
PHY 2404S Lecture Notes

Michael Luke

Winter, 2003

These notes are perpetually under construction. Please let me know of any
typos or errors. Once again, large portions of these notes have been plagiarized
from Sidney Coleman’s field theory lectures from Harvard, written up by Brian
Hill.
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1 Preliminaries

1.1 Counterterms and Divergences: A Simple Example

In the last semester we considered a variety of field theories, and learned to
calculate scattering amplitudes at leading order in perturbation theory. Unfor-
tunately, although things were fine as far as we went, the whole basis of our
scattering theory had a gaping hole in it. Recall then when we used Wick’s
theorem to calculate S matrix elements between some initial state | i〉 and some
final state | f〉,

Sfi = 〈f |S| i〉 (1.1)

the incoming and outgoing states | i〉 and | f〉 were considered to be eigenstates
of the free Hamiltonian; that is, n particle Fock states. The idea was that far in
the past or future when the colliding particles are widely separated, they don’t
feel the interactions between them. Thus, the incoming and outgoing states
should be eigenstates of the free theory.

This is clearly nonsense. Even when an electrons is far away from all other
electrons, it doesn’t look anything like a single particle Fock state. It carries
with it an electric field made up of photons: even when well-separated from
other electrons, it is always in a complicated superposition of Fock states. It
doesn’t look anything like a free electron.

Nevertheless, we had a physical argument that suggested we could still cal-
culate using free states in the distant past and future. The argument went as
follows: suppose we replaced the interaction term in the Hamiltonian HI by a
modified interaction term,

HI → f(t)HI (1.2)

where f(t) (the “turning on and off function”) is some function which is one at
t = 0 but which vanishes for large |t|. Since the interaction turns off in the far
past and far future, we are justified in using free states in Eq. (1.1).

The question now is, can we do this without changing the physics? Clearly,
if at t = −T/2 I suddenly turned the interaction on (that is, if f(t) were a step
function) all hell would break loose, and the scattering process would be drasti-
cally altered. Since a free electron is in a horribly complicated superposition of
eigenstates of the full Hamiltonian (just as the electron with its electromagnetic
field is in a horribly complicated superposition of eigenstates of the free Hamil-
tonian), as soon as I turned the interaction on I would be left in a superposition
of states which looked nothing like a real electron. On the other hand, suppose
I were to turn the interaction on slowly, very slowly (that is, adiabatically).
Then maybe, just maybe, I would be ok, because if I took a very long time
turning the interaction on, I would expect the free state to slowly acquire a
photon field, and to smoothly, with probability 1, turn into an eigenstate of the
full theory. In this case, f(t) would look something like that shown in Fig. 1.1,
in the combined limits T → ∞ (so the interaction is on until the particles are
arbitrarily far apart, ∆ → ∞ (so the transition is adiabatic), and ∆/T → 0
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(so the transition time is much less than the time the particle spends with the
correct Hamiltonian).

f(t)

t

∆

1

T∆

Figure 1.1: Schematic form of the “turning on and off” function f(t), required
to define scattering theory when the interaction doesn’t vanish in the far past
or future. In the limit T → ∞, ∆ → ∞,∆/T → 0 the results for the original
theory should be recovered.

In other words, the scattering process goes something like this: a billion
years before the collision, its interaction with the photon field is turned off, and
the electron is a free particle. Then, over a time of a million years, its charge
is slowly turned on, and the electron picks up a photon cloud. Then at t = 0
the fully interacting electron collides with a target, and produces a bunch of
particles. A billion years later, when they are all well separated, these particles
slowly lose their photon clouds, and a million years later we have a bunch of free
particles again. (An electron with its interactions turned off is usually known
as a “bare” electron; when it comes along with its photon cloud it’s known as
a “dressed” electron). Now this approach clearly won’t work for bound states,
since no matter how far in the future you go the constituents never get far
enough apart not to feel their interactions. But for a low-budget scattering
theory it should work. Soon we will develop a hi-tech scattering theory without
this kluge, but it will suffice for the moment.

To understand the importance of these considerations, it’s instructive to go
back to a problem we have looked at before, that of free field theory with a
source, and see how the subtleties with the turning on and off function arise.
Let us consider a theory with a time-independent source,

LI = −gρ(~x)ϕ(~x, t), ρ(~x) → 0, |~x| → ∞ (1.3)

(where g is a coupling constant). This looks just like a special case of the problem
we considered before, but in fact it is much more subtle. The difference is that
the source doesn’t vanish in the far future or the far past, which was implicit
in the exact solution we obtained for free field theory with a source. So we are
going to have to implement our turning on and off function to make sense of it.

Let’s see how this problem shows itself in perturbation theory. Recall from
the perturbative solution to free field theory with a source that the Feynman
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rule for the source term is that shown in Fig. 1.2, and that, diagrammatically,k i~�(k)
Figure 1.2: Feynman rule for a source term ρ(x).

the amplitude for the vacuum to be unchanged in the far future has the pertur-
bative expansion shown in Fig. 1.3. Defining α to be the subdiagram with ah0jS � 1j0i = + + : : :+ +

Figure 1.3: Perturbative expansion for 〈0 |S − 1| 0〉 in a theory with source.

two sources connected by a meson propagator (not including the factor of 1/2!
coming from Wick’s theorem),

α = −ig2

∫

d4k

(2π)4
ρ̃(k)ρ̃(−k)
k2 − µ2 + iǫ

(1.4)

and taking into account the combinatorics of connecting n points, it is simple
to sum the series,

〈0 |S| 0〉 = 1 +
1

2!
α+

3 × 1

4!
α2 +

5 × 3 × 1

6!
α3 + . . .

= 1 +
(α

2

)

+
1

2!

(α

2

)2

+
1

3!

(α

2

)3

+ . . .

= e
α
2 . (1.5)

Now, what do we expect the result to be? Since this is just a theory of a
static arrangement of charges, the system should just sit there. The source is
time-independent, so it can’t impart any energy to the system. Thus, it can’t
create mesons, so the vacuum state can’t change, and we should find

〈0 |S| 0〉 = 1 (1.6)

or α = 0. But this isn’t what we get. Instead, from the expression above, and
using the Fourier transform of a time-independent source (forgetting, for the
moment, about f(t))

ρ̃(k) =

∫

d3k

(2π)3
ρ(~x)

∫

dk0

2π
eik0t−i

~k·~x

= δ(k0)ρ̃(~k) (1.7)
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(where ρ̃(~k) denotes the usual three dimensional Fourier transform of ρ(~x)) we
find

α = −ig2

∫

d4k

(2π)4
|ρ(~k)|2|δ(k0)|2

k2
0 − ~k2 − µ2 + iǫ

. (1.8)

This is horribly divergent, since squaring a delta function is not a particularly
well-defined thing to do. So instead of zero, we got a divergent imaginary
result for α. Instead of being unity, the S matrix contains a divergent phase,
S ∼ exp(−i∞).

Let’s see what happens now if we carefully include our turning on and off
function,

LI = −gρ(~x)f(t). (1.9)

In this modified theory, we find

α = −ig2

∫

d3k

(2π)3
|ρ̃(~k)|2

∫

dk0

2π)
|f̃(k0)|2

1

k2
0 − ~k2 − µ2 + iǫ

(1.10)

where f̃(k0) is the Fourier transform of f(t). Now, as T → ∞, f̃(k0) becomes
sharply peaked about k0 = 0, with a width proportional to 1/T . Thus, we can
drop the factor of k2

0 in the propagator, and we obtain

α
T→∞→ ig2

∫

d3k

(2π)3
|ρ̃(~k)|2
~k2 + µ2

∫ ∞

−∞

dk0

2π
|f̃(k0)|2

= ig2

∫

d3k

(2π)3
|ρ̃(~k)|2
~k2 + µ2

∫ ∞

−∞

dt |f(t)|2

= ig2T

∫

d3k

(2π)3
|ρ̃(~k)|2
~k2 + µ2

× (1 +O(∆/T ))

≡ −2iE0T (1 +O(∆/T )) (1.11)

where we have used Parseval’s theorem (which is simple to prove just from the
definition of the Fourier transform) between the first and second lines, and we
have defined

E0 ≡ −g2

2

∫

d3k

(2π)3
|ρ̃(~k)|2
~k2 + µ2

. (1.12)

Thus, we find
〈0 |S| 0〉 = lim

T→∞
e−iE0T . (1.13)

Aha! This is just the usual Schrödinger evolution of a state with energy E0!
The problem is that the vacuum state in the interacting theory isn’t the same
as the vacuum state in the free theory, and since by fiat we set the energy of the
free vacuum to be zero, the energy of the true vacuum (the vacuum of the full,
interacting theory) is not zero, but E0. No wonder we got divergent nonsense.

The origin of this energy shift should be clear - it’s just the energy stored in
the meson field produced by the sources. We can make this more transparent
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by expressing the potential in position, rather than momentum, space. We can
write

V (~x) = −g2

∫

d3x

(2π)3
ei
~k·x

~k2 + µ2

= − g2

4π|~x|e
−µ|~x| (1.14)

in terms of which we have

E0 =
1

2

∫

d3xd3y ρ(~x)ρ(~y)V (~x− ~y). (1.15)

In analogy with electrostatics, this is just the potential energy of a charge dis-
tribution ρ(~x), where the potential between two unit point charges a distance
r apart is V (r) (the factor of 1/2 is there because by integrating over ~x and ~y
you double count each pair of point charges). This is the Yukawa potential we
discussed in the context of scattering, and provides another way of seeing the
exchange of a scalar boson of mass µ produces an attractive Yukawa potential.
In particular, if we consider the source to consist of two almost-point charges
at points ~y1 and ~y2,

ρ(~x) = ∆(~x − ~y1) + ∆(~x − ~y2) (1.16)

where ∆(~x) approaches a δ function, we get

E0 = (something independent of ~y1, ~y2) + V (~y1 − ~y2) (1.17)

The term independent of ~y1 and ~y2 is just the interaction of each “point” charge
with itself, and diverges as ∆(~x) → δ(3)(~x). This is the same problem as the
divergent energy stored in the field of a single point charge in classical electro-
dynamics. But since it’s a constant, we don’t care about it: the internucleon
potential V (r), which is the only measurable quantity, is perfectly well-defined.

So now that we understand the origin of the divergent phase, it’s easy to see
how to fix it. We should just define our zero of energy to be the energy of the
true vacuum, not the free vacuum. Thus, we just add a constant term to the
interaction Hamiltonian,

HI → HI − E0 (1.18)

or, equivalently,
LI → LI + E0 (1.19)

or in terms of the Lagrange density,

LI → LI + a (1.20)

where

a ≡ 1

2

∫

d3yρ(~x)ρ(~y)V (~x− ~y) (1.21)

is called a counterterm. This is a term added to the Lagrangian which fixes
up the fact that some property of the free theory (such as the vacuum energy)
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is not the same in the interacting theory, and this must be corrected for. We
will encounter more of these later on when we start looking at theories with
dynamical sources. But for now, using the corrected Lagrangian, we have the
new (rather trivial) interaction shown in Fig. 1.4, which once again exponenti-ia
Figure 1.4: Feynman rule corresponding to the vacuum energy counterterm.

ates, precisely cancelling each term of the previous series. Thus, in the modified
theory, we find

〈0 |S| 0〉 = 1 (1.22)

as required.
A couple of comments:

1. In the case of a point source, ∆(~x) → δ(3)(~x), the counterterm a diverges.
Nevertheless, the S matrix element is perfectly finite. The divergent coun-
terterm is required to cancel the divergent energy of the field of a point
source. While this infinity may be scary, it is not harmful. Since terms in
the Lagrangian are not observable, they need not be finite.

2. There is a simpler way to deal with the vacuum energy shift than worrying
about counterterms. Since the disconnected diagrams exponentiate, and
every S-matrix element contains the same set of disconnected diagrams,
they contribute a common phase to every S-matrix element. Thus, we can
write any S-matrix element as

〈k′1, . . . , k′n |S| k1, . . . , km〉 = (sum of connected diagrams)× 〈0 |S| 0〉
(1.23)

where, when the counterterm is not included,

〈0 |S| 0〉 = exp (sum of disconnected diagrams) = exp(−iE0T ). (1.24)

Thus, if we adopt the rule of thumb that we only calculate connected di-
agrams, we can completely neglect the vacuum energy counterterm. For-
mally, this just means that we divide all amplitudes by 〈0 |S| 0〉:

〈k′1, . . . k′n |S| k1, . . . , km〉R =
〈k′1, . . . k′n |S| k1, . . . , km〉

〈0 |S| 0〉 . (1.25)

where the subscript R indicates that the vacuum energy has been renor-
malized to 0. This will be the approach we take.

Let’s push this model a bit harder. Having found the energy of the true vacuum,
let’s find the particle content of the ground state in terms of eigenstates of the
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free theory. We can find it by using the results for the case of a time-dependent
source, by considering the following form for the source:

ρ(x) = ρ(~x)eǫt, t < 0

ρ(x) = 0, t > 0 (1.26)

and then taking the limit ǫ→ 0+. Physically, what we are doing is turning the
interaction on very slowly, so that the free vacuum smoothly transforms into
the true vacuum of the static theory. Then we turn the interaction abruptly
off, so that in the interaction picture the state doesn’t evolve at all after t = 0.
This is not the same as the theory of a static source, since the interaction is
not adiabatically turned off far in the future. Instead of evolving smoothly back
into the free vacuum, when the source is suddenly turned off the system is left
in the physical vacuum.

Let us denote the vacuum of the static theory by |Ω〉, and the free vacuum
as usual by | 0〉. Then the statement that the free vacuum at t = −∞ smoothly
transforms into the physical vacuum at t = 0 may be written as

|Ω〉 = UI(0,−∞)| 0〉 (1.27)

where UI(t1, t2) = T exp
(

∫ t2
t1
dtHI(t)

)

is the usual time-evolution operator.

Furthermore, since the system does not evolve past t = 0, we have UI(t, 0) = 0
for any positive time t. The 0 to n meson S-matrix elements may then be
written

〈~k1, . . . , ~kn |S| 0〉 = 〈~k1, . . . , ~kn |UI(∞,−∞)| 0〉
= 〈~k1, . . . , ~kn |UI(0,−∞)| 0〉
= 〈~k1, . . . , ~kn|Ω〉 (1.28)

which is exactly what we are looking for: the overlap of the true vacuum with
the n-meson eigenstates of the free theory. Then, using the results for the theory
with a time-dependent source, we recall that the resulting state |Ω〉 is a coherent
state of mesons, and that the probability for the state to contain n mesons is

P (n) =
1

n!
αn exp(−α) (1.29)

where

α = g2

∫

d3k

(2π)3
1

2ωk
|ρ̃(k)|2 . (1.30)

From the form of ρ(x), we then find

ρ̃(k) =

∫

d4xeik·xρ(x)

=

∫

d3xe−i
~k·~xρ(~x)

∫ 0

−∞

dt eik0teǫt

9



= ρ̃(~k)
1

ik0 + ǫ

ǫ→0
= − i

k0
ρ̃(~k) (1.31)

and therefore

α = g2

∫

d3k

(2π)3
|ρ̃(~k)|2
2ω3

k

. (1.32)

Now, consider the simple case of a point charge at the origin, ρ(~x) → δ(3)(~x).

In this case, ρ̃(~k) → 1 for all ~k, and we find, for large |~k|,

α ∼
∫

d3k

ω3
k

∼
∫ ∞ dk

k
(1.33)

which is logarithmically divergent: if we only integrate up to |~k| = Λ, the upper
limit of integration will contribute a piece proportional to ln Λ. This is known as
an ultraviolet divergence, and looks like bad news. Since the expectation value
of the number of mesons in the ground state 〈Ω |N |Ω〉 = α (from our previous
results), we see that not only the energy of field becomes infinite in the limit of
a point nucleon, but the ground state flees Fock Space. The problem is that a
point source can excite mesons of arbitrarily short wavelength, and arbitrarily
high energy. On the other hand, as we have already shown, physically observable
quantities do not depend on this unpleasant fact. However, it does mean that
the vacuum energy counterterm is formally divergent, and that we will have to
be careful to make sure that the theory remains well-defined.

Even if we don’t take the limit of a point source (so that our theory remains
finite in the ultraviolet) we will also run into difficulties if we take the massless

limit, µ→ 0. In this case, we get, this time for small |~k|,

〈Ω |N |Ω〉 ∼
∫

0

d3k

k3
∼
∫

0

dk

k
(1.34)

which is also logarithmically divergent, this time at the lower limit of integration.
This is known as an infrared divergence, and corresponds to an infinite number
of mesons with very large wavelengths, and correspondingly very low energies.

While having an infinite number of arbitrarily low-energy particles sounds
like trouble, it turns out that this divergence is also unmeasurable. The number
of mesons with arbitrarily small energies is not observable. Any experiment
has only some finite lower limit of energy which it can resolve. Even if there
are 1020 photons with wavelengths between one light year and two light years
hitting your detector, you’ll never see them. It might be a problem if there were
an infinite amount of energy stored by these photons, but there isn’t:

〈Ω |H |Ω〉 ∼
∫

d3k
ωk
ω3
k

∼
∫

0

dk (1.35)
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which is finite in the infrared. So, interestingly enough, the number of soft
massless mesons (or photons, in QED) is not a physical observable. In gen-
eral, infrared divergences signal that you have attempted to calculate something
which is not observable.

To conclude, let me just restate the lessons we have learned from this section.
While we have demonstrated them in a simple model, it shouldn’t be hard to
convince yourself that these issues will arise in any interacting field theory.

1. Properties of states of the free theory, such as the vacuum energy, may be
dramatically modified by the interaction, and it in general it is necessary
to introduce counterterms into the interaction Lagrangian to correct for
this. This procedure is known as renormalization, and aspects of it will
occupy us for much of this course.

2. When pointlike interacting particles are present, the energy and number of
quanta of the states of the theory both suffer from ultraviolet divergences.
Physical quantities are still finite, but this requires the introduction of
formally divergent counterterms into the Lagrangian. The procedure of
introducing an artificial prescription to make such terms finite (for exam-
ple, by including a upper cutoff in momentum integrals and at the end
taking the cutoff to infinity) is known as regularization.

3. When massless particles are present, the theory will have infrared diver-

gences, resulting from the fact that there may be an arbitrarily large num-
ber of unobservably low-energy quanta in a state. Infrared divergences in
a calculation indicate that an observable quantity (such as the number of
soft photons in a state) is being calculated. Physical quantities (such as
the energy difference between two states) are well-defined.

1.2 Counterterms in Scalar Field Theory

We now consider a more interesting theory with dynamics, and see how these
considerations will affect it. While we could be bold and jump straight into QED
at this point, QED suffers from all of the problems (particularly, infrared diver-
gences) at once. Furthermore, it has special miracles due to gauge invariance.
So for the next few lectures we will instead work with our scalar nucleon-meson
theory,

L = Lϕ + Lψ − gψ∗ψϕ (1.36)

keeping all the masses finite, to avoid infrared divergences.
First of all, we will clearly need a vacuum energy counterterm in this theory,

since the ground state energy of the physical vacuum is not necessarily zero.
Once again, the vacuum is not the simple vacuum state of the free theory,
but something rather complicated. Vacuum-to-vacuum graphs (or “vacuum
bubbles”) will all give (generally divergent) contributions to the vacuum energy.

We are actually helped out by a very nice formula. Recall that in the previous
section, we found for a theory with a source, that the sum of all vacuum-to-
vacuum diagrams had a very simple form, shown in Fig. 1.5. In other words,
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+ + : : :1+ + + = exp ( )
Figure 1.5: The sum of vacuum graphs is just the exponential of the simple
connected vacuum-to-vacuum graph.

the sum of the vacuum-to-vacuum graphs (sometimes known, a bit confusingly,
as disconnected graphs), is the exponential of the simple connected vacuum-to-
vacuum graphs. In fact, this result holds in any theory. So in the theory we are
considering, for example, the sum of all vacuum bubbles has the simple form
shown in Fig. 1.6. Since this class of diagrams is present for every S matrix
element, it factors out of any amplitude, and just corresponds to the overall
phase in any amplitude due to the vacuum energy.

= exp 0BBBB@ 1CCCCA
+ + : : :+ +

++ + : : :
Figure 1.6: The complete sum of vacuum-to-vacuum diagrams is the exponential
of the connected vacuum bubbles.

The argument for the exponentiation of the vacuum bubbles goes as follows:
a graph with ni copies of some connected vacuum-to-vacuum bubble gives a
contribution to the S matrix of Vi/ni!, where Vi is the value of the connected
subgraph, and the ni! is a symmetry factor arising from the fact that there are
ni! identical copies of the graph. (This is not obvious, but you can show this
if you’re careful). So any Feynman diagram which contains both a connected
piece1 and a number of vacuum bubbles may be written

(graph) = (connected piece) ×
∏

i

1

ni!
V ni

i (1.37)

1I am using the word “connected” here in two different ways: the connected piece of a
graph refers to the subgraphs which are connected either to the incoming or outgoing mesons,
or both. The connected vacuum-to-vacuum graphs are those vacuum-to-vacuum subgraphs
which cannot be broken up into smaller subgraphs.
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where the graph contains ni copies of subgraph Vi. Therefore the sum of all
Feynman graphs contributing to a given process may be factored into two pieces:

∑

(all graphs) =
∑

all possible
connected pieces

∑

all ni

(

value of

connected piece

)

×
∏

i

1

ni!
V ni

i

=
(

∑

connected
)

×
∑

all ni

(

∏

i

1

ni!
V ni

i

)

=
(

∑

connected
)

×
(

∑

n1

1

n1!
V n1

1

)(

∑

n2

1

n2!
V n2

2

)

. . .

=
(

∑

connected
)

×
∏

i

(

∑

ni

1

ni!
V ni

i

)

=
(

∑

connected
)

×
∏

i

exp(Vi)

=
(

∑

connected
)

× exp

(

∑

i

Vi

)

. (1.38)

For the simple case of a vacuum to vacuum transition, we find

〈0 |S| 0〉 = exp

(

∑

i

Vi

)

= exp(−iE0T ) (1.39)

we can identify the sum of all simple vacuum-to-vacuum graphs with the un-
renormalized vacuum energy

∑

i

Vi = −iE0T. (1.40)

Since this phase factors out of all graphs, we can simply renormalize the vacuum
energy in any theory by ignoring all vacuum bubbles.

In the theory of a static source, fixing up the vacuum energy also fixed up the
energies of the single particle states: the interactions don’t modify the energy of
the single-meson states relative to the vacuum. Thus, the only renormalization
required in that theory was that of the vacuum energy. In a theory with non-
trivial dynamics, life is more difficult. Even in the distant past and future, the
mesons and nucleons are interacting, and this will shift their energies relative
to the vacuum.

This happens even in classical physics. Imagine modelling the electron as
a charged shell of mass m0 (the “bare mass”), charge e and radius r. The
measured mass of the electron (its rest energy) gets a contribution other than
m0: the energy in its electrostatic field. The measured, physical electron mass
m is

m = m0 +
e2

2rc2
. (1.41)
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Note that as r → 0, the measured mass differs from the bare mass by a divergent
quantity. This is just the UV divergence associated with point particles again.
Since the measured mass is some finite number fixed by experiment, this means
the bare mass must also be divergent. This puts us again in the somewhat
unnerving but nevertheless necessary position of having formally divergent terms
in the Lagrangian.

Once again, this is going to be bad news for scattering theory. Just as the
failure to match up the ground state energy for the noninteracting and full
Hamiltonians in the previous section produced T dependent phases in 〈0 |S| 0〉,
the failure to match up one particle state energies in this theory will yield T
dependent phases in 〈~k |S|~k′〉, when in fact we should have

〈~k |S|~k′〉 = δ(3)(~k − ~k′). (1.42)

Since there is nothing for a free particle to scatter off, it should just propagate
freely (along with its meson field) from t = −∞ to t = +∞. To fix this up, we
will require counterterms for the masses of both the nucleon and meson masses,

Lc.t. = a+ bψ∗ψ + cφ2 (1.43)

where b and c are determined by setting the energies of static mesons or nucleons
to the physical values µ and m, respectively. But in fact there will be more
counterterms to worry about, as you can see from the graph in Fig. 1.7(a),
which contributes to NN scattering at O(g4) in perturbation theory. Imposingpk p p� k(a) (b)
Figure 1.7: An external leg correction to NN scattering appears to give a
divergent result.

energy-momentum conservation at each vertex, we may label the momenta as
shown in the figure (all momenta are directed inward), and we find that one of
the intermediate propagators gives a contribution to the graph of

i

p2 −m2
=
i

0
(1.44)

to the graph. This makes no sense.
The problem is that just as vacuum bubbles represent the evolution of the

free vacuum | 0〉 to the physical vacuum |Ω〉, so subgraphs such as Fig. 1.7(b)
represent the evolution of the bare states into the “dressed” eigenstates of the
full Hamiltonian. It will therefore require some care to correctly treat diagrams
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with external leg corrections. The solution has to do with the normalization of
the field operators themselves.

Recall that in free field theory fields produced particles from the vacuum
with normalized probabilities: 〈k |ϕ(0)| 0〉 = 1 for single particle states | k〉.
Furthermore, 〈k1, . . . kn |ϕ(0)| 0〉 = 0 for multi-particle states | k1, . . . kn〉, since
there aren’t enough annihilation operators in ϕ to convert a multiparticle state
to the vacuum. In an interacting theory, though, this will be different. In
the scalar nucleon-meson theory, If you act on the vacuum with a meson field
ϕ′(0), you will create a meson. But now that meson can propagate, and at
first order in perturbation theory can turn into a nucleon-antinucleon pair; this
gives a nonzero value for the matrix element 〈N(k1)N(k2) |ϕ(0)| 0〉. Similarly,
at higher orders in perturbation theory all sorts of final states can be reached,
as illustrated in Fig. 1.8. Furthermore, by conservation of probability, the
amplitude to create a single meson from the vacuum must be reduced; thus, we
expect that when interactions are included, 〈k |ϕ(0)| 0〉 < 1. Since to related
Feynman diagrams to S-matrixes we would like our fields to have the right
normalization to create particles, we will have to fix this problem up by rescaling
the fields in the theory; this is known as “wavefunction renormalization.”

Figure 1.8: In an interacting theory, 〈n |ϕ(0)| 0〉 may be nonzero
for any state n with the same quantum numbers as ϕ. The
figures above correspond to 〈φ(k1) |ϕ(0)| 0〉, 〈N(k1), N(k2) |ϕ(0)| 0〉 and
〈N(k1), N(k2), φ(k3), φ(k4) |ϕ(0)| 0〉.

We can summarize all of this by rewriting the Lagrangian for this theory
with a bunch of subscripts:

L =
1

2
(∂µϕ0)

2 − µ2
0

2
ϕ2

0 + ∂µψ
∗
0∂

µψ0 −m2
0ψ

∗
0ψ0 − g0ψ

∗
0ψ0ϕ0. (1.45)

The subscripts indicate that the corresponding quantity is a bare, and so un-
physical, quantity. The coefficient of −1/2ϕ2

0 in the Lagrangian, µ2
0, is not the

measured meson mass squared - it’s the bare mass, without the interactions
turned on. Similarly, m2

0 is not the real nucleon mass squared. Furthermore,
as you can probably guess at this point, g0 may not be what we want to call
the coupling constant. In real electrodynamics there is a parameter e, defined
by some experiment. It would be lucky, extremely lucky, if that were the coef-
ficient of some term in the QED Lagrangian. It isn’t. Higher order corrections
will change the relation of the physically measured quantity to g0 (or in QED,
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e0). Finally, the field ϕ in the Lagrangian is not the one we actually want to
use to create and annihilate particles. The field ϕ0 is normalized to satisfy the
canonical commutation relations,

[ϕ0(~x, t), ϕ̇0(~y, t)] = iδ(3)(~x− ~y) (1.46)

and in general won’t have the correct normalization to create a meson from the
vacuum,

〈k |ϕ0(0)| 0〉 < 1. (1.47)

Now, at this point we can proceed in one of two ways. The two approaches
differ in which terms of L we treat exactly, and which as perturbations.

1. We could work directly with the Lagrangian (1.45), and calculate physical
quantities from this. This is the approach used by Peskin & Schroeder in
chapters 6 and 7. In this case, we would get expressions for the physical
quantities µ, m and g in terms of the bare parameters µ0, m0 and g0.
All of our cross sections would also come out as functions of the bare
parameters, but with a bit of work we could convert these to expressions
in terms of the physical quantities µ, m and g. The disadvantage of this
approach is that everything is expressed in terms of unphysical (generally
divergent) quantities. Since we don’t actually care what the bare masses
or couplings are, this approach is rather unwieldy, particularly at higher
orders in perturbation theory.

2. A better approach (used by Peskin & Schroeder in chapter 10 and beyond),
known as “renormalized perturbation theory”, is to express L in terms
of the physical parameters right from the start. We therefore rewrite
Eq. (1.45) as

L =
1

2
(∂µϕ)2 − µ2

2
ϕ2 + ∂µψ

∗∂µψ −m2ψ∗ψ − gψ∗ψϕϕ+ Lc.t. (1.48)

where Lc.t. is the counterterm Lagrangian

Lc.t. =
A

2
(∂µϕ)2 − B

2
ϕ2 + C∂µψ

∗∂µψ −Dm2ψ∗ψ − Eψ∗ψϕ+ constant.

(1.49)
It is a simple matter to compare Eqs. (1.45), (1.48) and (1.49) and read
off the relation between the counterterms A− E and the bare quantities:
ϕ0 =

√
1 +Bϕ, µ2

0 = (µ2 + C)/(1 + B), etc. The constant is just the
vacuum energy counterterm. The two Lagrangians are identical; the only
difference is that we have split up the free piece and the interacting piece
differently. In the first approach, the meson propagator has a pole at
the bare mass µ0, as shown in Fig. 1.9(a). In the second, the meson
propagator has a pole at the physical meson mass µ, and the counterterms
give new interactions, as shown in Fig. 1.9(b). The counterterms A − E
are determined, order by order in perturbation theory, by requiring that
they exactly cancel the contributions to the leading order masses and
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couplings due to the interactions, just as the vacuum energy counterterm
was adjusted to exactly cancel the corrections to the energy of the vacuum
state. So for example, the meson mass shift produced at O(g2) by the
diagram in Fig. 1.9(c) is precisely cancelled by C.2

ip2 � �20 ip2 � �2  p p p
(a) (b)

(c)
i(Bp2 � C)

Figure 1.9: (a) In unrenormalized perturbation theory, the propagator has a pole
at the bare mass µ0. (b) In renormalized perturbation theory, the pole of the
propagator is at the physical mass m; the counterterms B and C give additional
interaction vertices. For example, at O(g2), the counterterm C precisely cancels
the meson mass shift produced by the diagram (c).

In most instances the second approach is simpler. It allows us to avoid
dealing with unphysical and uninteresting bare parameters, and deal instead
directly with the physical quantities.

Unfortunately, we are still stuck with the clumsy turning on and off function
f(t) we have been using as the basis of scattering theory. It has proved sufficient
for our limited purposes thus far, but it would be really nice to do away with it
altogether. The real world doesn’t have a turning on and off function. Is there
a way to define scattering theory without it? In the next section we will discuss
how this can be done, and reformulate scattering theory in a more elegant
language. Then we can start calculating radiative corrections in renormalized
perturbation theory.

2This does not mean that the complete diagram (c) is cancelled by the counterterm! This
diagram is a function of p2, and only for p2 = m2 is it cancelled by the counterterm; at other
values of p2 (relevant when the meson is off-shell) it contributes.
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2 Reformulating Scattering Theory

With the last chapter as motivation, we now proceed to put scattering theory on
a firmer foundation. To do that, it is useful first to think a bit about Feynman
diagrams in a somewhat more general way than we are used to. Note that the
next few subsections will be phrased in our old description of scattering theory,
so we will not yet worry about the distinction between bare and full fields - we
will have that forced on us later.

2.1 Feynman Diagrams with External Lines off the Mass

Shell

Up to now, we’ve had a rather straightforward way to interpret Feynman di-
agrams: with all the external lines corresponding to physical particles, they
correspond to S matrix elements. In order to reformulate scattering theory,
we will have to generalize this notion somewhat, to include Feynman diagrams
where the external legs are not necessarily on the mass shell; that is, the external
momenta do not obey p2 = m2. Clearly, such quantities do not directly corre-
spond to S matrix elements. Nevertheless, they will turn out to be extremely
useful objects.

Let us denote the sum of all Feynman diagrams with n external lines carrying
momenta k1, . . . , kn directed inward by

G̃(n)(k1, . . . , kn)

as denote in the figure for n = 4. (For simplicity, we will restrict ourselvesk1 k2
k3k4 � ~G(4)(k1; k2; k3; k4)

Figure 2.1: The blob represents the sum of all Feynman diagrams; the momenta
flowing through the external lines is unrestricted.

to Feynman diagrams in which only one type of scalar meson appears on the
external lines. The extension to higher-spin fields is straightforward; it just
clutters up the formulas with indices). The question we will answer in this
section is the following: Can we assign any meaning to this blob if the momenta

on the external lines are unrestricted, off the mass shell, and maybe not even

satisfying k1 + k2 + k3 + k4 = 0?
In fact, we will give three affirmative answers to this question, each one of

which will give a bit more insight into Feynman diagrams.
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2.1.1 Answer One: Part of a Larger Diagram

The most straightforward answer to this question is that the blob could be
an internal part of a more complicated graph. Let’s say we were interested in
calculating the graphs in Fig. 2.2(a-d), which all have the form shown in Fig.
2.2(e), where the blob represents the sum of all graphs (at least up to some
order in perturbation theory). Recalling our discussion of Feynman diagrams

(a) (b)
(c) (d) (e)

Figure 2.2: The graphs in (a-d) all have the form of (e).

with internal loops, we would label all internal lines with arbitrary momenta
and integrate over them. So if we had a table of blobs, we could simply plug it
into this graph, do the appropriate integrals, and have something which we do
know how to interpret: an S-matrix element.

So this gives us a sensible, and possibly even useful, interpretation of the
blob. Before we go any further, we should choose a couple of conventions.
For example, we could include or not include the n propagators which hang
off G̃(k1, . . . , kn). We could also include or not include the overall energy-
momentum conserving δ-function. We’ll include them both.

So, for example, here are a few contributions to G̃(4)(k1, k2, k3, k4):~G(2)(k1; k2; k3; k4) = +O(g2)= (2�)4�(4)(k1+k4) ik21 � �2 + i�(2�)4�(4)(k2+k3) ik22 � �2 + i�+(2 permutations)= +k1k2 k3k4 +k1k2 k3k4 k1 k2k3k4 k1k2 k3k4!  !  !  !  !  !  
Figure 2.3: Lowest order contributions to G̃(4)(k1, k2, k3, k4).

One simple thing we can do with these blobs is to recover S-matrix elements.
We cancel off the external propagators and put the momenta back on their mass
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shells. Thus, we get

〈k3, k4 |(S − 1)| k1, k2〉 =

4
∏

r=1

k2
r − µ2

i
G̃(−k3,−k4, k1, k2). (2.1)

Because of the four factors of zero out front when the momenta are on their
mass shell, the graphs that we wrote out above do not contribute to S − 1,
as expected (since they don’t contribute to scattering away from the forward
direction).

2.1.2 Answer Two: The Fourier Transform of a Green Function

We have found one meaning for our blob. We can use it to obtain another
function, its Fourier transform, which we can then give another meaning to.
Using the convention for Fourier transforms,

f(x) =

∫

d4k

(2π)4
f̃(k)eik·x

f̃(k) =

∫

d4xf(x)e−ik·x (2.2)

(again keeping with our convention that each dk comes with a factor of 1/(2π)),
we have

G(n)(x1, . . . , xn) =

∫

d4k1

(2π)4
. . .

∫

d4kn
(2π)4

exp(ik1·x1+. . .+ikn·xn)G̃(n)(k1, . . . , kn)

(2.3)
(hence the tilde over G defined in momentum space).

Now, consider adding a source to any given theory,

L → L + ρ(x)ϕ(x) (2.4)

where ρ(x) is a specified c-number source, not an operator. As you showed in
a problem set back in the fall, this adds a new vertex to the theory, shown in
Fig. 1.2.

Now, consider the vacuum-to-vacuum transition amplitude, 〈0 |S| 0〉, in this
modified theory. At n’th order in ρ(x), all the contributions to 〈0 |S| 0〉 come
from diagrams of the form shown in the figure.

Thus, the n’th order (in ρ(x)) contribution to 〈0 |S| 0〉 to all orders in g is

in

n!

∫

d4k1

(2π)4
. . .

∫

d4kn
(2π)4

ρ̃(−k1) . . . ρ̃(−kn) G̃(n)(k1, . . . , kn). (2.5)

The reason for the factor of 1/n! arises because if I treat all sources as distin-
guishable, I overcount the number of diagrams by a factor of n!. Thus, to all
orders, we have

〈0 |S| 0〉 = 1 +
∞
∑

n=1

in

n!

∫

d4k1

(2π)4
. . .

∫

d4kn
(2π)4

ρ̃(−k1) . . . ρ̃(−kn) G̃(n)(k1, . . . , kn)
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k1k2 k3k4 k5
kn

Figure 2.4: n’th order contribution to 〈0 |S| 0〉 in the presence of a source.

= 1 +
∞
∑

n=1

in

n!

∫

d4x1 . . . d
4xn ρ(x1) . . . ρ(xn)G(n)(x1, . . . , xn). (2.6)

This provides us with the second answer to our question. The Fourier transform
of the sum of Feynman diagrams with n external lines off the mass shell is a
Green function (that’s what the G stands for). Recall we already introduced the
n = 2 Green function (in free field theory) in connection with the exact solution
to free field theory with a source.

Let’s explicitly note that the vacuum-to-vacuum transition ampitude de-
pends on ρ(x) by writing it as

〈0 |S| 0〉ρ.
〈0 |S| 0〉ρ is a functional of ρ, which is how mathematicians denote functions of
functions. Really, it is just a function of an infinite number of variables, the
value of the source at each spacetime point. It comes up often enough that it
gets a name,

Z[ρ] = 〈0 |S| 0〉ρ. (2.7)

(The square bracket reminds you that this is a function of the function ρ(x).)
Z[ρ] is called the generating functional for the Green function because, in the
infinite dimensional generalization of a Taylor series, we have

δnZ[ρ]

δρ(x1) . . . δρ(xn)

∣

∣

∣

∣

= inG(n)(x1, . . . , xn) (2.8)

where the δ instead of δ once again reminds you that we are dealing with func-
tionals here: you are taking a partial derivatives of Z with respect to ρ(x),
holding a 4 dimensional continuum of other variable fixed. This is called a func-

tional derivative. As discussed in Peskin & Schroeder, p. 298, the functional
derivative obeys the basic axiom (in four dimensions)

δ

δJ(x)
J(y) = δ(4)(x − y), or

δ

δJ(x)

∫

d4y J(y)ϕ(y) = ϕ(x). (2.9)

This is the natural generalization, to continuous functions, of the rule for discrete
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vectors,
∂

∂xi
xj = δij , or

∂

∂xi

∑

j

xjkj = ki. (2.10)

The generating functional Z[J ] will be particularly useful when we study the
path integral formulation of QFT.

The term “generating functional” arises in analogy with the functions of two
variables, which when you Taylor expand in one variable, the coefficients are
a set of functions of the other. For example, the generating function for the
Legendre polynomials is

f(x, z) =
1√

z2 − 2xz + 1
(2.11)

since when expanded in z, the coefficients of zn is the Legendre polynomial
Pn(x):

f(x, z) = 1 + xz +
1

2
(3x2 − 1)z2 + . . .

= P0(x) + zP1(x) + z2P2(x) + . . . . (2.12)

Similarly, when Z[ρ] in expanded in powers of ρ(x), the coefficient of ρn is
proportional to the n-point Green function G(n)(x1, . . . , xn). Thus, all Green
functions, and hence all S matrix elements (and so all physical information about
the system) are encoded in the vacuum persistance amplitude in the presence
of an external source ρ.

2.1.3 Answer Three: The VEV of a String of Heisenberg Fields

But wait, there’s more. Once again, let us consider adding a source term to the
theory. Thus, the Hamiltonian may be written

H0 + HI → H0 + HI − ρ(x)ϕ(x) (2.13)

where H0 is the free-field piece of the Hamiltonian, and HI contains the in-
teractions. Now, as far as Dyson’s formula is concerned, you can break the
Hamiltonian up into a “free” and interacting part in any way you please. Let’s
take the “free” part to be H0 + HI and the interaction to be ρϕ. I put quotes
around “free”, because in this new interaction picture, the fields evolve accord-
ing to

ϕ(~x, t) = eiHtϕ(~x, 0)e−iHt (2.14)

where H =
∫

d3xH0+HI . These fields aren’t free: they don’t obey the free field
equations of motion. You can’t define a contraction for these fields, and thus
you can’t do Wick’s theorem. They are what we would have called Heisenberg
fields if there had been no source, and so we will subscript them with an H .
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Now, just from Dyson’s formula, we find

Z[ρ] = 〈0 |S| 0〉ρ = 〈0 |T exp

(

i

∫

d4xρ(x)ϕH(x)

)

| 0〉 (2.15)

= 1 +

∞
∑

n=1

in

n!

∫

d4x1 . . . d
4xn ρ(x1) . . . ρ(xn)〈0 |T (ϕH(x1) . . . ϕH(xn)) | 0〉

and so we clearly have

G(n)(x1, . . . , xn) = 〈0 |T (ϕH(x1) . . . ϕH(xn)) | 0〉. (2.16)

For n = 2, we have the two-point Green function 〈0 |T (ϕH(x1)ϕH(x2)) | 0〉.
This looks like our definition of the propagator, but it’s not quite the same
thing. The Feynman propagator was defined as a Green function for the free

field theory; the two-point Green function is defined in the interacting theory.
One of the tasks of the next few sections is to see how these are related.

2.2 Green Functions and Feynman Diagrams

From the discussion in the previous section, we have three logically distinct
objects:

1. S-matrix elements (the physical observables we wish to measure),

2. the sum of Feynman diagrams (the things we know how to calculate), and

3. n-point Green functions, defined via by Eq. (2.8) or (2.16).

By introducing a turning on and off function, we could show that these were all
related. Now we want to get rid of that crutch, and define perturbation theory
in a more sensible way. The question we will then have to address is, what is
the relation between these objects in our new formulation of scattering theory?

We set up the problem as follows. Imagine you have a well-defined theory,
with a time independent Hamiltonian H (the turning on and off function is
gone for good) whose spectrum is bounded below, whose lowest lying state is
not part of a continuum (i.e. no massless particles yet), and the Hamiltonian
has actually been adjusted so that this state, |Ω〉, the physical vacuum, satisfies

H |Ω〉 = 0. (2.17)

The vacuum is translationally invariant and normalized to one

~P |Ω〉 = 0, 〈Ω |Ω〉 = 1. (2.18)

Now, let H → H− ρ(x)ϕ(x) and define

Z[ρ] ≡ 〈Ω |S|Ω〉ρ
= 〈Ω |U(∞,−∞)|Ω〉ρ (2.19)
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where the ρ subscript again means, in the presence of a source ρ(x), and the
evolution operator U(t1, t2) is the Schorödinger picture evolution operator for
the Hamiltonian

∫

d3x (H− ρ(x)ϕ(x)). We then define

G(n)(x1, . . . , xn) =
1

in
δnZ[ρ]

δρ(x1) . . . δρ(xn)
. (2.20)

Note that this is, at least in principle, different from our previous definitions of Z
andG, which implicitly referred to S matrix elements taken between free vacuum
states, with the interactions defined with the turning on and off function. Thus,
we can ask two questions:

1. Is G(n) defined this way the Fourier transform of the sum of all Feynman

graphs? Let’s call the G(n) defined as the sum of all Feynman graphs G
(n)
F

and the Z which generates these ZF . The question then is, is G(n) = G
(n)
F ?

Or equivalently, is Z = ZF ?

The answer, fortunately, will be “yes”. In other words, we can compute
Green functions just as we always did, as the sum of Feynman graphs.
This is actually rather surprising, since we derived Feynman rules based
on the action of interacting fields on the bare vacuum, not the full vacuum.

2. Are S matrix elements obtained from Green functions in the same way as
before? For example, is

〈k′1, k′2 |S − 1| k1, k2〉 =
∏

a

k2
a − µ2

i
G̃(−k′1,−k′2, k1, k2)? (2.21)

The answer will be, “almost.” The problem will be, as we have already
discussed, that in an interacting theory, the bare field ϕ0(x) no longer
creates mesons with unit probability. The formula will hold, but only
when the Green function G̃ is defined using renormalized fields ϕ instead
of bare fields.

First we will answer the first question: Is G(n) = G
(n)
F ?3 Our answer will

be similar to the derivation of Wick’s theorem on pages 82-87 of Peskin &
Schroeder, which you should look at as well.

First of all, using Dyson’s formula just as we did at the end of the last
section, it is easy to show that

G(n)(x1, . . . , xn) = 〈Ω |T (ϕH(x1) . . . ϕH(xn)) |Ω〉. (2.22)

Now let’s show that this is what we get by blindly summing Feynman diagrams.
The object which had a graphical expansion in terms of Feynman diagrams

was

ZF [ρ] = lim
t±→±∞

〈0 |T exp

(

−i
∫ t+

t−

[HI − ρ(x)ϕI (x)]

)

| 0〉 (2.23)

3Since the answer to this question doesn’t depend on using bare fields ϕ0 or renormalized
fields ϕ, we will neglect this distinction in the following discussion.
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where I remind you that | 0〉 refers to the bare vacuum, satisfying H0| 0〉 = 0.
Now, we know that we will have to adjust the constant part of HI with a
vacuum energy counterterm to eliminate the vacuum bubble graphs when ρ = 0.
Equivalently, since as argued in the previous chapter the sum of vacuum bubbles
is universal, an easier way to get rid of them is simply to divide by 〈0 |S| 0〉; this
gives

ZF [ρ] = lim
t±→±∞

〈0 |T exp
(

−i
∫ t+
t−

[HI − ρ(x)ϕI(x)]
)

| 0〉

〈0 |T exp
(

−i
∫ t+
t−

HI

)

| 0〉
. (2.24)

To get G
(n)
F (x1, . . . , xn), we do n functional derivatives with respect to ρ and

then set ρ = 0:

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0 |T
[

ϕI(x1) . . . ϕI(xn) exp
(

−i
∫ t+
t−

[HI − ρϕI ]
)]

| 0〉

〈0 |T exp
(

−i
∫ t+
t−

HI

)

| 0〉
.

(2.25)
Now, we have to show that this is equal to Eq. (2.22). This will take a bit of
work.

First of all, since Eq. (2.25) is manifestly symmetric under permutations of
the xi’s, we can simply prove the equality for a particularly convenient time
ordering. So let’s take

t1 > t2 > . . . > tn (2.26)

In this case, we can drop the T -ordering symbol from G(n)(x1, . . . , xn). Now,
since

UI(tb, ta) = T exp

(

−i
∫ tb

ta

d4xHI

)

(2.27)

is the usual time evolution operator, we can express the time ordering in G
(n)
F

as

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0 |UI(t+, t1)ϕI(x1)UI(t1, t2)ϕI(x2) . . . ϕI(xn)UI(tn, t−)| 0〉
〈0 |UI(t+, t−)| 0〉 .

(2.28)
Now, everywhere that UI(ta, tb) appears, rewrite it as UI(ta, 0)UI(0, tb), and
then use the relation between Heisenberg and Interaction fields,

ϕH(xi) = UI(ti, 0)†ϕI(xi)UI(ti, 0)

= UI(0, ti)ϕI(xi)UI(ti, 0) (2.29)

to convert everything to Heisenberg fields, and get rid of those intermediate U ’s:

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0 |UI(t+, 0)ϕH(x1)ϕH(x2) . . . ϕH(xn)UI(0, t−)| 0〉
〈0 |UI(t+, 0)UI(0, t−)| 0〉 .

(2.30)
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Let’s concentrate on the right hand end of the expression, UI(0, t−)| 0〉 (in both
the numerator and denominator), and refer to the mess to the left of it as some
fixed state 〈Ψ |. First of all, since H0| 0〉 = 0, we can trivially convert the
evolution operator to the Schrödinger picture,

lim
t−→∞

〈Ψ |UI(0, t−)| 0〉 = lim
t−→∞

〈Ψ |UI(0, t−) exp(iH0t−)| 0〉 = lim
t−→∞

〈Ψ |U(0, t−)| 0〉.
(2.31)

Next, insert a complete set of eigenstates of the full Hamiltonian, H ,

lim
t−→∞

〈Ψ |U(0, t−)| 0〉 = lim
t−→∞

〈Ψ |U(0, t−)



|Ω〉〈Ω | +
∑

n6=0

|n〉〈n |



 | 0〉

= 〈Ψ|Ω〉〈Ω |0〉 + lim
t−→−∞

∑

n6=0

eiEnt−〈Ψ|n〉〈n| 0〉 (2.32)

where the sum is over all eigenstates of the full Hamiltonian except the vacuum,
and we have used the fact that H |Ω〉 = 0 and H |n〉 = En|n〉, where the En’s
are the energies of the excited states.

We’re almost there. This next part is the important one. The sum over
eigenstates is actually a continuous integral, not a discrete sum. As t− → −∞,
the integrand oscillates more and more wildly, and in fact there is a theorem
(or rather, a lemma - the Riemann-Lebesgue lemma) which states that as long
as 〈Ψ|n〉〈n| 0〉 is a continuous function, the sum (integral) on the right is zero.

The Riemann-Lebesgue lemma may be stated as follows: for any “nice”
function f(x),

lim
µ→∞

∫ b

a

f(x)

{

sinµx

cosµx

}

= 0. (2.33)

It is quite easy to see the graphically, as shown in Fig. 2.5. Physically, what the
lemma is telling you is that if you start out with any given state in some fixed
region and wait long enough, the only trace of it that will remain is its (true)
vacuum component. All the other one and multiparticle components will have
gone away: as can be seen from the figure, the contributions from infinitesimally
close states destructively interfere.

So we’re essentially done. A similar argument shows that

lim
t+→∞

〈0 |UI(t+, 0)|Ψ〉| 0〉 = 〈0|Ω〉〈Ω |Ψ〉 (2.34)

and applying this to the numerator and denominator of Eq. (2.30) we find

G
(n)
F (x1, . . . , xn) =

〈0|Ω〉〈Ω |ϕH(x1) . . . ϕH(xn)|Ω〉〈Ω |0〉
〈0|Ω〉〈Ω |Ω〉〈Ω |0〉

= G(n)(x1, . . . , xn). (2.35)

So there is now no longer to distinguish between the sum of diagrams and
the real Green functions.
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Figure 2.5: The Riemann-Lebesgue lemma: f(x) multiplied by a rapidly oscil-
lating function integrates to zero in the limit that the frequency of oscillation
becomes infinite.

2.3 The LSZ Reduction Formula

We now turn to the second question: Are S matrix elements obtained from
Green’s functions in the same way as before?

By introducing a turning on and off function, we were able to show that

〈l1, . . . , ls |S − 1| k1, . . . , kr〉 =
s
∏

a=1

l2a − µ2

i

r
∏

b=1

k2
b − µ2

i
G̃(r+s)(−l1, . . . ,−ls, k1, . . . , kr). (2.36)

The real world does not have a turning on and off function. Is this formula
correct? The answer is “almost.”

The correct relation between S matrix elements (what we want) and Green
functions (what, as we just showed, we get from Feynman diagrams) which we
will derive is called the LSZ reduction formula. Since its derivation doesn’t re-
quire resorting to perturbation theory, we no longer need to make any reference
to free Hamiltonia, bare vacua, interaction picture fields, etc. So FROM NOW
ON all fields will be in the Heisenberg representation (no more interaction pic-
ture), and states will refer to eigenstates of the full Hamiltonian (although for
the rest of this section we will continue to denote the vacuum by |Ω〉 to avoid
confusion)

ϕ(x) ≡ ϕH(x), | 0〉 ≡ |Ω〉. (2.37)

The physical one-meson states in the theory are now the complete one meson
states, relativistically normalized

H | k〉 =

√

~k2 + µ2| k〉 ≡ ωk| k〉, 〈k′ |k〉 = (2π)32ωkδ
(3)(~k − ~k′). (2.38)
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We have actually been a bit cavalier with notation in this chapter; the fields
we have been discussion have actually been the bare fields ϕ0 which we discussed
at the end of the last chapter. Thus, we have really been talking about bare

Green functions, which we will now denote G0(n):

G
(n)
0 (x1, . . . , xn) = T 〈Ω |ϕ0(x1) . . . ϕ0(xn)|Ω〉. (2.39)

The reason the answer to our question is “almost” is because the bare field ϕ0

which does not have quite the right properties to create and annihilate mesons.
In particular, it is not normalized to create a one particle state from the vacuum
with a standard amplitude - instead, it is normalized to obey the canonical com-
mutation relations. For free field theory, these two properties were equivalent.
For interacting fields, however, where the amplitude to create a meson from
the vacuum has higher order perturbative corrections, these two properties are
incompatible, as we have discussed. Furthermore, in an interacting theory ϕ0

may also develop a vacuum expectation value, 〈Ω |ϕ(x)|Ω〉 6= 0.
We correct for these problems by defining a renormalized field, ϕ(x), in terms

of ϕ0. By translational invariance,

〈k |ϕ(x)|Ω〉 = 〈k |eiP ·xϕ(0)e−iP ·x|Ω〉 = eik·x〈k |ϕ(0)|Ω〉. (2.40)

By Lorentz invariance, you can see that 〈k |ϕ(0)|Ω〉 is independent of k. It is
some number, which for historical reasons is denoted Z1/2 (and traditionally
called the “wave function renormalization”), and only in free field theory will it
equal 1,

Z1/2 ≡ 〈k |ϕ(0)|Ω〉. (2.41)

We now can define a new field, ϕ, which is normalized to have a standard
amplitude to create one meson, and a vanishing VEV (vacuum expectation
value)

ϕ(x) ≡ Z1/2 (ϕ0(x) − 〈Ω |ϕ0(0)|Ω〉)
〈Ω |ϕ(0)|Ω〉 = 0, 〈k |ϕ(x)|Ω〉 = eik·x. (2.42)

We can now state the LSZ (Lehmann-Symanzik-Zimmermann) reduction for-
mula: Define the renormalized Green functions G(n),

G(n)(x1, . . . , xn) ≡ 〈Ω |T (ϕ(x1) . . . ϕ(xn)) |Ω〉 (2.43)

and their Fourier transforms, G̃(n). In terms of renormalized Green functions,
S matrix elements are given by

〈l1, . . . , ls |S − 1| k1, . . . , kr〉

=

s
∏

a=1

l2a − µ2

i

r
∏

b=1

k2
b − µ2

i
G̃(r+s)(−l1, . . . ,−ls, k1, . . . , kr) (2.44)
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That’s it - almost, but not quite, what we had before. The only difference
is that the S matrix is related to Green functions of the renormalized fields - in
our new notation, the factors of G̃ in Eq. (2.1) should be G̃0. Given that it is the
ϕ which create normalized meson states from the vacuum, this is perhaps not
so surprising. What is more surprising is that even the renormalized field ϕ(x)
creates a whole spectrum of multiparticle states from the vacuum as well, and
that these do not pollute the relation between Green functions and S-matrix
elements. Naıv̈ely, you might think that the Green function would be related
to a sum of S-matrix elements, for all different incoming multiparticle states
created by ϕ(x). However, as we shall show, these additional states can all be
arranged to oscillate away via the Riemann-Lebesgue lemma, much as in the
last section.

2.3.1 Proof of the LSZ Reduction Formula

The proof can be broken up into three parts. In the first part, I will show you
how to construct localized wave packets. The wave packet will have multiparticle
as well as single particle components; however, the multiparticle components will
be set up to oscillate away after a long time. In the second part of the proof, I
will wave my hands vigorously and discuss the creation of multiparticle states
in which the particles are well separated in the far past or future; these will be
called in and out states, and we will find a simple expression for the S matrix
in terms of the operators which create wave packets. In the third part of the
proof, we massage this expression and take the limit in which the wave packets
are plane waves, to derive the LSZ formula.

1. How to make a wave packet

Let us define a wave packet | f〉 as follows:

| f〉 =

∫

d3k

(2π)32ωk
F (~k)| k〉 (2.45)

where F (~k) = 〈k |f〉 is the momentum space wave function of | f〉. Associate
with each F a position space function, satisfying the Klein-Gordon equation
with negative frequency,

f(x) ≡
∫

d3k

(2π)32ωk
F (~k)e−ik·x, k0 = ωk, (2 + µ2)f(x) = 0. (2.46)

Note that as we approach plane wave states, | v〉 → | k〉, f(x) → e−ik·x.
Now, define the following odd-looking operator which is only a function of

the time, t (recall again that we are working in the Heisenberg representation,
so the operators carry the time dependence)

ϕf (t) ≡ i

∫

d3x (ϕ(~x, t)∂0f(~x, t) − f(~x, t)∂0ϕ(~x, t)) . (2.47)
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This is precisely the operator which makes single particle wave packets. First
of all, it trivially satisfies

〈Ω |ϕf (t)|Ω〉 = 0 (2.48)

and has the correct amplitude to produce a single particle state | f〉:

〈k |ϕf (t)|Ω〉

= i

∫

d3x

∫

d3k′

(2π)22ωk′
F (~k′) 〈k |

(

ϕ(x)∂0e
−ik′·x − e−ik

′·x∂0ϕ(x)
)

|Ω〉

= i

∫

d3x

∫

d3k′

(2π)22ωk′
F (~k′)

(

−iωk′e−ik
′·x − e−ik

′·x∂0

)

〈k |ϕ(x)|Ω〉

= i

∫

d3k′

(2π)22ωk′
F (~k′)(−iωk′ − iωk)

∫

d3x ei(
~k′−~k)·~xe−i(ωk′−ωk)t

= F (~k) (2.49)

where we have used
∫

d3x ei(
~k′−~k)·~x = (2π)δ(3)(~k − ~k′) (2.50)

and we note that the phase factor e−i(ωk′−ωk)t becomes one once the δ function
constraint is imposed (this will change when we consider multiparticle states).
Note that this result is independent of time.

A similar derivation, with one crucial minus sign difference (so that the
factors of ωk and ωk′ cancel instead of adding), yields

〈Ω |ϕf (t)k〉 = 0. (2.51)

Thus, as far as the zero and single particle states are concerned, ϕf (t) behaves as
a creation operator for wave packets. Now we will see that in the limit t→ ±∞
all the other states created by ϕf (t) oscillate away.

Consider the multiparticle state |n〉, which is an eigenvalue of the momentum
operator:

Pµ|n〉 = pµn|n〉. (2.52)

Proceeding much as before, let us calculate the amplitude for ϕf (t) to make this
state from the vacuum:

〈n |ϕf (t)|Ω〉

= i

∫

d3x

∫

d3k′

(2π)22ωk′
F (~k′) 〈n |

(

ϕ(x)∂0e
−ik′·x − e−ik

′·x∂0ϕ(x)
)

|Ω〉

= i

∫

d3x

∫

d3k′

(2π)22ωk′
F (~k′)

(

−iωk′e−ik
′·x − e−ik

′·x∂0

)

〈n |ϕ(x)|Ω〉

= i

∫

d3x

∫

d3k′

(2π)22ωk′
F (~k′)

(

−iωk′e−ik
′·x − e−ik

′·x∂0

)

eipn·x〈n |ϕ(0)|Ω〉

= i

∫

d3k′

(2π)22ωk′
F (~k′)(−iωk′ − ip0

n)

∫

d3x ei(
~k′−~pn)·~xe−i(ωk′−p0n)t〈n |ϕ(0)|Ω〉
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=
ωpn

+ p0
n

2ωpn

F (~pn)e−i(ωpn−p0n)t〈n |ϕ(0)|Ω〉 (2.53)

where
ωpn

=
√

~p2
n + µ2. (2.54)

Note that we haven’t had to use any information about 〈n |ϕ(x)|Ω〉 beyond that
given by Lorentz invariance; thus, we haven’t had to know anything about the
amplitude to create multiparticle states from the vacuum. The crucial point is
the existence of the phase factor e−i(ωpn−p0n)t in Eq. (2.53), and the observation
that for a multiparticle state with a finite mass,

ωpn
< p0

n. (2.55)

This should be easy to convince yourself of: a two particle state, for example,
can have ~p = 0 if the particles are moving back-to-back, while the energy of the
state p0

n can vary between 2µ and ∞. In contrast, a single particle state with
~p = 0 can only have p0 = ωp = µ < p0

n. Thus, for the single particle state the
oscillating phase vanishes, as already shown, whereas it can never vanish for
multiparticle states.

So now we have the familiar Riemann-Lebesgue argument: take some fixed
state |ψ〉, and consider 〈ψ |ϕf (t)|Ω〉 as t → ±∞. Inserting a complete set of
states, we find

lim
t→±∞

〈ψ |ϕf (t)|Ω〉 = lim
t→±∞



〈ψ|Ω〉〈Ω |ϕf (t)|Ω〉

+

∫

d3k

(2π)32ωk
〈ψ |k〉〈k |ϕf (t)|Ω〉 +

∑

n6=0,1

〈ψ |n〉〈n |ϕf (t)|Ω〉





= 〈ψ| f〉 + 0 (2.56)

where we have used the fact that the multiparticle sum vanishes by the Riemann-
Lebesgue lemma.

Similarly, one can show that

lim
t→±∞

〈Ω |ϕf (t)|ψ〉 = 0 (2.57)

for any fixed state |ψ〉.
Thus, our cunning choice of ϕf (t) was arranged so that the oscillating phases

cancelled only for the single particle state, so that only these states survived
after infinite time. We have a similar interpretation as before: in the t → −∞
limit, ϕf (t) acts on the true vacuum and creates states with one, two, ... n
particles. Taking the inner product of this state with any fixed state, we find
that at t = 0 the only surviving components are the single-particle states, which
make up a localized wave packet.
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2. How to make widely separated wave packets

The results of the last section were rigorous (or at least, could be made so
without a lot of work). By contrast, in this section we will wave our hands
violently and rely on physical arguments.

We now wish to construct multiparticle states of interest to scattering prob-
lems, that is, states which in the far past or far future look like well separated
wavepackets. The physical picture we will rely upon is that if F1(~k) and F2(~k)
do not have common support, in the distant past and future they correspond to
widely separated wave packets. Then when ϕf2(t) acts on a state in the far past
or future, it shouldn’t matter if this state is the vacuum state or the state | f1〉,
since the first wavepacket is arbitrarily far away. Let us denote states created
by the action of ϕf2(t) on | f1〉 in the distant past as “in” states, and states
created by the action of ϕf2(t) on | f1〉 in the far future as “out” states. Then
we have

lim
t→∞ (−∞)

〈ψ |ϕf2(t2)| f1〉 = | f1, f2〉out (in). (2.58)

Now by definition, the S matrix is just the inner product of a given “in”
state with another given “out” state,

out〈f3, f4 |f1, f2〉in = 〈f3, f4 |S| f1, f2〉. (2.59)

Thus, we have shown that

〈f3, f4 |S| f1, f2〉 = lim
t4→∞

lim
t3→∞

lim
t2→−∞

lim
t1→−∞

〈Ω |ϕf4†(t4)ϕf3†(t3)ϕf2 (t2)ϕf1 (t1)|Ω〉. (2.60)

3. Massaging the resulting expression

In principle, we have achieved our goal in Eq. (2.60): we have written an
expression for S matrix elements in terms of a weighted integral over vacuum
expectation values of Heisenberg fields. However, it doesn’t look much like the
LSZ reduction formula yet, but we can do that with a bit of massaging.

What we will show is the following

〈f3, f4 |S − 1| f1, f2〉 =

∫

d4x1 . . . d
4xn f

∗
4 (x4)f

∗
3 (x3)f2(x2)f1(x1)

× i4
∏

r

(2r + µ2)〈Ω |Tϕ(x1) . . . ϕ(x4)|Ω〉. (2.61)

This looks messy and unfamiliar, but it’s not. If we take the limit in which the
wave packets become plane wave states, | fi〉 → | ki〉, fi(x) → eiki·xi, we have

〈k3, k4 |S − 1| k1, k2〉 =

∫

d4x1 . . . d
4xn e

ik3·x3+ik4·x4−ik2·x2−ik1·x1

×i4
∏

r

(2r + µ2)G(4)(x1, . . . , x4)
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=
∏

r

k2
r − µ2

i
G̃(4)(k1, k2,−k3,−k4), (2.62)

which is precisely the LSZ formula. Note that we have taken the plane wave
limit after taking the limit in which the limit t → ±∞ required to define the
in and out states; thus, in this order of limits even the plane wave in and out
states are widely separated.

Before showing this, let us prove a useful result: for an arbitrary interacting
field A and function f(x) satisfying the Klein-Gordon equation and vanishing
as |x| → ∞,

i

∫

d4x f(x)(2 + µ2)A(x) = i

∫

d4x f(x)∂2
0A(x) +A(x)(−∇2 + µ2)f(x)

= i

∫

d4x f(x)∂2
0A(x) −A(x)∂2

0f(x)

=

∫

dt ∂0

∫

d3x i (f(x)∂0A(x) −A(x)∂0f(x))

= −
∫

dt ∂0A
f (t)

=

(

lim
t→−∞

− lim
t→+∞

)

Af (t) (2.63)

where we have integrated once by parts, and Af (t) is defined as in Eq. (2.47).
Similarly, we can show

i

∫

d4x f∗(x)(2 + µ2)A(x) =

(

lim
t→+∞

− lim
t→−∞

)

Af†(t). (2.64)

Note the difference in the signs of the limits. We can now use these relations to
convert factors of (2 + µ2)ϕ(x) to ϕf (t) on the RHS of Eq. (2.61). Doing this
for each of the xi’s, we obtain

RHS =

(

lim
t4→+∞

− lim
t4→−∞

)(

lim
t3→+∞

− lim
t3→−∞

)(

lim
t2→−∞

− lim
t2→+∞

)

×
(

lim
t1→−∞

− lim
t1→+∞

)

〈Ω |Tϕf1(x1)ϕ
f2(x2)ϕ

f3†(x3)ϕ
f4†(x4)|Ω〉.

(2.65)

Now we can evaluate the limits one by one.
First of all, when t4 → −∞, it is the earliest (in the order of limits which

we have taken), and so acts on the vacuum. Thus, according to the complex
conjugate of Eq. (2.57), we get zero. When t4 → +∞, it is the latest, and acts
on the vacuum state on the left, to give 〈f4 |. Similarly, only the t3 → ∞ limit

contributes, creating the state out〈f3, f4 |. Next, taking the two limits of t2, we
find

RHS =

(

lim
t1→−∞

− lim
t1→+∞

)(

out〈f3, f4 |ϕf1(t1)| f2〉
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− lim
t2→+∞

out〈f3, f4 |ϕf2(t2)ϕf1(t1)|Ω〉
)

. (2.66)

Unfortunately, we don’t know how ϕf2(t2 → ∞) acts on a multi-meson out
state, and so it’s not clear what the second term is. Let’s parameterize our
ignorance and define

〈ψ | ≡ lim
t2→∞

out〈f3, f4 |ϕf2(t2). (2.67)

Then taking the t1 limits, we find

RHS = out〈f3, f4 |f1, f2〉in − out〈f3, f4 |f1, f2〉out − 〈ψ |f1〉 + 〈ψ |f1〉
= 〈f3, f4 |S − 1| f1, f2〉 (2.68)

as required. Note that we have used the fact (from Eq. (2.56)) that

lim
t1→∞

〈ψ |ϕf1 (t1)|Ω〉 = lim
t1→−∞

〈ψ |ϕf1(t1)|Ω〉 = 〈ψ |f1〉. (2.69)

So that’s it - we’ve proved the reduction formula. It was a bit involved, but
there are a few important things to remember:

1. The proof relied only on the properties

〈Ω |ϕ(0)|Ω〉 = 0, 〈k |ϕ(0)|Ω〉 = 1. (2.70)

No other properties of ϕ were assumed. In particular, ϕ was not assumed
to have any particular relation to the bare field ϕ0 which appears in the
Lagrangian - the simplest relation is Eq. (2.42), but the Green functions
of any field ϕ which satisfies the requirements (2.70) will give the correct
S-matrix elements. For example,

ϕ̃(x) = ϕ(x) + 1
2gϕ(x)2 (2.71)

is a perfectly good field to use in the reduction formula.

Physically, this is again because of the Riemann-Lebesgue destructive in-
terference. One appropriately renormalized, ϕ(0) and ϕ̃(0) only differ in
their vacuum to multiparticle state matrix elements. But this difference
just oscillates away - the multiparticle states created by the field are irrel-
evant.

Practically, this has a very useful consequence: you can always make a
nonlinear field redefinition for any field in a Lagrangian, and it doesn’t
change the value of S-matrix elements (although it will change the Green
functions off shell, but that is irrelevant to the physics). In some cases
this is quite convenient, since some complicated nonrenormalizable La-
grangians may take particularly simple forms after an appropriate field
redefinition. A simple example of this is given on the first problem set.
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This is a good result to remember, if only to save a few trees. A lot of
papers have been written (even in the past few years) which claim that
some particular field is the “correct” one to use in a given problem. Most
of these papers are idiotic - the authors’ pet form of the Lagrangian has
been obtained by a simple nonlinear field redefinition from the standard
form, and so is guaranteed to give the same physics.

2. We can also use the same methods as above to derive expressions for
matrix elements of fields between in and out states (remembering that the
S matrix is just the matrix element of the unit operator between in and
out states). For example,

out〈k1, . . . , kn |A(x)|Ω〉 =

∫

d4x1 . . . d
4xn e

ik1·x1+...+ikn·xn

×in
∏

r

(

2r + µ2
)

T 〈Ω |ϕ(x1) . . . ϕ(xn)A(x)|Ω〉 (2.72)

for any field A(x). Substituting the expression for the Fourier transformed
Green function, the matrix element can be calculated in terms of Feynman
diagrams:

out〈k1, . . . , kn |A(x)|Ω〉 =

∫

d4k

(2π)4
eik·x

n
∏

r=1

k2
r − µ2

i
G̃(2,1)(k1, . . . , kn; k)

(2.73)
where G(2,1)(x1, . . . , xn;x) is the Green function with n ϕ fields and one
A field.

3. In principle, there is no problem in obtaining matrix elements for scatter-
ing bound states - you just need a field with some overlap with the bound
state, which can then be renormalized to satisfy Eq. (2.70). For example,
in QCD mesons have the quantum numbers of quark-antiquark pairs. So
if q(x) is a quark field and q(x) an antiquark field, q(x)q(x) should have
a nonvanishing matrix elements to make a meson. So “all” you need to
calculate for meson-meson scattering from QCD is

T 〈Ω |(qq)R(x1)(qq)R(x2)(qq)R(x3)(qq)R(x4)|Ω〉 (2.74)

where the renormalized product of fields satisfies 〈meson |(qq)R(0)|Ω〉 = 1.
Of course, nobody can calculate this T -product since perturbation theory
fails for the strong interactions, but that’s not a problem of the formalism
(as opposed to the turning on and off function, which had no way of dealing
with bound states). One could use perturbation theory to calculate the
scattering amplitudes of an e+e− pair to the various states of positronium.
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3 Renormalizing Scalar Field Theory

The practical upshot of the last section is that we can just calculate Feynman
diagrams as we always have, as long as we use renormalized fields. As we shall
soon see, this will fix up our problem with loops on external legs - these will just
get cancelled by the rescaling of ϕ0 to ϕ. As a point of notation, from this point
on we will dispense with the notation |Ω〉 to denote the true vacuum: since we
no longer need to consider the free vacuum, we will return to | 0〉 to denote the
true vacuum of the theory.

In this section we will look at the renormalization of our meson-“nucleon”
theory. The Lagrangian for the theory is

L =
1

2
(∂µϕ0)

2 − µ2
0

2
ϕ2

0 + ∂µψ
∗
0∂

µψ0 −m2
0ψ

∗
0ψ0 − g0ψ

∗
0ψ0ϕ0 + constant

=
1

2
(∂µϕ)2 − µ2

2
ϕ2 + ∂µψ

∗∂µψ −m2ψ∗ψ − gψ∗ψϕ+ Lc.t. (3.1)

where

Lc.t. = Aϕ+
B

2
(∂µϕ)2 − C

2
ϕ2 +D∂µψ

∗∂µψ − Em2ψ∗ψ − Fψ∗ψϕ+ constant.

(3.2)
Note that we have added one more counterterm, corresponding to a term linear
in ϕ. This will be required to cancel out any vacuum expectation value of the
bare field ϕ0 induced by the interaction. We can then proceed to calculate
Green functions in this theory, with the counterterms A− F being determined
by the conditions

1. 〈0 |ϕ(0)| 0〉 = 0

2. 〈k |ϕ(0)| 0〉 = 1 (where | k〉 is a meson state)

3. 〈N(k) |ψ∗(0)| 0〉 = 1 (where N(k) is a nucleon state)

4. the meson mass is µ

5. the nucleon mass is m

6. g agrees with a conventionally defined coupling.

Six conditions, six unknowns. Note that we haven’t included a counterterm A′ψ
to cancel a possible VEV of ψ, since such a term would break the U(1) symme-
try. (In fact, as we will see later on in the course, if a field acquires a symmetry
breaking VEV this is a real physical effect, which shouldn’t be cancelled by a
counterterm.) Note that these relations aren’t expressed in terms of renormal-
ized Green functions, which is what we know how to calculate. However, in the
next few sections we will see how to do this.

I will actually not say much about the counterterm A, because it is simple to
show that we never need to think about it. Just as we could ignore the vacuum
energy counterterm if you never calculate disconnected graphs, it turns out that
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you can ignore A if you consistently neglect “tadpole” graphs, of the form shown
in Fig. 3.1: the counterterm A serves to exactly cancel graphs of this form at
each order in perturbation theory. This is easy to see, because by momentum
conservation the line connecting the tadpole to the rest of the graph must carry
zero momentum. If that line were instead attached to a source instead of the
rest of the n-point Green function, it would give a VEV to ϕ(0), and thus the
counterterm A would cancel it. Hence, all such subgraphs must vanish.

+ = 0
A+ = 0
A

(a)
(b)k1k2

kn�1kn
k2

kn�1knk1 k3k3
Figure 3.1: (a) A “tadpole” graph is cancelled by the counterterm A. By
energy-momentum conservation, k = 0 on the external line (the cross denotes
an insertion of the field operator ϕ). (b) Since k = 0 on the line connecting
the tadpole to the rest of the Green function, all graphs containing tadpoles are
also cancelled by A.

3.1 The Two-Point Function: Wavefunction Renormaliza-

tion

To see how to implement the renormalization conditions, we have to study the
renormalized two point function, G(2)(k1, k2),

G̃(2)(k1, k2) =

∫

d4xd4y e−ik1·x−ik2·y〈0 |T (ϕ(x)ϕ(y)) | 0〉. (3.3)

First of all, since

T (ϕ(x)ϕ(y)) = θ(x0 − y0)ϕ(x)ϕ(y) + θ(y0 − x0)ϕ(y)ϕ(x) (3.4)

it is sufficient to study 〈0 |ϕ(x)ϕ(y)| 0〉 and then take this combination at the
end. Inserting a complete set of states between the fields (again, the sum is
continuous rather than discrete), we get

〈0 |ϕ(x)ϕ(y)| 0〉 =
∑

n

〈0 |ϕ(x)|n〉〈n |ϕ(y)| 0〉. (3.5)

Now,
〈0 |ϕ(x)|n〉 = 〈0 |eiP ·xϕ(x)e−iP ·x|n〉 = e−ipn·x〈0 |ϕ(0)|n〉 (3.6)
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where P is the momentum operator, Pµ|n〉 ≡ pµn|n〉, and so

〈0 |ϕ(x)ϕ(y)| 0〉 =
∑

n

e−ipn·(x−y) |〈0 |ϕ(0)|n〉|2 (3.7)

= |〈0 |ϕ(0)| 0〉|2 +

∫

d3k

(2π)32ωk
e−ik·(x−y) |〈0 |ϕ(0)| k〉|2

+
∑

n6=| 0〉,| k〉

e−ipn·(x−y) |〈0 |ϕ(0)|n〉|2

=

∫

d3k

(2π)32ωk
e−ik·(x−y) +

∑

n6=| 0〉,| k〉

e−ipn·(x−y) |〈0 |ϕ(0)|n〉|2

= i∆+(x− y, µ2) +
∑

n6=| 0〉,| k〉

e−ipn·(x−y) |〈0 |ϕ(0)|n〉|2

where we have used the fact that 〈0 |ϕ(0)| 0〉 = 0, 〈0 |ϕ(0)| k〉 = 1, and have
explicitly removed the vacuum and single-particle states from the summation
over |n〉. Thus, the states |n〉 only refer to multi-particle eigenstates of H .
Also, our old friend the ∆+ function has returned. To make explicit the fact
that the ∆+ function depends on the (physical) mass of the meson, µ2, we will
include it as an argument.

Now let’s massage the sum over all momentum eigenstates. Inserting an
integral over p and a δ function is just a fancy way of writing 1, but we will do
something slick with it:

∑

n6=| 0〉,| k〉

e−ipn·(x−y) |〈0 |ϕ(0)|n〉|2

=
∑

n6=| 0〉,| k〉

e−ipn·(x−y)

∫

d4p δ(4)(p− pn) |〈0 |ϕ(0)|n〉|2

=

∫

d4p e−ip·(x−y)
∑

n6=| 0〉,|k〉

δ(4)(p− pn) |〈0 |ϕ(0)|n〉|2 (3.8)

Now, the expression in the summation is a manifestly Lorentz invariant function
of p, which vanishes when p0 < 0. To agree with the longstanding convention,
we will abandon the convention that every p integration gets a factor of 1/2π,
and use this expression to define the function σ(p2):

1

(2π)3
σ(p2)θ(p0) ≡

∑

n6=| 0〉,| k〉

δ(4)(p− pn) |〈0 |ϕ(0)|n〉|2 (3.9)

and thus we have

∑

n6=| 0〉,| k〉

e−ipn·(x−y) |〈0 |ϕ(0)|n〉|2 =
d4p

(2π)3
e−ip·(x−y)σ(p2)θ(p0). (3.10)

Of course, the last few lines were just definition - we traded the summation over
states for an integral over the unknown function σ(p2). But this function has
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a nice physical interpretation: it is a spectral density function, which tells you
something about the density of states at a given value of p2. It is always positive,
and in perturbation theory it is zero if p2 is less than the the momentum-squared
of the lightest bound state. If there is only one kind of particle, of mass m, in
the theory, it is zero in perturbation theory if p2 < 4m2. Beyond perturbatoin
theory, there may be bound states with masses less than 4m2, due to the binding
energy of the state, in which case σ(p2) will be nonzero at the appropriate energy.
(Note also that Peskin & Schroeder use the notation ρ(p2) instead of σ(p2), and
also include in ρ the contribution from the single meson state.) The form of
σ(M2) is shown in Fig. 3.2.

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

1.2

1.4 statesbound multiparticlestates
(2m)2

�(M 2)

M 2
Figure 3.2: The form of σ(M2), the spectral density function. It vanishes below
the multiparticle continuum, with the exception of isolated poles at the location
of bound states.

So, what we have found so far is

〈0 |ϕ(x)ϕ(y)| 0〉 = i∆+(x− y, µ2) +

∫

d4p

(2π)3
e−ip·(x−y)σ(p2)θ(p0)

= i∆+(x− y, µ2) +

∫

d4p

(2π)3
e−ip·(x−y)

∫ ∞

0

dM2 δ(M2 − p2)σ(M2)θ(p0)

= i∆+(x− y, µ2) +

∫ ∞

0

dM2 σ(M2) i∆+(x− y,M2). (3.11)

This is known as the Lehmann-Källen spectral decomposition. Note that it allows
us to make a statement about Z, using ϕ = Z−1/2ϕ0, and the fact that ϕ0 obeys
the canonical commutation relations:

〈0 |[ϕ(~x, t), ϕ̇(~y, t)]| 0〉 = Z−1iδ(3)(~x − ~y). (3.12)
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On the other hand, using the spectral representation and using the fact that

∂

∂y0
i∆+(~x− ~y) = iδ(3)(~x− ~y), (3.13)

we find

〈0 |[ϕ(~x, t), ϕ̇(~y, t)]| 0〉 = iδ(3)(~x− ~y) +

∫

dM2 σ(M2) iδ(3)(~x− ~y). (3.14)

Thus, we find

Z−1 = 1 +

∫ ∞

0

dM2 σ(M2) ≥ 1 (3.15)

and so Z ≤ 1, as expected by conservation of probability.
Now, combining the other time ordering, we at last get an expression for the

renormalized two-point Green function,

G̃(2)(k, k′) = (2π)4δ(4)(k + k′)

(

i

k2 − µ2 + iǫ
+

∫ ∞

0

dM2 σ(M2)
i

k2 −M2 + iǫ

)

= (2π)4δ(4)(k + k′)D(k2) (3.16)

where we defined the full renormalized propagator, D(k2), by

D(k2) =
i

k2 − µ2 + iǫ
+

∫ ∞

0

dM2 σ(M2)
i

k2 −M2 + iǫ
. (3.17)

Since there was a lot of algebra in getting here, perhaps we should pause
for a moment and interpret this result. Multiplying through by Z, we find the
expression for the unrenormalized 2-point function,

G̃
(2)
0 (k, k′) = (2π4)δ(4)(k+k′)

(

iZ

k2 − µ2 + iǫ
+

∫ ∞

0

dM2 Zσ(M2)
i

k2 −M2 + iǫ

)

.

(3.18)
The (2π4)δ(4)(k + k′) is just the usual factor we include by definition in Green
functions. For free field theory, the remainder of the expression would just be
the usual free propagator, i/(k2−µ2 + iǫ). By introducing interactions, all that
has changed is that the field can now produce multiparticle states, so there are
now additional contributions for the amplitude for the meson to propagate, and
the amplitude for the field to produce a single meson has been reduced; hence
the factor of Z.

3.2 The Analytic Structure of G(2), and 1PI Green Func-

tions

The expression, Eq. (3.17), for D(k2) is actually a highly nontrivial expres-
sion. It defines a function everywhere in the complex k2 plane, even though the
propagator was not originally defined there. Let us denote the p2 (called the

40



“invariant mass”) of the lightest multiparticle state by µ2 + ∆. In our nucleon-
meson theory, for example, µ2 + ∆ = 4m2, the invariant mass of a 2-nucleon
state. The function D(k2) is analytic, except at k2 = µ2, where it has a simple
pole with residue i, and along the positive real axis beginning at k2 = µ2 + ∆,
where it has a branch cut. The value of the function on the positive real axis
is given by the +iǫ prescription, which says that you take the value just above
the cut. The analytic structure of D(k2) is shown in Fig. 3.3.k2

simple pole atk2 = �2
branch cut starting atcontinuum threshold

Figure 3.3: The analytic structure ofD(k2). It has a simple pole at the invariant
mass of the single-meson state, and a branch cut starting at the continuum for
multiparticle states. (If there are bound states, there will be additional poles
below the continuum threshold).

This is useful - it allows us to rephrase renormalization conditions 2 and 4
(and consequently 3 and 5 when we consider the nucleon two-point function) in
terms of D. First of all, the fact that the meson mass is µ means that D has a
simple pole and k2 = µ2. Secondly, the requirement that

〈0 |ϕ(0)| k〉 = 1 (3.19)

corresponds to the statement that the residue of the pole at k2 = µ2 is i.
We can actually massage all of this a bit more. Define another new kind of

Green function, called a one particle irreducible (1PI) Green function as the sum
of all connected graphs that cannot be disconnected by cutting a single internal
line. Just to be confusing, we will stick by the standard convention that this
Green function does not include the overall energy-momentum conserving δ
function or the external propagators. The nice thing about 1PI Green functions
for n = 2 is that we can express the full Green function simply in terms of the
1PI functions, as shown in Fig. 3.4.

By definition, the left-hand-side of Fig. 3.4 is (2π)4δ(4)(k + k′)D(k2). The
2-point, 1PI Green function has a name, the (renormalized) “self-energy” of the
particle, and is denoted −iΠ(k2).
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1PI 1PI1PI1PI1PI1PI ++ = + : : :
Figure 3.4: The 2-point Green function G̃(2)(k1, k2) can be expressed as a geo-
metric series in terms if 1PI functions.

We can now sum the series for G̃(2) in terms of Π(k2):

G̃(2)(k, k′) = (2π)4δ(4)(k + k′)
i

k2 − µ2 + iǫ

×
(

1 +
Π(k2)

k2 − µ2 + iǫ
+

(

Π(k2)

k2 − µ2 + iǫ

)2

+ . . .

)

= (2π)4δ(4)(k + k′)
i

k2 − µ2 + iǫ

1

1 − Π(k2)
k2−µ2+iǫ

=
i

k2 − µ2 − Π(k2) + iǫ
(2π)4δ(4)(k + k′). (3.20)

This shows you why Π(k2) is called the “self-energy”: it is like a momentum
dependent mass. In terms of Π(k2), we find

D(k2) =
i

k2 − µ2 − Π(k2) + iǫ
(3.21)

Now we can rephrase our previous renormalization conditions even more suc-
cinctly:

D(k2) has a pole at k2 = µ2 ⇐⇒ Π(µ2) = 0

The residue of this pole is i ⇐⇒ dΠ

dk2

∣

∣

∣

∣

k2=µ2

= 0

This is easy to see if you expand Π(k2) around k2 = µ2 in a power series,

Π(k2) = Π(µ2) + (k2 − µ2)
dΠ

dk2

∣

∣

∣

∣

k2=µ2

+ . . . . (3.22)

The first two terms in the series must vanish, or it screws up the location and
residue of the pole.

So, having expressed our renormalization conditions in terms of 1PI Green
functions, we can determine the counterterms B and C order by order in per-
turbation theory.

A single insertion of B and C gives the Feynman rule i(Bk2 − C), where
k is the momentum flowing through the vertex (recall that in passing from
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the Lagrangian to Feynman rules, a derivative acting on an incoming line with
momentum k brings down a factor of −ik). We can write B and C as power
series expansions,

B =
∑

r

Br, C =
∑

r

Cr (3.23)

where Br and Cr are of order gr (and B0 = C0 = 0, since there are no inter-
actions at O(g0)). Now, suppose we have calculated everything up to O(gn) in
perturbation theory, including all counterterms. Then, at O(gn+1), the contri-
bution to Π(k2) is given by known stuff (that is, loops we can calculate, including
insertions of lower order counterterms) plus single insertions of Bn+1 and Cn+1,
as shown in Fig. 3.5. Our renormalization conditions (3.22) therefore give us

iBn+1µ
2 − iCn+1 = −(known stuff)k2=µ2

iBn+1 = − dknown stuff

dk2

∣

∣

∣

∣

k2=µ2

, (3.24)

determining Bn+1 and Cn+1.1PI += known stu�(all Feynman graphs includinginsertions of counterterms upto O(gn)) the only O(gn+1) graphwith only one vertex(n + 1)
Figure 3.5: Determining counterterms at O(gn+1).

Similarly, we can calculate the nucleon self-energy, Σ(p2), and impose the
corresponding renormalization conditions

Σ(m2) = 0,
dΣ

dp2

∣

∣

∣

∣

p2=m2

= 0. (3.25)

Note that these subtractions do not allow you to ignore corrections to the
1PI two point function: Π(k2) has a complicated momentum dependence, and
this is not eliminated by just subtracting the constant and first derivative terms
in the vicinity of the pole. Since internal lines are not on shell, this momentum
dependence is essential. However, it does solve our problem of loop graphs on
external legs. Since the LSZ formula comes along with a factor of k2 − µ2 for
each external leg, only the location and residue of the pole are relevant for S
matrix elements.

To see this explicitly, consider the sum of all graphs renormalizing an ex-
ternal leg of a diagram, including counterterms, as shown in Fig. 3.6. The
contribution of this sum of graphs to the amplitude is therefore

lim
k2→µ2

k2 − µ2

i
×D(k2) × (rest of graph)
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+
Figure 3.6: A generic Green function, including graphs renormalizing the exter-
nal leg. The counterterm contribution has been denoted separately.

= lim
k2→µ2

k2 − µ2

i

(

i

k2 − µ2
+ (regular at k2 = µ2)

)

× (rest of graph)

= (rest of graph) (3.26)

where we have used the fact that the counterterms have been chosen such that
D(k2) has a simple pole i/(k2 − µ2) and no other singularity at k2 = µ2. Thus,
the counterterm precisely cancels the external leg corrections, and so we can
ignore all diagrams which renormalize external legs.

3.3 Calculation of Π(k2) to order g2

Let us denote the contribution to Π(k2) from terms other than the counterterms
B2 and C2 by Πf (k

2), as shown in Fig. 3.7 where B = B2g
2 + B3g

3 + . . .,
C = C2g

2 + C3g
3 + . . ., and the renormalization conditions (3.22) are

Πf (µ
2) −B2µ

2 + C2 = 0

dΠf (k
2)

dk2

∣

∣

∣

∣

k2=µ2

−B2 = 0. (3.27)

�i�(k2) = 1PI +== �i�f (k2) + iB2k2 � iC2
Figure 3.7: Feynman diagrams contribution to Π(k2) at O(g2).

Equivalently, if you don’t care what B2 and C2 are, this may be written in
terms of the Feynman diagram Πf (k

2):

Π(k2) = Πf (k
2) − Πf (µ

2) − (k2 − µ2)
dΠf (k

2)

dk2

∣

∣

∣

∣

k2=µ2

. (3.28)

The single graph contributing to Πf at this order is given in Fig. 3.8, and
applying the Feynman rules (including the integration over unconstrained loop
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momenta) gives

−iΠf (k
2) = (−ig)2

∫

d4q

(2π)4
i

q2 −m2 + iǫ

i

(q + k)2 −m2 + iǫ
. (3.29)

This look pretty bad - a quadruple integral. Actually, it wouldn’t be so bad,

q
q + kk! &- k!�i�f (k2) =

Figure 3.8: One loop graph contributing to Πf at O(g2).

except for the facts that

1. It’s not spherically symmetric (in 4D), so we can’t just write it as an
angular factor times an integral over the magnitude of q.

2. Actually, even if it were just a function of q2, it wouldn’t be (4D) spheri-
cally symmetric, since we’re in Minkowski space. So we still couldn’t write
it as an angular factor times the integral over the magnitude of q.

3. It’s divergent. At large q, it looks like
∫

d4q

(2π)4
1

q4
(3.30)

which, if it were 4D spherically symmetric, would be

∼
∫

q3dq

q4
(3.31)

which, if we cut it off at some large momentum Λ, would have a piece
proportional to log Λ. Thus, the integral is logarithmically UV divergent.

This last problem we have discussed, and now we see how renormalized pertur-
bation theory has saved us from worrying about infinities in our results: the
quantity we are interested in, Π(k2), depends on Π(k2) − Π(µ2), and in the
difference the divergent term cancels. Only the counterterms are divergent, but
as we discussed several weeks ago, we expected this.

So now we will attack the other two problems. First of all, to make the
integral “spherically” symmetric in Minkowski space (i.e. Lorentz invariant),
we use Feynman’s trick for combining denominators:

∫ 1

0

1

(ax+ b(1 − x))2
=

1

b− a

1

ax+ b(1 − x)

∣

∣

∣

∣

1

0

=
1

b− a

(

1

a
− 1

b

)

=
1

ab
. (3.32)
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So applying this to the two propagators in Πf , with

a = (q + k)2 −m2 + iǫ, b = q2 −m2 + iǫ (3.33)

we find

−iΠf(k
2) = g2

∫

d4q

(2π)4

∫ 1

0

dx
1

[((q + k)2 −m2 + iǫ)x+ ((q2 −m2 + iǫ) (1 − x)]2

= g2

∫

d4q

(2π)4

∫ 1

0

dx
1

[q2 + 2xk · q + xk2 −m2 + iǫ]2
. (3.34)

Now we can shift the integration variable and complete the square

q′ ≡ q + xk ⇒ q′2 = q2 + 2xk · q + k2x2 (3.35)

to get

−iΠf(k
2) = g2

∫ 1

0

dx

∫

d4q′

(2π)4
1

[q′2 + k2x(1 − x) −m2 + iǫ]2
. (3.36)

This would be easy, except that we’re still in Minkowskian space, so we can’t
use the usual formulas for n dimensional volume elements. So now we deal with
the second problem, and relate this to an integral which really is 4D spherically
symmetric. We’ll do this for the general case.

In general, when doing one-loop graphs we will get integrals of the form

In(a) =

∫

d4q

(2π)4
1

(q2 + a+ iǫ)n
=

∫

d3q

(2π)3
dq0
2π

1

(q20 − ~q2 + a+ iǫ)n
(3.37)

(in the case at hand, a = k2x(1 − x) −m2). Now, the locations of the poles of
the integrand in the q0 plane are shown in Fig. 3.9 for the two cases ~q2 − a > 0
and ~q2 − a < 0. In either case, the contour of integration may be rotated to the
imaginary axis as shown, where q0 runs from −i∞ to i∞, since no poles are
crossed and the integrand vanishes at ∞. This is known as the “Wick rotation.”

Let us define
q4 = −iq0 (3.38)

and so we have
dq0 = idq4, d

4q = idq4 d
3q = id4qE (3.39)

where qE is a Euclidean 4 vector, satisfying

q2E = q24 + ~q2. (3.40)

In terms of qE , we can now write the integral as

In(a) = i

∫

d4qE
(2π)4

1

(−q24 − ~q2 + a+ iǫ)n

= i

∫

d4qE
(2π)4

1

(−q2E + a+ iǫ)n
. (3.41)
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(a) (b)
q0 q0

Figure 3.9: The Wick rotation: In both the cases ~q2 − a > 0 (a) and ~q2 − a < 0
(b), the path of the q0 integration may be rotated as shown in the q0 plane,
without crossing any poles.

Now we’re jamming - we have transformed our integral into something which is
(four-dimensionally) spherically symmetric. The volume element in 4D space is

∫

d4qE =

∫ ∞

0

q3E dqE

∫

dΩ4 = 2π2

∫ ∞

0

q3E dqE (3.42)

and setting z = q2E , q3E dqE = 1
2z dz, we get

In(a) =
i

16π2

∫ ∞

0

z dz
1

(−z + a+ iǫ)n
(3.43)

which is straightforward to evaluate.
Returning to the case at hand, we need

I2(a) =
i

16π2

∫ ∞

0

z dz

(−z + a)2
. (3.44)

This is divergent, although the in the combination we are interested the diver-
gence cancels. So to make sense of the intermediate steps, let’s regulate the
integral by putting an artifical upper limit Λ2 on the integration, which we will
then take to ∞ at the end:

IΛ
2 (a) =

i

16π2

∫ Λ2

0

z dz

(−z + a)2

=
i

16π2

(

− ln(−a) +
a

a− Λ2
+ ln(Λ2 − a) − 1

)

=
i

16π2

(

ln Λ2 − 1 − ln(−a)
)

+ . . . (3.45)

where the dots denote terms which vanish as Λ → ∞. We therefore have

Πf (k
2) =

g2

16π2

∫ 1

0

dx ln(−k2x(1 − x) +m2 − iǫ) +
g2

16π2

(

ln Λ2 − 1
)

(3.46)
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where the second term will vanish in the convergent combination Πf (k
2) −

Πf (µ
2). Thus, we find, at long last, the desired result:

Π(k2) = Πf (k
2) − Πf (µ

2) − (k2 − µ2)
dΠf (k

2)

dk2

∣

∣

∣

∣

k2=µ2

(3.47)

=
g2

16π2

∫ 1

0

[

ln
−k2x(1 − x) +m2 − iǫ

−µ2x(1 − x) +m2 − iǫ
+

(k2 − µ2)x(1 − x)

−µ2x(1 − x) +m2

]

dx

We could actually do the remaining integral without too much trouble (it can
be expressed in terms of arctangents), but it’s not necessary for the discussion
which follows.

The physical result (3.47) is finite - the only divergence in the calculation
has been cancelled by the divergent counterterm C2.

4 Thus, as expected, the
bare mass of the interacting meson field is divergent. One thing we should
check, however, is that the bare mass should still be real; otherwise, the bare
Lagrangian will not be Hermitian. The only way C2 = −Πf (µ

2) + (convergent)
can have a complex piece is if the argument of the logarithm in Eq. (3.46) is
less than zero for k2 = µ2; that is, if

µ2x(1 − x) > m2 (3.48)

for x in the range (0, 1). Since the maximum value of x(1 − x) in this interval
is 1/4, this means that C2 will be real as long as

µ2 < 4m2. (3.49)

In other words, as long as the meson is a stable particle, kinematically forbidden
to decay to two nucleons, C2 will be real. On the other hand, if it can decay to
two nucleons it looks like its mass counterterm picks up an imaginary piece. We
will discuss this case shortly, but for the moment we note that this is perhaps
not unexpected, since if the meson can decay we really had no business treating
it as a stable particle anyway. Furthermore, the analytic structure of D(k2) will
be more complicated than we have discussed, since the single particle pole will
be contained within the multiparticle continuum, and we will have to modify
our renormalization conditions accordingly. With these modified conditions, C2

will once again be purely real. As a bonus, we will discover a nice interpretation
of the imaginary piece of Π.

Recall that we already determined, on general principles, the analytic struc-
ture of

D(k2) =
i

k2 − µ2 − Π(k2) + iǫ
. (3.50)

Let’s compare this with the one-loop result (3.47). For µ2 < 4m2,
∫ 1

0 ln(−k2x(1−
x)+m2− iǫ) dx has a branch cut starting at k2 = 4m2, continuing up to k = ∞,

4We would normally expect B2 to be divergent as well. However, this theory is actually a
special type called a super-renormalizable theory (due to the fact that the coupling constant g
has positive mass dimension) and it has particularly nice UV behaviour. More on this shortly.
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but it is analytic everywhere else, and the +iǫ prescription says that the value
of the function along the cut is obtained by approaching it from above. This
agrees with what we found before, from the Lehmann-Källén spectral represen-
tation. It is always reassuring to see that our perturbative result agrees with
results we obtained independent of perturbation theory.

Comments:

1. From Eq. (3.46), we also find

B2 = − g2

16π2

∫

x(1 − x)

m2 − µ2x(1 − x)
dx < 0 (for 4m2 > µ2) (3.51)

and since Z = 1 +B, we find Z < 1, as required.

2. Feynman’s trick may be used to combined any number of denominators.
Using a similar technique, we find

n
∏

r=1

1

ar + iǫ
= (n− 1)!

∫ 1

0

dα1 . . . dαn δ(1 −
∑

i

αi)
1

[
∑

r αr(ar + iǫ)]
n

= (n− 1)!

∫ 1

0

dα1

∫ 1−α1

0

dα2 . . .

∫ 1−α1...−αn−2

0

dαn−1

1
[

∑n−1
r=1 αrar +

(

1 −
∑n−1
r αr

)

an + iǫ
]n . (3.52)

3. For n ≥ 3, where the integral is convergent, we have

In(a) =
i

16π2(n− 1)(n− 2)an−2
. (3.53)

The integral is divergent for n = 1, 2; introducing a cutoff Λ2 we find

I1 =
i

16π2
a ln(−a) + . . .

I2 = − i

16π2
ln(−a) + . . . (3.54)

where the dots denote additional terms which cancel in a convergent sum
of such terms (i.e. a sum of such terms such that the total integrand
vanishes faster than 1/q4 for high q).

4. Should the fact that the bare mass is divergent be a worry, even philo-
sophically? No - the ultraviolet divergence comes from the region of loop
integration where k is very large, and so the distances are correspond-
ingly short. Experimentally, we don’t know much about what happens at
momenta greater than about 100 GeV (about 5 × 10( − 17) m), and so
we really can’t expect the integral to be correct above this region. If all
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particles were actually composite, for example, their interactions would be
cut off by some form factor at about the scale of their sizes, which would
make all the loop integrals finite. However, the beauty of renormalized
perturbation theory is that this is totally irrelevant: any effects of the
cutoff Λ which grow with Λ cancel out of physical quantities. If we were
to leave a finite cutoff in the calculation, rather than taking it to ∞, we
would only be left with terms which were suppressed by ptyp/Lambda,
where ptyp is the typical momentum in the scattering process of interest.
Thus, as long as we are doing physics well below the scale at which the
physics changes, these effects are irrelevant.

5. Finally, note that if we insist that the renormalized mass µ = 0, C2 is
still logarithmically divergent. In other words, a massless meson can only
arise due to a very precise cancellation between the bare mass and the
interactions - the infinite energy stored in the field surrounding the particle
exactly cancels its divergent bare mass to leave a massless particle. Thus,
this is an extremely unnatural situation - even if you started with a particle
with vanishing bare mass, the interactions would produce a mass for it.
Thus, massless scalar particles are highly unnatural. (This will not be the
case for fermions, as we will see).

3.4 The definition of g

We would like to relate the coupling g in the Lagrangian to some definition
which has been approved by a committee of eminent persons. Let us define
Γ(p2, p′2, q2) to be the 1PI three-point function, as shown in Fig. 3.10. Γ
is defined with an i so that it is always g at leading order in perturbation
theory; however, at higher orders in perturbation theory it will be momentum-
dependent. (Note that since Γ is Lorentz invariant, it can only be a function
of scalar products. Since there are only two indepenent momenta, it can only
depend on p2, p′2 and p · p′, but p · p′ can be traded in for q2.)

1PI = �i�(p2; p02; q2)p p0
q

Figure 3.10: The 1PI three-point function.

A sensible committee definition would be to set Γ(p2, p′2, q2) = g for some
fixed point (p2, p′2, q2) in momentum space. Here’s a particularly sensible com-
mittee definition:

g = Γ(m2,m2, µ2). (3.55)
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This point is actually not kinematically accessible (an on-shell nucleon cannot
scatter off an on-shell meson and remain on-shell) but nevertheless we will show
that it has a nice experimental significance.

Consider meson-nucleon scattering. We can split all graphs contributing to
this process into 1PI graphs and non-1PI graphs. Now, consider the behaviour
of the amplitude as a function of s = (pN + pϕ)2, the invariant mass of the
scattering particles. Although s = m2 is kinematically forbidden, we can cer-
tainly define our scattering amplitudes there by analytic continuation, and we
can extrapolate our experimental results to this point.

Now, since the 1PI contribution to the amplitude never has a single nucleon
carrying all the incident momentum, it should not have a pole at s = m2, since
that would indicate the presence of a single-particle resonance. Furthermore, it
shouldn’t be hard to convince yourself that all non-1PI contributions to the rate
have the form shown in Fig. 3.11(b), (c) and (d). Of these, only (b) has a pole
at s = m2, since at this point the internal nucleon propagator D(s) has pole.
Thus, in the vicinity of s = m2, this class of graphs dominates the amplitude,
and we have

iA = −iΓ(s,m2, µ2)D(s)(−iΓ(m2, s, µ2))

= −i g2

s−m2
+ (regular at s = m2) (3.56)

where the second line follows as a consequence of our renormalization condi-
tion, Eq. (3.4). Thus, measuring the scattering amplitude and extrapolating to
s = m2 (that is, vanishingly small incident meson momentum) gives a direct
measurement of g with this renormalization condition.

As an aside, if you do this experiment with real nucleons and mesons, you
find g ∼ 13.5. This put the last nail in the coffin in the attempt to describe
the nucleon-meson strong interactions via a renormalizable, perturbative field
theory such as this model. (Actually, the original experiment was γN → πN
inelastic scattering which gives a measurement of eg, since it’s not easy to make
pion beams. The general idea was the same, though. )

3.5 Unstable Particles and the Optical Theorem

We now return to the situation where µ > 2m. In this case, Πf (k
2) is not real

at k2 = µ2, and so our previous renormalization condition for C yields a non-
Hermitian bare Lagrangian. In this section we will modify the renormalization
prescription, and also discover the physical interpretation of the imaginary piece
of Π.

From the spectral representation, it is straightforward to show that

ImΠ(k2) = −π σ(k2)

|D(k2)|2 (3.57)

and so Π picks up an imaginary piece when k is large enough to make multi-
particle states - this is a real physical effect and should not be subtracted away
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1PI
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=

(a)
(b)

(c) (d)
Figure 3.11: (a) Contributions to nucleon-meson elastic scattering may be di-
vided into one-particle irreducible and non-1PI Green functions. The 1PI con-
tribution does not have a pole at s = m2. The non-1PI contributions all have
the form (b), (c) or (d), and only (b) has a pole at s = m2.

by our renormalization condition. In this theory, σ(k2) 6= 0 for k2 > 4m2,
since this is the start of the two-nucleon continuum. Thus, ImΠ(µ)2 6= 0 for
µ2 > 4m2, and so we shouldn’t be subtracting this imaginary piece away with
a counterterm. What has happened is that the multiparticle continuum has
moved down so that it overlaps with the single particle pole.

So let’s modify our renormalization prescription, so that for µ > 2m,

ReΠ(µ2) = 0, Re
dΠ(k2)

dk2

∣

∣

∣

∣

k2=µ2

= 0. (3.58)

Now, let’s interpret the imaginary piece of Π(k2). From the defininition of σ,
we have

ImΠ(k2) = −π σ(k2)

|D(k2)|2 (3.59)

= −1

2
|D(k2)|−2

∑

n6=| 0〉,|k〉

|〈n |ϕ(0)| 0〉|2(2π)4δ(4)(k − pn)

where the sum is over all multiparticle states |n〉, and pn ≡
∑

i ki. Now, consider
the contribution of some n particle state | k1, . . . , kn〉 in the sum (the state could
include particles of different types; it doesn’t matter for this discussion). From
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the LSZ formula and its generalizations, we know that

〈k1, . . . , kn |ϕ(0)| 0〉 =

∫

d4k

(2π)4

n
∏

r=1

k2
r −m2

r

i
G̃(k1, . . . , kn; k) (3.60)

where the Green function G̃ is illustrated in Fig. 3.12.

k
�kn
�k1�k2�k3

Figure 3.12: The Green function which determines 〈k1, . . . , kn |ϕ(0)| 0〉.

Thus, we have

〈k1, . . . , kn |ϕ(0)| 0〉 = [sum of Feynman diagrams] ×D(p2
n)

= iAfiD(p2
n) (3.61)

where Afi is the usual invariant Feynman amplitude for the process ϕ→ n.
Thus, at k2 = µ2, summing over all states |n〉 the factors of the external

meson propagators |D(µ2)| cancel, and we find

ImΠ(k2 = µ2) = −1

2

∑

f

|Afi|2(2π)4δ(4)(k − pn)

= −1

2

∑

n

1

n!

∫

d3p1

(2π)22E1
. . .

d3pn
(2π)22En

|Afi|2(2π)4δ(4)(k − pn)

= −µΓ (3.62)

where Γ is the decay width of the ϕ, which we calculated last semester. (The
factors of 1/n! arise from the overcounting of identical particles.)

Now let’s use this result to look at the full meson propagator D(k2) in the
vicinity of k2 = µ2. For convenience, let’s look at the region where k2 − µ2 ≤
O(g2). Then we have

[−iD(k2)]−1 = k2 − µ2 − Π(µ2) − (k2 − µ2)
dΠ

dk2

∣

∣

∣

∣

k2=µ2

+O(g4)

= k2 − µ2 − ReΠ(µ2) − iImΠ(µ2) +O(g4)

= k2 − µ2 + iµΓ +O(g4)

= k2 −
(

µ− iΓ

2

)2

+O(g4) (3.63)
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where we have used the renormalization condition (3.58), and the factor that

both k2 −µ2 and dΠ(µ2)
dk2 are both O(g2). Thus, the renormalized propagator, in

the vicinity of the pole, is

D(k2) =
i

k2 −
(

µ− iΓ
2

)2 +O(g4). (3.64)

Thus, the pole in the propagator has moved off the real axis, as shown in Fig.
3.13. k2

deformed branch cut(singularities lie onsecond Riemann sheet)
locations of poleas � increases

k2 = 4m2
Figure 3.13: Location of pole in the full propagator D(k2) as µ increases past
4m2. The +iǫ prescription dictates that the singularity be approached from
above; hence the singularities lie in the second Riemann sheet, seen here by
deforming the branch cut.

We have found the physical significance of the imaginary part of the full
propagator. Let me make a few (somewhat lengthy) comments.

1. Experimentally, Γ really is a width. When an experimentalist says she has
discovered an unstable particle, what she means is that she has found a peak in
the momentum distribution of the decay products hitting her detector. So let’s
analyze this situation.

An experimentalist blasts the vacuum by crashing two protons together in
the middle of her detector. A theorist blasts the vacuum by turning on a δ
function source:

L → L + ρ(x)ϕ(x), ρ(x) = λδ(4)(x). (3.65)

The amplitude to find any momentum eigenstate |n〉 is then proportional to

λ〈n |ϕ(0)| 0〉 +O(λ3).
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Thus, the probability of finding a state with momentum k is

λ2
∑

n

|〈n |ϕ(0)| 0〉|2(2π)4δ(4)(pn − k) +O(λ3)

= 2π2λ2σ(k2)θ(k0) +O(λ3) (3.66)

where we have used the definition of σ. From Eq. (3.57) we therefore find, to
leading order in the strength λ of the source, the probability to find a final state
with momentum k is proportional to

−λ2 ImΠ(k2) |D(k2)|2.

Using our previous result that near k2 = µ2, ImΠ(k2) = −µΓ, this becomes

λ2µΓ

(k2 − µ2)2 + µ2Γ2

and thus the probability to find a state with energy E in the centre of mass
frame is proprtional to

µΓ

(E2 − µ2)2 + µ2Γ2
=

µΓ

(E − µ)2(E + µ)2 + µ2Γ2

∼ µΓ

(E − µ)2(2µ)2 + µ2Γ2
=

µΓ

(4µ2)
[

(E − µ)2 + Γ2

4

] (3.67)

where the second line follows if Γ ≪ µ, the particle’s width is much smaller than
its mass.

The probability distribution is plotted in Fig. 3.14; this is called a Breit-

Wigner, or Lorentzian lineshape. The pole in the propagator has been smeared
out by the width; as Γ decreases, the peak gets narrower and higher, approaching
the pole shape of a stable particle.

19 20 21 22

1

2

3

4

5

�
pmax
pmax2

� E !
Figure 3.14: A Lorentzian lineshape. The full-width at half maximum is Γ.

Thus, µ and Γ are what an experimentalist means when she says she has
found an unstable particle with mass µ and width Γ.
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2. The previous comment actually justifies our previous expression for Γ, which
we obtained in the theory with a turning on and off function. The problem is,
you can’t use the LSZ formula in the usual way to calculate the width, since
you can’t make an “in” state of an unstable particle - it decays away in the time
from t = −∞ to t = 0. So instead, we get the expression for the partial decay
width dΓ to some final state |n〉 by taking the matrix element

out〈n |ϕ(0)| 0〉

which we can evaluate via the extended form of the LSZ formula discussed in
the last chapter. That is, we blast the vacuum at t = 0, and look at the out
states this produces in the region of the single-particle pole.

3. This is an example of a more general result, known as the Optical Theorem.
This actually goes back to scattering theory in quantum mechanics. There it
was based on a simple idea: there is an incoming wave incident on a target, and
an outgoing wave. The outgoing wave is the superpositioni of the incoming wave
that passes right through the target and the scattered wave. By conservation
of probability, if the wave is scattered there must be a decrease in the intensity
of the beam in the forward direction.

The total probability to scatter in any direction but directly forward is pro-
portional to the cross section σ. This therefore is equal to the decrease in
the probability of going exactly forward, which is the interference between the
unscattered and scattered waves.

The field theory version of the optical theorem is trivial to derive. By con-
servation of probability,

S†S = 1

and thus we have

(S − 1)(S − 1)† = SS† − S − S† + 1 = −(S − 1) − (S − 1)†. (3.68)

Now consider the case of forward scattering. Taking the matrix element of this
result between the in and out states | f〉 and | i〉, and inserting a complete set
of states |n〉 we have

∑

n

〈f |(S − 1)|n〉〈n |(S − 1)†| i〉 − 〈f |(S − 1)| i〉 − 〈f |(S − 1)†| i〉. (3.69)

Working on the LHS, we find5

LHS =
∑

n

∫

d3k1 . . . d
3kn

(2π)32E1 . . . (2π)32En
AfmA∗

im

×(2π)4δ(4)(pf − pm)(2π)4δ(4)(pi − pm). (3.70)

5In the case in which some of the nm particles are identical, we will have additional factors
of 1/nm! in these formulas.
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Now consider the case of forward scattering, i = f . In this case, we find,
factoring out a single δ function from both sides,

−iAii + iA∗
ii =

∑

n

∫

d3k1 . . . d
3kn

(2π)32E1 . . . (2π)32En
|Aim|2(2π)4 delta(4)(pi − pm)

(3.71)
and using the fact that the integral over final states times the δ function is what
we used to call the invariant density of states Dm, we obtain the result:

2ImAii =
∑

n

∫

Dm|Aim|2. (3.72)

Thus, the total transiiton probability is proportional to the imaginary part of
the forward scattering amplitude. For example, for 2 → 2 scattering, the RHS of
Eq. (3.72) is proportional to the cross section σ, and we have from the definition
of σ,

ImAii = 2ET piσ. (3.73)

The optical theorem is shown in diagrams in Fig. 3.15.

2 Im k1k2 k2
k1%& %& = Σ k2k1%&fk1k2%& ff [phasespace]

Figure 3.15: The optical theorem: the imaginary piece of the forward scattering
amplitude is related to the total transition probability to some intermediate
state | f〉, summed over all possible states.

In our previous case, if we take −iΠ(k2) as the amplitude for 1 → 1 “scat-
tering”, we get

ImΠ(µ2) = −1

2

∑

n

∫

Dm|Aim|2 = −µΓ (3.74)

as before.

3.6 Renormalizability

The O(g3) correction to Γ in this simple model is finite - the counterterm F is
only needed to make g agree with our committee definition of g. This can be
seen by simple power counting: at high q, the one-loop graph goes like

∫

d4q

q6
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which is convergent. This is peculiar to theories with positive mass dimension
in the couplings (so-called superrenormalizable theories). For spin 1/2 nucleons
coupled to mesons (where the coupling g is dimensionless), the graph goes like

∫

d4q

q4

which is logarithmically divergent, and the counterterm is required to cancel
the divergence.non

Consider, for simplicity, a theory of a single meson with a λϕ4 interaction.
Then the wave function renormalization comes from the two loop diagram in
Fig. 3.16 (a) which is proportional to

∫

d8q

q4

and is quartically divergent, but this is cancelled by the appropriate countert-
erm. Similarly, the graph in Fig. 3.16 (b) is logarithmically divergent, but this
is cancelled by the ϕ4 counterterm.

Now consider the graph in Fig. 3.16 (c). If this term were divergent, it
would be trouble - we would have to introduce at ϕ6 counterterm into our
theory, even though there was no interaction in the bare Lagrangian that looked
like this. Thus, our committee would have to meet again, and comeup with a
renormalization condition for 3 → 3 scattering, requiring us to introduce another
coupling constant. Our theory would then have no predictive power for 3 → 3
scattering. Fortunately, this graph is proportional (at high q) to

∫

d4q

q6

and so is convergent, and no counterterm is required.

(a) (b) (c)
Figure 3.16: Loops graphs in ϕ4 theory.

With this in mind, we make the following definition:

A Lagrangian is said to be renormalizable (in the strict sense) only if all of
the counterterms required to remove infinities from Green functions are of the
same type as those present in the original Lagrangian.

(This is actually slightly more stringent than some other definitions of this term;
hence the “strict sense”.)
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For example, suppose we had a ϕ5 interaction. Then the graph in Fig. 3.17
(a) is logarithmically divergent, so we would need a ϕ6 counterterm. Thus,
ϕ5 theory is not renormalizable. Of course, we could add a ϕ5 term to the La-
grangian, but then you’d get graphs like those in Fig. 3.17 (b) and (c), requiring
ϕ7 and ϕ8 terms, and so on. The problem with this, as we have already men-
tioned, is that the theory would no longer have predictive power. Our committee
would have to come up with an infinite number of renormalization conditions
for 2 → 3, 2 → 4, . . . , 2 → n scattering, and so our theory would have an infinite
number of adjustable parameters.6

(a) (b) (c)
Figure 3.17: Divergent loops graphs (a) in ϕ5 theory, (b, c) with a ϕ6 countert-
erm added.

Thus, theories with polynomial interactions of scalars with more than four
fields are nonrenormalizable. Although we haven’t proved it, it seems plausible
that scalar theories with poynomial interactions with four or fewer fields are
renormalizable. In the next section we will study this problem in more detail,
and determine the conditions for a general field theory to be renormalizable.

6Actually, this statement is a bit misleading. As we may discuss later in the course, non-
renormalizable theories can be very useful. Even though they cannot make exact predictions
without tuning an arbitrary number of parameters, the effects of operators of higher and
higher dimension are suppressed by powers of the momentum relevant to a given process over
some large momentum scale where new physics comes into play. It turns out that nonrenor-
malizable Lagrangians are very useful for calculating in theories with widely separated mass
scales.
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4 Renormalizability

At the end of the last section, we considered the renormalizability of a simple
scalar field theory. We would now like to extend this discussion to more general
theories, such as QED. To do this, let us first approach scalar field theory a bit
more systematically and look at all the possible divergences one could encounter.

4.1 Degrees of Divergence

Consider scalar field theory with a ϕn interaction,

L = 1
2 (∂µϕ)

2 − µ2

2
ϕ2 − λ

n!
ϕn (4.1)

and consider an arbitrary diagram in this theory. We define

N = # of external scalars

P = # of propagators

V = # of vertices

L = # of loops. (4.2)

At large loop momentum, where m is irrelevant, the graph will thus behave like

∫

d4k1 . . . d
4kL

k2
1 . . . k

2
P

. (4.3)

The graph will be divergent is the number of powers of k in the numerator
(including the (d4k’s) is greater than or equal to the number of powers of k in
the denominator. Thus, we define the “superficial degree of divergence” D of a
graph to be

D = (powers of k in numerator)-(powers of k in denominator)

= 4L− 2P. (4.4)

Then, if the integral is regulated by cutting it off at some large scale Λ, we
would expect that graph to scale like ΛD (if D = 0, we expect the graph to be
logarithmically divergent, growing like ln Λ.) Thus, if D ≥ 0 the graph is said
to be superficially divergent, while if D < 0 it is superficially convergent.

The reason for the pejorative adjective “superficial” is that this is not nec-
essarily the correct degree of divergence of the graph. This is simply because
all the propagators don’t necessarily carry loop momenta, as tacitly assumed in
the above argument. The examples in Fig. 4.1 illustrate the point. Fig. 4.1(a)
has D = 4 − 2 = 0, and is logarithmically divergent, as expected. Similarly,
Fig. 4.1(b) has D = 8 − 6 = 2 and is in fact quadratically divergent. However,
Fig. 4.1(c) is superficially convergent, D = 8 − 10 = −2, but nevertheless con-
tains a divergent subgraph. Our previous arguments fail for this graph because
two of the propagators are not in the loop, and so don’t contribute to making
the loop graphs any more convergent.
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(a) (b) (c) (d)

Figure 4.1: (a) and (b) are superficially divergent; (c) is superficially convergent,
but the divergence is cancelled by the counterterm for (b).

Despite this shortcoming, D is in fact a very useful quantity, because of a
theorem due to Hepp: If all superficially divergent 1PI diagrams are cancelled by

counterterms, then all divergences are removed from scattering amplitudes. The
reason for this can be determined by the graph in Fig. 4.1(c): superficially con-
vergent graphs which are still divergent contain divergent subgraphs, which on
their own are also superficially divergent. Once these divergences are cancelled
by the appropriate counterterms, any graph which contains them as subgraphs
is also rendered finite. (This is illustrated in Fig. 4.1(d)).

This is a very useful result: once you have identified all the superficially
divergent diagrams in a theory, you can determine all the required counterterms.
The further constraint that you only have to worry about 1PI graphs arises
because any non-1PI graph can be written as a product of 1PI graphs without
introducing any additional loops.

So, now that we have demonstrated the usefulness of D, let us go a bit
farther with our formula Eq. (4.4) in ϕN theory. Recall that every propagator
gives us a

∫

d4k, and each vertex a δ functions. There will be one overall
energy-momentum conservation δ function left over, and any momentum which
is unconstrained will give us a loop integral. Therefore, the number of leftover
loop integrals is

L = P − V + 1 (4.5)

and since n lines meet at each vertex and each propagator lands on two vertices,

nV = N + 2P (4.6)

and so we find
D = 4L− 2P = (n− 4)V + 4 −N. (4.7)

So now we see there are three cases:

• If n > 4, adding vertices to a diagram increasesD. This is BAD, because if
means at higher orders in perturbation theory (graphs with more vertices)
you can always continue to get new superficially divergent graphs for any
value of N . Thus, at some order in perturbation theory we will need a
φ99 counterterm. Thus, an infinite number of counterterms are required,
since there are an infinite number of superficially divergent amplitudes,
and so the theory is nonrenormalizable, in agreement with our arguments
at the end of the last section.

• If n = 4, only a finite number of Green’s functions will superficially di-
verge, those with N < 4, and so only a finite number of counterterms will
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be required to make all amplitudes finite. This class of theory is called
renormalizable. Note that there will be divergent graphs at all orders in
perturbation theory, but only for Green functions with less than or equal
to N external legs.

• If n < 4, not only is the theory renormalizable, but each time you add a
vertex you make any given graph more convergent. In this case, not only is
the number of superficially divergent Green functions finite, but the num-
ber of superficially divergent graphs is finite. Divergences are restricted
to low orders in perturbation theory (so that V isn’t too big), in contrast
with renormalizable theories, where divergences occur at all orders in per-
turbation theory. This class of theory is called super-renormalizable; the
ψ∗ψϕ theory we have been playing with is in this class.

Now that we have formulated our criteria for renormalizability in a more
general way, we can determine all necessary counterterms just be writing down
all superficially divergent amplitudes. For example, in ϕ4 theory, we have D =
4 −N , and so the only superficially divergent amplitudes have N ≤ 4:

1. N = 0: This is a zero-point Green function, just correponding to the
vacuum energy, and is cancelled by the appropriate constant energy shift.

2. N = 1, 3: No such counterterms can exist, because L is invariant under
the symmetry ϕ→ −ϕ, and such terms break this symmetry.

3. N = 2: The self-energy graph has D = 2. We can Taylor expand this
amplitude in powers of p, the external momentum, to a series of the form
a0 +a1p

2+a2p
4 + . . . . Now, each term in the expansion will have a smaller

D than the previous one, since each time we differentiate the amplitude
with respect to p it reduces the degree of divergence by 1 (adding one
power of momentum to the denominator of the loop integral). Thus, a0 is
quadratically divergent (D = 2), but a0 is only logarithmically divergent
(D = 0) while all other ai’s are convergent. Thus, this Green function
has two independent divergences, requiring two counterterms of the form
Ap2 +B. These are just mass and wavefunction renormalization.

4. N = 4: The four-point function has D = 0, so diverges like ln Λ. It
therefore requires a single counterterm.

That’s it! As expected, there are no superficially divergent amplitudes with
more than 4 external legs.

We can also compare this result with the superrenormalizable ψ∗ψϕ theory.
In this case, we have D = 4−N−V . For the two-point function, D = 2−V and
so the only graph with D > 0 is the one-loop 1PI graph we calculated in the last
chapter! Since D = 0, it is log divergent, so expanding the amplitude as a0 +
a1p

2+. . ., only a0 is divergent, requiring a mass counterterm. As we found in the
last chapter, the wavefunction renormalization is finite. Furthermore, graphs at
higher orders in perturbation theory are all superficially convergent, since they
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will have V > 2. Similarly, the one-loop renormalization of g already has D =
4 − 3 − 3 = −2, and so there is no divergent coupling constant renormalization
in this theory, as we found.

A few comments:

1. The renormalizability of a theory depends on the number of dimensions
you are working in. More generally, for ϕn theory in d dimensions, similar
manipulations yield

D = d+

[

n

(

d− 2

2

)

− d

]

V −
(

d− 2

2

)

N. (4.8)

Ths, ϕ4 theory is renormalizable in four dimensions, while in three dimen-
sions it is superrenormalizable, and ϕ6 theory is renormalizable. In two
dimensions, ϕn theory is renormalizable for any n. We can also summarize
this in terms of dimensional analysis. In d dimensions, [L] = d (so that the
action is dimensionless), and since [m2ϕ2] = d, we have [ϕ] = (d − 2)/2.
Thus, [λϕn] = d, and the units of the coupling constant λ in ϕn theory in
d dimensions are [λ] = d − n[ϕ] = d − n(d − 2)/2. Comparing this with
Eq. (4.8), we find that

(a) [λ] > 0 (the coupling has positive mass dimension → the theory is
superrenormalizable

(b) [λ] = 0 (the coupling is dimensionless) → the theory is renormalizable

(c) [λ] < 0 (the coupling has negative mass dimension) → the theory is
nonrenormalizable.

As we shall see, this requirement is generally true, even in theories with
fermions and (with additional restrictions) gauge bosons. Thus, the class
of renormalizable theories in four dimensions is very small - only terms
with dimension ≤ 4 are allowed.

2. It is straightforward to add spin 1/2 fermions to this discussion, as well as
derivative interactions such as ϕ2∂µϕ∂

µϕ. Fermions contribute differently
to D than bosons since their propagators don’t fall off as fast for large k
- like 1/k/ instead of 1/k2. Thus, in this case we have

D = 4L− 2PB − PF (4.9)

where PB is the number of scalar boson propagators and PF is the number
of spin 1/2 fermion propagators. Now suppose that the Lagrangian is of
the form

L = L0 +
∑

i

λiLi (4.10)

where the i’th interaction vertex contains

bi scalar bosons

fi spin 1/2 fermiosn

di derivatives
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and has coupling constant λi. Then, going through the same rigamarole
as before, we find that a graph with ni vertices of type i has (in four
dimensions)

D = 4 −NB − 3/2NF +
∑

i

niδi (4.11)

where
δi ≡ di + bi + 3/2fi − 4 (4.12)

is the “index of divergence” of the interaction Li. (Note that because
of their slower UV falloff, fermions give a larger contribution to D than
scalars). THus, if any interaction has positive index of divergence, the
theory is nonrenormalizable, since by adding vertices a positive D may be
obtained for any value of NB and NF . But again, even in this case, in
four dimensions we have [ϕ] = 1, [ψ] = 3/2, and so δi = [Li] − 4 = −[λi].
Thus, as before, we find that as long as all λi’s are ≥ 0 (have positive or
zero mass dimension) the theory is renormalizable.

3. Generally, all renormalizable interactions are required to absorb diver-
gences in superficially divergent subgraphs. For example, consider a pseudoscalar-
fermion-antifermion coupling

LI = −igψγ5ψϕ. (4.13)

The coupling g has 0 mass dimension. However, this theory is not, strictly
speaking, renormalizable. The box graph in Fig. 4.2 is logarithmically
divergent (D = 0), and so it will need a ϕ4 counterterm, which wasn’t
originally present in Li. However, the interaction

Figure 4.2: Logarithmically divergent “box graph”.

LI = −igψγ5ψϕ+
λ

4
ϕ4 (4.14)

is, strictly speaking, renormalizable. This is also in accord with our earlier
assertion that massless scalars are unnatural - even if the renormalized
mass µ is set to zero, a mass counterterm is nevertheless required.

4. There is one exception to the above rule: a theory which is invariant
under some internal symmetry will not need all terms with d ≤ 4 to
be renormalizable, but only those consistent with the symmetry. In the
above example, for instance, the Lagrangian is invariant under parity,
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with ϕ transforming as a pseudoscalar, ϕ(t, ~x) → −ϕ(t,−~x). However,
the scalar interaction ψψϕ violates this symmetry, and so will never be
required as a counterterm.7 Indeed, if this were not the case, parity would
be inconsistent with quantum field theory, since renormalization would
induce parity violating counterterms.

With all of this in mind, we now turn to ...

4.2 Renormalization of QED

4.2.1 Troubles with Vector Fields

We haven’t yet discussed vector fields. Offhand, they look like trouble. Con-
sider adding a generic massive spin one field to our previous discussion. As we
discussed in the first semester, the propagator for a massive spin one field is

i

k2 − µ2 + iǫ

(

−gµν +
kµkν

µ2

)

. (4.15)

The second term looks bad - it doesn’t fall off at all for large momenta! So it
will give a large contribution to D. If we work through as before we find the
index of divergence of an interaction with Vi massive vector bosons is

δi = di − 4 + bi + 3/2fi + 2vi. (4.16)

Note that since [Aµ] = 1, this is not [Li] − 4. The vector bosons behave
much worse than their dimension suggests. In fact, there are no possible
renormalizable interaction terms containing vi! For example, −gψγµψAµ has
δi = 2 × 3/2 + 2 − 4 = 1, while −gϕ∂µϕAµ has δi = 3 + 2 − 4 = 1. Thus, any
theory with interacting massive vector bosons in not renormalizable, because of
this second term in the popagator kµkν/µ2.

However, recall that this term arises in the spin summation from the 3-D
longitudinal mode of the vector meson. There is, however, one class of theories
which does not have such a propagating mode - gauge theories with massless
vector bosons. Recall from last semester that if a massive vector boson couples
to a conserved current, the second term in the propagator doesn’t contribute to
scattering amplitudes, and so (at least at tree level; we will worry about loops
later), we can set

i

k2 − µ2 + iǫ

(

−gµν +
kµkν

µ2

)

→ − igµν

k2 − µ2 + iǫ
. (4.17)

Thus, in this case, Aµ behaves just like a scalar field as far as D is concerned,
and so in the case that Aµ couples to a conserved current,

δi = bi +
3

2
fi + d+ i− 4 (4.18)

7The exception to this rule are anomalous symmetries, classical symmetries that are broken
in the quantum theory. We won’t discuss these in this course, but you can read the discussion
in chapter 19 of Peskin and Schroeder).
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where now bi is the number of scalar plus vector bosons. In this case, ψγµψAµ
is a renormalizable interaction, δi = 0, and so for QED the superficial degree of
divergence of a graph with Nγ external photons and Ne external electrons is

D = 4 −Nγ −
3

2
Ne. (4.19)

So it looks like we have a fighting chance.

4.2.2 Counterterms

The Lagrangian for QED is

LQED = −1

4
(Fµν0 )

2
+ ψ0 (i∂/+m0)ψ0 − e0ψ0γµψ0A

µ
0 (4.20)

where as usual the subscript 0 denotes bare quantites. We defined the renor-
malized fields

ψ ≡ Z
−1/2
2 ψ0, Aµ ≡ Z

−1/2
3 Aµ0 (4.21)

in terms of which the interaction term is

−e0Z2Z
1/2
3 ψγµψAµ ≡ −eZ1ψγ

µψAµ (4.22)

where we have defined the renormalized coupling

e =
e0Z2Z

1/2
3

Z1
. (4.23)

As usual, the precise definition of e (or of Z1) will be set by some convention
which we don’t yet specify. In terms of the renormalized quantites, we split the
Lagrangian into the renormalized piece and the counterterms:

LQED =
1

4
FµνF

µν + ψ (i∂/−m)ψ − eψγµψAµ

−1

4
δ3FµνF

µν + ψ (iδ2∂/− δm)ψ − eδ1ψγ
µψAµ (4.24)

where the second line is the counterterm Lagrangian, and we have defined

δ3 ≡ Z3 − 1, δ2 ≡ Z2 − 1, δm ≡ Z2m0 −m, δ1 ≡ Z1 − 1. (4.25)

Thus, we have four counterterms, with Feynman rules given in Fig. 4.3.
Now, the statement that QED is renormalizable is the statement that these

four counterterms will absorb all the divergences of QED. This isn’t obvious!
Although the theory looks fine by power counting, Eq. (4.24) doesn’t include all
possible interactions with δi ≤ 0, and there is no guarantee that these won’t be
required as counterterms. For example, the one loop graph in Fig. 4.4 (a) has
D = 2, so we would expect to have a quadratically divergent mass counterterm
for the photon, as shown in the figure. Furthermore, the four point vertex in
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-i(q2gµν-qµqν)δ3 -ieγµδ1-i(pδ2-δm)/

Figure 4.3: Counterterms for QED.

(a) (b)

Figure 4.4: (a) has D = 2, so we expect a divergence ∼ Λ2gµν , requiring the
photon mass counterterm (b).

Fig. 4.4 (b) is logarithmically divergent (D = 0), so we would expect an (AµAµ)
2

counterterm.
This would be a disaster.
First of all, it would make the masslessness of the photon highly unnatural,

just as a massless scalar is unnatural. The bare photon mass would have to
be precisely tuned to exactly cancel the effects of the interactions. Second, an
(AµA

µ)
2

interaction term would mean that the photon no longer couples to
a conserved current; we could no longer write the interaction as AµJ

µ, where
∂µJ

µ = 0. In this case we could no longer argue away the longitudinal piece of
the photon propagator. This would spoil the renormalizability of the theory (as
well as the µ→ 0 limit!).

So what saves us? The only reason a counterterm wouldn’t arise is if it were
forbidden by a symmetry of the theory. Of course, in this case, the symmetry
is gauge invariance. Since gauge invariance is a somewhat peculiar internal
symmetry, let me remind you of how it goes.

A U(1) gauge transformation has the form

ψ → e−ieQλ(x)ψ, Aµ → Aµ − ∂µλ(x). (4.26)

Since λ(x) is not a constant, but instead a function of space and time, the
electron kinetic term on its own is not invariant under this transformation -
the derivative also acts on λ(x). In order for a theory to be gauge invariant,
derivatives acting on ψ and gauge fields Aµ must occur in the combination

Dµ ≡ ∂µ − ieAµ. (4.27)

(Note that there is a subtlety hidden here - is this e the same as our committee
definition of the renormalized coupling e? Really, the second term is −ie0Aµ0
- we shall see later on that e0A

µ
0 = eAµ, so the two are equivalent. This is

one of the miracles of gauge invariance.) The two problematic terms, A2 and
A4, are not invariant under the gauge transformation (4.26). Thus, as long as

67



gauge symmetry is preserved by renormalization, they shouldn’t arise. However,
since gauge symmetries are not as straightforward as global symmetries, this
again isn’t obvious. Let’s see how it works. First, however, recall one of the
consequences of coupling a photon to a conserved current that we discovered
last semester. An amplitude with an external photon with polarization ǫµ will
have the form ǫµMµ, where Mµ is the rest of the diagram. We found that as
long as the current is conserved,

kµMµ = 0. (4.28)

This just follows from ∂µJ
µ = 0, and is known as the Ward Identity, and it tells

us that the helicity zero mode of the photon decouples, since the helicity zero
mode has ǫµ ∝ kµ.

We will prove the Ward Identity (and its generalization) soon, but for the
moment let us assume it remains true beyond tree level.

Now let us look at all the 1PI graphs with D > 0 in QED. There are six,
as illustrated in Fig. 4.5, where the starred Green functions denote possible
trouble, since they have no gauge invariant counterterms.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Superficially divergent Green’s function in QED.

We will dispatch with the easy ones first. (a) is just the vacuum energy
counterterm, which is trivial. (c) corresponds to electron mass and wavefunction
renormalization. Expanding in powers of p/,

(c) ∼ A0 +A1p/+A2p
2 + . . . (4.29)

the usual arguments would lead us to expect that A0 is linearly divergent, ∼ Λ,
A1 ∼ ln Λ, and all the other A’s are finite. Thus, there are two infinities, A0

and A1, and two counterterms, δ2 and δm, so all is well. Actually, there is a
subtlety here. A theory with massless fermions has an extra symmetry, chiral

symmetry, since the left- and right-handed helicity modes of a massless fermion
decouple. Thus, we can perform independent U(1) transformations on the two
helicities,

ψL → eiαψL, ψR → eiβψR. (4.30)
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A mass counterterm δmψψ = δm
(

ψLψR + ψRψL
)

breaks this symmetry down
to the diagonal U(1) of fermion number, and so is forbidden. (Thus, in contrast
to scalars, massless fermions are quite natural, since they are protected from
getting a mass by a symmetry). As far as our counterterms go, it means that
A0 vanishes when m = 0, so by dimensional analysis it must be proportional to
m lnΛ, and not Λ, so is only logarithmically divergent.

Diagram (e) is straightforward - it has D = 0 and so has a single logarithmic
divergence proportional to −ieγµ ln Λ, which is cancelled by δ1.

Diagram (d) would required a counterterm proportional to A3. However,
this amplitude is actually zero - it is forbidden by charge conjugation symmetry.
(This result is known as “Furry’s Theorem.”) Recall that the charge conjugation
operator C changes particles to antiparticles. You can easily show that this
implies that the electromagnetic current operator must flip sign under C:

CJµC† = −Jµ (4.31)

where Jµ = ψγµψ is the electromagnetic current. Since the three-point function
is related to the Fourier transform of

〈0 |T (Jµ(x1)J
ν(x2)J

α(x3)) | 0〉 (4.32)

we can act with the C operator to show that

〈0 |Jµ(x1)J
ν(x2)J

α(x3)| 0〉 = 〈0 |CC†Jµ(x1)CC
†Jν(x2)CC

†Jα(x3)CC
†| 0〉

= −〈0 |Jµ(x1)J
ν(x2)J

α(x3)| 0〉 (4.33)

since CC† = 1 and the vacuum is invariant under charge conjugation, C| 0〉 =
| 0〉. Thus, the matrix element of an odd number of currents vanishes, so the
photon three-point function in QED is identically zero.

This leaves us with diagram (b). This one looks like trouble. Defining the
photon self-energy Πµν in analogy with the scalar self energy, we can split Πµν

up into two Lorentz structures,

Πµν(q) = agµν + b
(

gµνq2 − qµqν
)

. (4.34)

A divergence in b is fine - this is precisely the correct form to be absorbed by
the counterterm δ3. The a term is problematic - it corresponds to D = 2, or
a quadratic divergence, requiring a counterterm of the form AµAµ. This is a
photon mass counterterm, precisely the disaster we must avoid. But now the
Ward Identity saves us - it states in this case that

qµΠµν(q) = 0 (4.35)

and so we will find a = 0 identically. Thus, gauge invariance guarantees that no
divergences in loop graphs will have the form of a photon mass.

Thus, we may write

Πµν(q) = Π(q2)
(

gµνq2 − qµqν
)

. (4.36)
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(Note that we expect Π(q2) to be regular about q2 = 0, otherwise the self-energy
would have a pole, corresponding to a massless state. Since the graph is 1PI,
no such pole should exist.) Since we have taken two powers of q out of the
self-energy, Π(q2) is at most logarithmically divergent, and this divergence is
cancelled by δ3, leaving a finite expression for Πµν(q2).

Finally, we have diagram (f). Once again, by the Ward Identity, we know

that this vanishes when contracted with any of the external momenta kµ1 , k
ν
2 , k

α
3 , k

β
4 .

By exhaustion, you can show that this requires it to have the form

(

gµνkβ1 − gµβkα1

)

× (permutations) . (4.37)

Thus, the graph is order k4, and so the first nonvanishing term in the taylor
series expansion has D = 0 − 4 = −4. Thus, the four-point photon vertex
function introduces no new divergences requiring an A4 counterterm.

Hence, QED is renormalizable. We have shown that all the divergences in
the theory may be absorbed by four gauge invariant counterterms. Defining the
electron self-energy Σ(p/), the photon self-energy Π(q2) and the vertex function
Γ(p, p′) as shown in Fig. 4.6 and proceeding in the same way as we proceeded

1PI1PI 1PI

-iΠ(q2)(q2gµν-qµqν) -ieΓµ(p,p')-iΣ(p)/

Figure 4.6: 1PI Green’s functions in QED which require renormalization.

in the scalar case, we define the following renormalization conditions for QED:

Σ(p/ = m) = 0,
∂Σ

∂p/

∣

∣

∣

∣

p/=m

= 0,

Π(q2 = 0) = 0, Γµ(p′ − p = 0) = γµ. (4.38)

The first three just guarantee that the mass of the electron is m and that the
photon and electron fields are properly normalized. The last ensures that the
charge measured at very low momentum transfer (or at very large distances)
corresponds to the coupling constant e.
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