\left(\mathbf{x}^{I}, T-t\right) G_{j .}\left(\mathbf{x}^{\prime}, T-t-t^{\prime}, \mathbf{x}^{I}\right) d t\right] d \mathbf{x}^{\prime} d t^{\prime} \\
& =\int_{0}^{T} \int \delta f_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right) s_{j}^{\dagger}\left(\mathbf{x}^{\prime}, T-t^{\prime}\right) d \mathbf{x}^{\prime} d t
\end{aligned}
$$

Where $\mathbf{s}^{\dagger}\left(\mathbf{x}^{\prime}, t^{\prime}\right)$ is the adjoint field associated with the adjoint source $\sum_{I, L_{I}} N_{i} \tau_{i}\left(\mathbf{x}^{I}, \mathbf{m}\right) w_{i}^{2}(T-t) \dot{s}\left(\mathbf{x}^{I}, T-t\right)$, and $N_{i}=\left(\int[w(t) \dot{s}(t)]^{2} d t\right)^{-1}$. This means that the back-propagated signal is the windowed the synthetics with proper normalization and weighted with travel-time anomaly.

3 Application to Source Inversion

For an earthquake, we have N observations:
$\mathbf{D}=\left[\mathbf{d}\left(\mathbf{x}^{1}, t\right), \ldots, \mathbf{d}\left(\mathbf{x}^{I}, t\right), \ldots, \mathbf{d}\left(\mathbf{x}^{N}, t\right)\right]$
and for force field $\mathbf{F}(\mathbf{x}, t, \mathbf{f})$, we have synthetics
$\mathbf{S}(\mathbf{f})=\left[\mathbf{s}\left(\mathbf{f}, \mathbf{x}^{1}, t\right), \ldots, \mathbf{s}\left(\mathbf{f}, \mathbf{x}^{I}, t\right), \ldots, \mathbf{s}\left(\mathbf{f}, \mathbf{x}^{N}, t\right)\right]$, which satisify the wave equations

$$
\rho \partial_{t}^{2} \mathbf{s}=\nabla \cdot(\mathbf{c}: \nabla \mathbf{s})+\mathbf{F}(\mathbf{x}, t, \mathbf{f})
$$

and

$$
\delta \mathbf{s}_{i}\left(\mathbf{f}, \mathbf{x}^{I}, t\right)=\int_{0}^{t} \int G_{i j}\left(\mathbf{x}^{I}, t-t^{\prime}, \mathbf{x}^{\prime}\right) \delta F_{j}\left(\mathbf{x}^{\prime}, t^{\prime}, \mathbf{f}\right) d \mathbf{x}^{\prime} d t^{\prime}
$$

Follow the same deduction as before:

$$
\delta \varphi=\int\left[\int_{0}^{T} \delta F_{j}\left(\mathbf{x}^{\prime}, t^{\prime}, \mathbf{f}\right) s_{j}^{\dagger}\left(\mathbf{x}^{\prime}, T-t^{\prime}\right) d t^{\prime}\right] d \mathbf{x}^{\prime}
$$

In practice, another version is more useful:

$$
\delta \varphi=\int\left[\int_{0}^{T} \delta \dot{\mathbf{F}}_{j}\left(\mathbf{x}^{\prime}, t^{\prime}, \mathbf{f}\right) \mathbf{I}_{s}^{\dagger}\left(\mathbf{x}^{\prime}, T-t^{\prime}\right) d t^{\prime}\right] d \mathbf{x}^{\prime}
$$

where we have defined $\dot{\mathbf{F}}=\partial_{t} \mathbf{F}$, and $\mathbf{I}_{s}=\int \mathbf{s} d t$.
We study the cases of point force, point moment-tensor source and finite fault.

3.1 Point Source

Point force at location x_{0} can be expressed as:

$$
F_{j}(\mathbf{x}, t, \mathbf{f})=f_{j} g(t) \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

where f_{j} is the amplitude of the force and also the 'model' parameter to solve for; $g(t)$ is the normalized source time function.

$$
\delta F_{j}(\mathbf{x}, t, \mathbf{f})=\delta f_{j} g(t) \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

Therefore

$$
\delta \varphi=\left[\int_{0}^{T} g(t) s_{j}^{\dagger}\left(\mathbf{x}_{0}, T-t\right) d t\right] \delta f_{j}
$$

3.2 Moment-Tensor source

If the moment tensor for a point source \mathbf{x}_{0} is given by:

$$
M_{j k}(\mathbf{x}, t, \mathbf{m})=M_{j k} g(t) \delta\left(\mathbf{x}-\mathbf{x}_{0}\right),
$$

then the corresponding force can be expressed as:

$$
F_{j}(\mathbf{x}, t, \mathbf{m})=-\partial_{k} M_{j k}=-M_{j k} g(t) \partial_{k} \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

and

$$
\delta \varphi=\left[-\iint_{0}^{T} g(t) s_{j}^{\dagger}(\mathbf{x}, T-t) \partial_{k} \delta\left(\mathbf{x}-\mathbf{x}_{0}\right) d t d x\right] \delta M_{j k}
$$

Integration by parts and assume \mathbf{x}_{0} is not on any boundaries, then

$$
\begin{aligned}
\delta \varphi & =\left[\int_{0}^{T} g(t) \partial_{k} s_{j}^{\dagger}\left(\mathbf{x}_{0}, T-t\right) d t\right] \delta M_{j k} \\
& =\left[\int_{0}^{T} g(t) \epsilon_{j k}^{\dagger}\left(\mathbf{x}_{0}, T-t\right) d t\right] \delta M_{j k}
\end{aligned}
$$

Therefore, in order to compute the Fréchet derivative of the misfit function with respect to moment tensor elements, we just need to convolve the source time function $g(t)$ with the adjoint strain $\epsilon_{j k}\left(\mathbf{x}_{0}, t\right)$ at the source location, which can be done on the fly in the numerical simulations.

If we are also interested in resolving the location x_{0}, then we have:

$$
\begin{aligned}
\delta \varphi & =\left[\int_{0}^{T} \epsilon_{j k}^{\dagger}\left(\mathrm{x}_{0}, T-t\right) g(t) d t\right] \delta M_{j k} \\
& +\left[\int_{0}^{T} \partial_{i}\left(M_{j k} \epsilon_{j k}^{\dagger}\left(\mathbf{x}_{0}, T-t\right)\right) g(t) d t\right] \delta x_{i}^{0}
\end{aligned}
$$

In practice, we will compute

$$
\int_{0}^{T} \epsilon_{j k}^{\dagger}\left(\mathbf{x}_{0}, T-t\right) g(t) d t
$$

and

$$
\int_{0}^{T}\left(M_{j k} \epsilon_{j k}^{\dagger}\left(\mathbf{x}_{0}, T-t\right)\right) g(t) d t
$$

'on the fly' for the source element, from which we obtain the Fréchet derivatives with respect to moment-tensor elements and source location at the end of time loop.

3.3 Finite Fault

For a finite fault with known geometry, mesh it into rectangulars subelements, and define the basis function associated with each rectangular $P_{I J}(\mathrm{x})$. However, it is tricky if one also wants to resolve the source time function $g(t)$. Note that $g(t=\infty) \neq 0$, which means we cannot parameterize the time domain with finite number of basis functions. A natural choice is to look at the $\dot{\mathbf{F}}(\mathbf{x}, t)$ (i.e. $\dot{g}(t)$), for which we select the time window to resolve the time history, and the associated basis function $B_{\sigma}(t)$ for each time block.

3.3.1 Force

$$
\dot{F}_{j}(\mathbf{x}, t)=\sum_{I, J, \sigma} f_{j}^{I J \sigma} P_{I J}(\mathbf{x}) B_{\sigma}(t)
$$

and

$$
\delta \varphi=\sum_{I J \sigma}\left[\iint_{0}^{T} P_{I J}(\mathbf{x}) B_{\sigma}(t) I_{s}^{\dagger}(\mathbf{x}, T-t) d t d x\right] \delta f_{j}^{I J \sigma}
$$

Notice that the Fréchet derivatives for $\delta f_{j}^{I J \sigma}$ is actually taking the appropriate time and spatial slice of $I_{s_{j}}^{\dagger}(\mathbf{x}, T-t)$.

3.3.2 Moment Density Tensor

Let the moment-rate density tensor function be

$$
\dot{m}_{j k}(\mathbf{x}, t)=\sum_{I, J, \sigma} m_{j k}^{I J \sigma} P_{I J}(\mathbf{x}) B_{\sigma}(t)
$$

and

$$
\delta \varphi=\sum_{I J \sigma}\left[\iint_{0}^{T} P_{I J}(\mathbf{x}) B_{\sigma}(t) I_{\epsilon j k}^{\dagger}(\mathbf{x}, T-t) d t d x\right] \delta m_{j k}^{I J \sigma}
$$

Therefore the the Fréchet derivatives for $m_{j k}^{I J \sigma}$ is given by the appropriate time and spatial slice of $I_{\epsilon j k}^{\dagger}(\mathbf{x}, T-t)$. One thing to bear in mind is that $m_{j k}^{I J \sigma}$ is actually the discretized version of the 'moment-rate density function', not the 'moment-density function'.

