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1 General Principle

Define Hilbert space F, S € F.

Define a functional ¢ on F : S — ¢(S).

dp = (Vsp, 08)

Define another Hilbert space C, m € C, and a linear operator L: C — F
such that
6S = Lom

then

dp = (Vsp, Lém)

= (L* Vgp, dm)

where L* is the adjoint operator of L. Formally,

Vm‘P =L VS‘P

Note: Vg is the input adjoint source, L is the forward Green’s operator, and

L* is the corresponding adjoint operator.



2 Application to Seismology

2.1 Introduction

For one earthquake, we have N observations:

D= [d(xl,t)7 Cood(xDt), .. ,d(xN,t)]

and for model m(x), we have synthetics

S(m) = [s(m,x',t),...,s(m,x" t),...,s(m,x",1)]
and D,S € F.

Define measure of misfit in F:

N
- %Z / [si(m,x", t) — dz’(xl’t)f dt,
=

and

dp = (Vsyp, 48)

N
- Z / [Si(m7xl,t) — di(XI,t)] 5si(m,xl,t) dt.
I=1

Note that Vg will become the back-propagated adjoint source.

Suppose we can express the variations of s as
t
si(m, x! ) = / / Gij(xt =t x5 f;(x, ) dx'at,
0

where ¢ f;(x’,t') is the equivalent perturbation in the force term due to the



variations in the model parameters m. Therefore,

N T
dp = si(m,x! t) — d;(x!,t)
=2 | ]

t
{ / / Gii(x! t =t x)6f;(x,t) dx’dt’} dt.
0

Do integration over ¢ and summation over I first
T
so= [ | st
0
T N
{/ dt Z Gij(x't —t',x) [55(m, x 1) — d;(x!, t)] } dt'dx’.
v =1
Define
Pi(x,t)
/ ZGU xI t—t %) [si(m,xl,t) —di(xl,t)] dt
t/
/ Z sz 7 —1,X ) [Si(m7 XI7t) - di(XI7t)] dt
t
T—t' N
/ ZG]ZX T—t —t,xI) [si(m,xl,T—t)—di(xl,T—t)] dt.
Define force field

N
Z si(m,x!, T —t) — d;(x", T — )] §(x — x"),
=1



and adjoint field associated with this force field:

t/
s}(x’,t’):/o /Gji(x/,t'—t,x)Fi(X,t)dxdt

then

Py(x,t') = sh(x(, T — ¢')

and

T
6@:/[/ 5fj(x’,t’)s}(X',T—t’)dt/ dx’.

0

Note: A useful formula is [[f(t) * g(¢)]h(t)dt = [ f(t)[g(t) * h(—t)]dt.



2.2 Waveform Tomography

In waveform tomography, m denotes the perturbation in structural param-
eters, including p and c.

s(m, x, t) satsifies the wave equation

pd2s =V -(c :Vs)+Fg inV

n-(c:Vs)=0 onX
and

pd2és =V -(c : Vis) —6pd?s+V - (6c : Vs)

n-(c:Vds)=—n-(éc : Vs)
Using the symmetry of ¢ and define (a little bit tricky with b.c.)
6f = —5pd?is — (Vs:dc)-V
Invoke Green’s function, we obtain
t
osi(m,x! 1) = / / Sfi(x 1) Gij(x!t — ', x') dxdt’
0
Substitute in the expression for ey,

T
b = / { / [~0p7s — (Vs : 6¢) - V] |y - (6, T = t’)dt’} dx’
0



Then we can define p and ¢ kernels:

T
K)x) = =plo0) [ [0Bs(oct) -1 e T = 1))

Kejpim (X) = —Cjkim(X) /OT[%(X, thel (x,T —t)] dt
and 0y evolves into
dp = / [K,(x)01In p(x) + Ke,y,,, (X)0 10 i (%) ] dx
A simpler version
Sp = / (K, (x)5 In p(x) + Ko (x)5 Ina(x) + K5(x)3 In B(x)] dx
Where

T
Ku(x) = —QN(X)/O D(x,t) : DI (x,T — t) dt
T
K, (x) = —/ﬁ:(X)/O [V -s(x,t)][V -sf(x,T —t)] dt

Ky=K,+K;+K,

4
Kg=2 <KH - 3—’;KR>

4
Ka:2<1+—“>Kﬁ
3K

Notice that these K kernels will have the same units as ¢/V.



2.3 Travel-time Tomography

Let the misfit function be

where I is the number of receivers, L; is the number of wave packets for
the Ith receiver, and 7;(x!, m) is the time shift bwtween the data and the
synthetics for the ith wave packet of the Ith receiver for model m. Use the

formula derived in the 'Travel-time tomography’ notes

do = Z Z 7i(x!, m)or;(x, m)
I Lp
T
= Zri(xl,m)Ni/ w;i(1)s(xT, )w; (t)ds(x?, t)dt
0
T t
= ZTZ'(XI, m)Ni/ w?(t)é(xl,t)[/ /G_j(xl,t —t',x")o f; (%', t)dx'dt'| dt
0 0
T Tt
= / /5fj(x/, t/)[/ ZTZ'(XI, m)Njw (T — t)5(x", T — t)G,.(x', T —t — t',x!) dt]ax’at’
0 0
T
= / /5fj(x/, t/)s;(x/, T —t")dx'dt
0
Where s'(x/,#) is the adjoint field associated with the adjoint source
Do, Nimi(x!, m)w?(T — t)s(x!, T — t), and N; = ([[w(t)$(t)]? dt)~t. This

means that the back-propagated signal is the windowed the synthetics with

proper normalization and weighted with travel-time anomaly.



3 Application to Source Inversion

For an earthquake, we have N observations:

D = [d(x',?),...,d(x',t),...,d(x",¢)]

and for force field F(x,t,f), we have synthetics

S(f) = [s(f,xl,t),...,s(f,xf,t),...,s(f,xN,t)], which satisify the wave
equations

pdis =V -(c : Vs) + F(x,t,f)

and

t
(5Si(f, XI, t) = / / Gij (XI, t— t/, X/) (5F] (X/, t/, f) dX/dt/
0
Follow the same deduction as before:
T
dp = / [/ 5Fj(x',t',f)s}(x',T —t) dt/] dx’
0

In practice, another version is more useful:

T
5<p:/ UO 5Fj(x’,t’,f)15}(x’,T—t’) dt’] dx’

where we have defined F = §,F, and I, = [ sdt.
We study the cases of point force, point moment-tensor source and finite

fault.



3.1 Point Source

Point force at location xy can be expressed as:
Fj(x,t,f) = fi9(t)0(x — x0)

where f; is the amplitude of the force and also the 'model’ parameter to

solve for; g(t) is the normalized source time function.
5FJ (Xa L, f) = 5fjg(t)5(x - XO)

Therefore

T
dp = [/0 g(t)s}(xo,T—t) dt| of;

3.2 Moment-Tensor source

If the moment tensor for a point source xg is given by:
Mjk(x,t,m) = Mjrg(t)d(x — x0),
then the corresponding force can be expressed as:
Fj(x,t,m) = =0, M, = —M1g(t)0rd(x — X0)

and

T
Sp = [—// g(t)s;'.(x,T — t)0k6(x — Xo) dtdx | SMjy,
0



Integration by parts and assume xq is not on any boundaries, then

T
dp = |:/ g(t)akS}(X(),T — t) dt:| 5Mjk
0

— [/OTg(t)ejk(Xo’T —1) dt} My,

Therefore, in order to compute the Fréchet derivative of the misfit function
with respect to moment tensor elements, we just need to convolve the source
time function g(t) with the adjoint strain €;;(xo,t) at the source location,
which can be done on the fly in the numerical simulations.

If we are also interested in resolving the location zg, then we have:

T
(5g0 = |:/ G}L.k(XQ,T — t)g(t) dt:| (SM]k
0

+ [/OT 0; <Mjk€}k(Xo,T - t)) g(t) dt] 520

In practice, we will compute

T
[ o7 = 1gte)
0
and
T
/ (Mjke;r'k(XO, T- 75)) g(t)dt
0

‘on the fly’ for the source element, from which we obtain the Fréchet deriva-
tives with respect to moment-tensor elements and source location at the end

of time loop.

10



3.3 Finite Fault

For a finite fault with known geometry, mesh it into rectangulars sub-
elements, and define the basis function associated with each rectangular
Prj(x). However, it is tricky if one also wants to resolve the source time
function g(t). Note that g(t = co) # 0, which means we cannot parameter-
ize the time domain with finite number of basis functions. A natural choice
is to look at the F(x,t) (i.e. g(t)), for which we select the time window to

resolve the time history, and the associated basis function B,(t) for each

time block.
3.3.1 Force
= > 7P (x)B, (1)
1,J,0
and

[// Pry(x) By (01,5 (x, T — t) dtdzs| 5177
IJo

Notice that the Fréchet derivatives for § fjl 79 is actually taking the appro-

priate time and spatial slice of IS}(X, T —1).

3.3.2 Moment Density Tensor

Let the moment-rate density tensor function be

mjk x,t) Z mIJJPIJ B,(t)
1,J,0

11



and
T
=2 [// Py (%) Bo (1)L}, (x, T — t) dtda | m}”
IJo 0

Therefore the the Fréchet derivatives for mjl;g 7 is given by the appropriate

time and spatial slice of Iej-k(x, T'—t). One thing to bear in mind is that m;’;ja
is actually the discretized version of the ‘moment-rate density function’, not

the ‘moment-density function’.
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