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Jets in QCD

• jets in final states are backgrounds to new physics processes

• structure of jets contain signatures of hard scattering process - 
can allow us to distinguish SM origin from new physics

• jets are sensitive to QCD over a wide range of energy 
scales
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fSW
2 ≡

σ2 jet

σ0
= 1 +

αsCF

π
(−4 ln 2β ln δ − 3 ln δ + . . . )
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ex:  Sterman-Weinberg jet definition (“cone” algorithm):

NB There is no unique definition of a jet - lots of choices on the market.

for δ«1, jets are narrow and large logarithms can spoil perturbation 
theory - sign of a multiscale process.  
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ex: JADE, kT, anti-kT, ... (“cluster” algorithms)

yij = M2
ij min

�
Ei

Ej
,
Ej

Ei

�

M2
ij < jQ2

M2
ij > jQ2

JADE:  Calculate invariant mass of each pair of 
particles, look at smallest:
- if                 ,  combine particles into a 
pseudoparticle, repeat
- if                 ,  stop -> each pseudoparticle is a 
jet

kT:  same as JADE, but variable is 
(These are “exclusive” jet definitions, relevant for e+e- 
machines.  For hadron colliders, want “inclusive” jet 
definitions)

for j«1, jets are narrow - same problem - again, fixed order PT 
does not give reliable predictions.

NB There is no unique definition of a jet - lots of choices on the market.
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This is an old problem in pQCD (early 90’s).  Typically, leading logs 
are assumed/claimed to exponentiate.  Current status:

SW:  formal resummation of leading logs claimed, but unclear 
(Mukhi & Sterman, 1982)
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This is an old problem in pQCD (early 90’s).  Typically, leading logs 
are assumed/claimed to exponentiate.  Current status:

SW:  formal resummation of leading logs claimed, but unclear 
(Mukhi & Sterman, 1982)

JADE:  no known way to resum ... leading logs do NOT 
exponentiate (Brown & Stirling, 1990)
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O(α2
s)JADE at            :

Individually, gluons 1 and 2 would form jets with the quark 
and antiquark, respectively (this is the information in the O(αs) 
result)

BUT there are regions of phase space where JADE makes a 
third jet out of the gluons ... this contributes to the rate at 
leading log (                   ) but we don’t see it from the one-
loop RGE!  (kT was invented to avoid this).

O(α2
s ln

4
j)
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SW:  formal resummation of leading logs claimed, but unclear 
(Mukhi & Sterman, 1982)

JADE:  no known way to resum ... leading logs do NOT 
exponentiate (Brown & Stirling, 1990)

kT:  leading/subleading logs claimed to be resummable
(Brown & Sterling; Catani, 
Dokshitzer & Webber)

Qu:  is there a more systematic approach, generalizable to all 
orders?

This is an old problem in pQCD (early 90’s).  Typically, leading logs 
are assumed/claimed to exponentiate.  Current status:
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All collider QCD problems are inherently multiscale. 
Traditional QCD approach relies on factorization theorems

p

�

p̄

�

�
X

ex:  p+p → tt + X--

The Bigger Picture:
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(Feynman, Bjorken)

σ(p(P1) + p(P2) → tt̄ + X)

=

∫ 1

0

dx1dx2

∑
f

ff(x1)ff̄(x2) · σ(qf(x1P ) + q̄f(x2P ) → tt̄)
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=

∫ 1

0

dx1dx2

∑
f

ff(x1)ff̄(x2) · σ(qf(x1P ) + q̄f(x2P ) → tt̄)

SHORT DISTANCE:  cross section for free quarks 
(and gluons) - can calculate in perturbation theory

LONG DISTANCE:              probability to find 
parton f with fraction x1 of longitudinal momentum 
of proton (”parton distribution function”) - property 
of the PROTON - can’t calculate ... but 
UNIVERSAL (can measure in another process)

ff(x1) :

+ . . .

σ(p(P1) + p(P2) → tt̄ + X)

Factorization:  short and long-distance contributions are separately 
well-defined (IR, collinear safe)

Monday, February 22, 2010
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The proofs of factorization are long and complicated 

Nuclear Physics B261 (1985) 104-142 
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(Rewsed 17 May 1985) 

We show that factonzatlon holds at leading twist m the Drell-Yan cross section do/dQ 2 dy 
and related mcluswe hadron-hadron cross secuons 

We revxew the heuristic arguments for factonzatmn, as well as the dffficultxes which must be 
overcome m a proof We go on to gtve detatled arguments for the all order cancellauon of soft 
gluons, and to show how flus leads to factonzauon 

1. Introduction 

F a c t o n z a t l o n  theorems [1] show that QCD incorporates the phenomenologycal 
successes of the pa t ton  model  a t / u g h  energy and  provade a systemahc way to refine 
pa r ton  model  predictions. The term " f a c t o n z a t m n "  refers to the separat ion of 
short-d~stance from long-dastance effects m field theory The program of factonza-  
u o n  is to show that such a separation may be ea rned  out order-by-order  in field 
theoretic p e r t u r b a u o n  theory. In  practice, flus means  analyzing the F e y n m a n  da- 
agrams wluch cont r ibute  to a gwen process, and  showing that they may be wri t ten as 
products  of funct ions  with the desired propertaes. 

Such an  analysas has been ea rned  out m e*e  - anmhl la t lon  [2-4] and  deeply 
inelastic sca t t enng  [1,5]. The purpose of flus paper  as to extend the analysis to 

104 
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Fig 3 1 

(a) (b) 

(a) Graph contributing to the Drell-Yan cross section (b)-(f) Examples of the leading pinch 
singular surfaces of fig 3 la as specified by soft, jet and hard subdlagrams 

energy limit, the scaled momentum P,~/Q of particle A becomes a hghthke vector rr~ 

that has only a + component  P ~ / Q  ~ ~r~ = (rr~,, % ,  7r~) = (1,O, Or)[s /2Q2]  1/2 

Similarly, P ~ / Q - ~  ~r~ = (O,I ,OT)[S/2Q2] 1/2. On a leading pinch singular surface, 

the scaled momentum K ~ = k ~ / Q  of an internal line of a graph can evidently be 

0) colhnear to ~rA~" K"  = Z~r~ with 0 < Z (denoted by JA for jet-A in figures); 

(n) collanear to 7r~" K"  = Z~r~ with 0 < Z (denoted by JB for jet-B in figures); 

(Ill) zero momentum" K ~ = 0 (denoted by S for soft in figures), 

(iv) none of the above (denoted by H for Hard in figures) 

(a) ultraviolet K ~ K  ~ ~ 0 (denoted by UV in figures) 

(b) jet-like an other directions K , K  ~ = 0 but K"  not along ~rA~ or rr~ (denoted 

by J,~, J • . .  in figures) 

Let us now consider as an example the graph G shown an fig 3 1 The shaded 

circles represent meson Bethe-Salpeter wave functions We assume that these wave 

functions are well enough behaved so that the quark hnes emerging from them are 

colhnear  to the corresponding ~r~ or ~r~ on each leading pinch singular surface. One 

finds [1] that there is one LPSS in winch the quark lines remain jet-like right up to 

the hard annihilation vertices whale the gluon lines are all soft Tins surface may be 

represented daagrammatmally as in fig. 3.1b Our convention is that the lanes witinn 

JA and JB and the hnes connecting Ja and JB to H arejet-hke, while the lanes within 
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(c) 
J 

(d) 

JB ~J 

(e) 

Fig 3 1 (continued) 

( f )  

(o) 

J C Colhns et a l /  Hadron-hadron scattering 

q , 

- d  

~A-q~  

116 

£A-- 

t 

q (b) 

Fag 3 3 (a) Typmal gluon correction, with gluon attached to the "active" quark of the A .let 
(b) Correction with gluon attached to a "spectator" quark of the A.let 

whmh the t ransverse  m o m e n t u m  qT of the exchanged gluon is also of  order  M The 

t ransverse  wavelength of tins gluon is then just  small enough to be capable  of 

resolving the transverse structure of hadron  A 

Let  us c o m p a r e  the q -  integrals for graphs (a) and (b) of  fig 3.3 m the 

l o w - m o m e n t u m  region. When  q+ << P £ ,  these integrals m a y  be writ ten as 

1 1 f f , , (q- )  dq , 

I~=f 2q+q--qZ+,e 2xAP~(k2+ q ) - ~ + , e  

1 1 [ 
Ib 

= J  2q+ q - _  q2 + 1~ 2xaP£(k2  + q - ) _ ~  + le 

1 

! 2 ( 1 - - x A ) P ~ ( l A - - q - ) - - ~ + t e  eob(q ) d q -  (3 2) 

Here  ~ = (k  T + qT)2  = (IAT _ qT)2 ,  while ~ and (/)b are slowly varying funcnons  of 

q--. 

We s tudy the region I q - [  < M Over  most  of  tins region we have 

IP~,q-I >> M 2 - ~, (3 3) 
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,°. 

d 

0 

/ 

C 

b 

F~g 4 4 Factonzatlon of the longitudinally polarized gluons (identified by open arrows) from the hard 

part The double hnes on the nght-hand side are elkonal hnes This identity is proved m the appendix 

q ~  

/? 

q . u + l e  

u 

0, (2  j 

q - -  

- I  

q .u --I~Z 

" 0 !(2" 

Fig 4 5 

+ i g u a t  a _ i g u a t  o 
I1 q 

Feynman rules for the elkonal hne m the u ~' direction and its vertices, for both sides of the cut 

The v ~' elkonal hne has analogous rules 

W e  m a y  s u m m a r i z e  ou r  resul ts  b y  the fo l lowing express ion  for  the  c o n t r i b u t i o n  

f r o m  a n y  l e a d i n g  p i n c h  s ingu la r  surface  S which  survives the s u m  over  cuts  C, 

Gs = Z f OK;~ dK~ r-I f d4q, l-I f 0% 
C I - -  j 

!J(AC)(K~,, qT)(~'  ~}  ! S t " ( q ; ,  q~){~, g . . . . . . . .  ) 

!H(O( K~,, KB ) - ( c , , . -  -~3f~, ".1 X JB ~/~B, qj ) (4 10) 

Eq.  (4.10) is r ep resen ted  by  fig. 4 6, in  winch  the e lkon a l  l ines  to winch  c o l h n e a r  

Z: 
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nA+l 

n B 

°°° 

140 

( b )  

7- It, 

Fig A 5 Identmes used m the recursave argument (a) The ongmal hard part (b) Ward ~dentlty for 
graphs an (a) The sum is over all one-particle reduoble graphs The gluons 11, /,~ and 1~, l~ are all 

longatudmally polarized (c) Result of applying fig 4 4 to (b) with na = fl, n A = a 

an eikonal line which are one-particle reduoble  in longitudinally polarized gluons 

a n d / o r  the physically polarized line. On the right are those terms in which gluons 

only  at tach directly to the eukonal line. This ldenUty, which is a generalization of  fig. 

A.3, m ay  be proved by treating the elkonal hne in the same fashion as the hard part  

m fig. A.5, and repeating the arguments above 

The  proof  of  fig. 5 1 proceeds m a slrmlar manner  The difference f rom the 

previous case is that  the physically polartzed hne kp is replaced by the elkonal hne 

to which the colhnear  gluons at tach The soft gluons are again hghthke and 

longitudinal ly polarized We have all connections except those which are one-parucle  

page 8 page 9 page 13

page 24 page 37

J C Colhns et a l /  Hadron-hadron s~atterlng 121 

If H(Q ~) 1s a smooth function of Q~, then only small values of x .  contribute to the 

integral, since the Fourier transform of a smooth function is sharply peaked Even if 

H(Q ~) is not a smooth function [29], we may obtain a cross section that is 

short-distance dominated by performing an average over Q" [30] 

(do/daQ) = f d4Qg(Q ~' - 0~,)do/d4Q 

= f d4x Y'~[(tlJ(O)[f}lZexp[t(-Q + p f -  p,) x] ~,(xu), 
f 

where ~(x~,) is the Fourier transform of the averagmg function g We may choose g 

so that only short distances contribute (Note that this argument applies not only to 

the Drell-Yan process, but to any inclusive process in hadron-hadron collisions that 

involves a hard scattering ) 

The preceding coordinate space discussion suggests that the hard interaction takes 

place at a well-defined point in space-time Then, there is a clear distinction between 

imtial-state interactions and final-state lnteracuons The latter will cancel by unitar- 

ity In the argument  below, we shall see how this phenomenom works order-by-order 

in per turbat ion theory in momentum space 

After this introduction, our proof starts from the general leading region of graph 

G, fig 3 2a We fix all the spatial momenta  of G and integrate over loop energies 

The identities of the jets, hard and soft parts of G are preserved as the energies vary 

since the spatial momentum of a line defines its on-shell energies To isolate the 

relevant factors, we may use the rules of ume-ordered perturbation theory to write G 

a s  

/' E E 
t~me states 

o r d e n n g s  1~ ~ a 

s t a t e s  

(4 2) 

where e n is the on-shell energy of state 7}, 

e. = E Ik,I, 
hnes 
tE r /  

and the symbol " < ( > ) "  means to the left (right) in a cut time-ordered diagram P 

represents all integrations, normahzatlon and numerator  factors, denoted by N, 

~ = f H  d~;' 1 
 oops   • 

t J 

page 18

(Collins, Soper, Sterman, 1980’s)

(and based on exhaustive analysis of Feynman 
diagrams ...)
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• top quark production is a short-
distance process, hadronic physics is 
long-distance

• hadronic physics cannot resolve details 
of short-distance physics - 
hadronization is independent of details 
of scattering (so parton distributions 
are universal)

Separation of Scales

1
r

r ∼

1

mt

∼ 10
−18

m

r ∼

1

ΛQCD

∼ 10
−15

m

“short” distance

“long” distance

... but the physics is simple:

Monday, February 22, 2010



Soft

Soft

!−

!+

Pa Pb

Q(1 − τ )

ΛQCD

Q

×fi(ξa, µ)fj(ξb, µ)

1

σ0

dσ

dq2
= Q

�

ij

Hij(q
2
, µ)

�
dξa

ξa

dξb

ξb
Sthr

�
Q

�
1 −

τ

ξaξb

�
, µ

�

τ =
q2
�+�−

E2
cm

→ 1
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With restrictions on the final states, there are more scales in the 
problem, and factorization gets more complicated:

ex:  DY near threshold - sum large logs energy

Monday, February 22, 2010
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ex:  e+e- → jets

(at least) 3 scales 
   (+ΛQCD)

With restrictions on the final states, there are more scales in the 
problem, and factorization gets more complicated:

energy

Monday, February 22, 2010
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• is a TOOL to separate scales in a multiscale process - a “turn-
the-crank” approach to factorization

• different momentum regions can be treated separately 
(perturbative, extracted from experiment, lattice, etc.)

• renormalization group can be used to sum logs of small 
parameters

Monday, February 22, 2010
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Physics at r~L is complicated - depends on details of 
charge distribution

We do this all the time in classical electrodynamics:

Monday, February 22, 2010
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BUT ... if we are interested in physics at r>>L, things 
are much simpler ...

We do this all the time in classical electrodynamics:

Monday, February 22, 2010
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... can replace complicated charge distribution by a POINT 
source with additional interactions (multipoles)...

We do this all the time in classical electrodynamics:

Monday, February 22, 2010
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Multipole expansion:  

V (r) =
q

r
+

!p · !x

r3
+

1

2
Qij

xixj

r5
+ · · ·

FACTORIZATION!

q, pi, Qij, . . . : short distance quantities (depend on details of 
charge distribution)

: long distance quantities (independent of 
short distance physics)

〈

1

r

〉

,

〈

xi

r3

〉

,

〈

xixj

r5

〉

, · · ·

higher multipole moments <-> new effective interactions from 
“integrating out” short distance physics .. effects are suppressed by 
powers of L/r

Monday, February 22, 2010
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-at low momenta p<<Λ, a theory can be described by an effective 
Hamiltonian where degrees of freedom at scale Λ have been “integrated 
out”: 

Hamiltonian in 
Λ->∞ limit corrections determined by matrix elements of 

operators Oi - power counting determined by 
dimensional analysis

� �� �

: short distance quantities (in QCD:      
  perturbatively calculable if Λ >>ΛQCD)

: long distance quantities (in QCD:  
  nonperturbative ... need to get them elsewhere)

Cn

′
s

〈On〉 ′
s

Field Theory generalization:  Effective Field Theory

Monday, February 22, 2010
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-at low momenta p<<Λ, a theory can be described by an effective 
Hamiltonian where degrees of freedom at scale Λ have been “integrated 
out”: 

- Effective Field Theory automatically factorizes the calculation

- by keeping more terms, can work to arbitrary accuracy in 1/Λ

Hamiltonian in 
Λ->∞ limit corrections determined by matrix elements of 

operators Oi - power counting determined by 
dimensional analysis

� �� �

: short distance quantities (in QCD:      
  perturbatively calculable if Λ >>ΛQCD)

: long distance quantities (in QCD:  
  nonperturbative ... need to get them elsewhere)

Cn

′
s

〈On〉 ′
s

Field Theory generalization:  Effective Field Theory
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X

X O1

O2

(1) “Classic” (4-fermi theory and the like):

Monday, February 22, 2010
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X

X O1

O2

(1) “Classic” (4-fermi theory and the like):

(2) “Modern”:  Heavy Quark Effective Theory (“HQET”)

QCD:  heavy quark 
HQET:  Wilson line (static source of colour 
charge)

an EFT of heavy, coloured, 
stable objects - b, c quarks

Monday, February 22, 2010
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X

X O1

O2

(1) “Classic” (4-fermi theory and the like):

(3) “Post-Modern”:  Soft-Collinear Effective Theory (“SCET”)

an EFT of energetic, light 
coloured particles - jets!

(2) “Modern”:  Heavy Quark Effective Theory (“HQET”)

QCD:  heavy quark 
HQET:  Wilson line (static source of colour 
charge)

an EFT of heavy, coloured, 
stable objects - b, c quarks

Monday, February 22, 2010
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EFT has some advantages over traditionally pQCD approach:

Our goal (long-term):  understand factorization in jet production in 
lepton and hadron colliders using SCET.

Simple “warm-up” question:  can we use SCET to sum 
large logs in dijet rates?

• systematically improvable - can look beyond leading order
• simplifies proofs of factorization
• conceptually simpler framework, unifying pQCD ingredients of 

power counting, gauge invariance, RG evolution, etc.
• turn-the-crank!

Monday, February 22, 2010
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Soft-Collinear Effective Theory (“SCET”*): the Essentials

(originally developed to describe B decays in jetty regions of phase 
space, but soon extended to traditional perturbative QCD problems)

*(Bauer, ML and Fleming, Phys.Rev.D63:014006,2000; Bauer, Fleming, Pirjol 
and Stewart, Phys.Rev.D63:114020,2001, ...)

What is the correct EFT to describe the dynamics of a very 
LIGHT, ENERGETIC quark?

Monday, February 22, 2010
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What is the correct EFT to describe the dynamics of a very 
LIGHT, ENERGETIC quark?

Interactions with soft 
gluons don’t deflect 
the worldline of the 
energetic quark

Soft-Collinear Effective Theory (“SCET”): the Essentials

Monday, February 22, 2010



p��
q ∼ x(Q, λ2Q, λQ)

pc ∼ (1− x)(Q, λ2Q, λQ)
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What is the correct EFT to describe the dynamics of a very 
LIGHT, ENERGETIC quark?

Interactions with soft 
gluons don’t deflect 
the worldline of the 
energetic quark

BUT ... the quark can also split into two hard, collinear partons

Soft-Collinear Effective Theory (“SCET”): the Essentials

Monday, February 22, 2010
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What is the correct EFT to describe the dynamics of a very 
LIGHT, ENERGETIC quark?

Interactions with soft 
gluons don’t deflect 
the worldline of the 
energetic quark

- get a JET of final state particles

- jet energy is large, invariant mass is parametrically smaller

BUT ... the quark can also split into two hard, collinear partons

Soft-Collinear Effective Theory (“SCET”): the Essentials

Monday, February 22, 2010
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energy

“Soft” particles

“Collinear” particles

collinear gluon

collinear quark

soft gluon

soft quark

- need a separate field for each momentum scaling (a hallmark of “postmodern” 
EFT’s)
- in situations with multiple collinear directions, need multiple collinear fields
- couplings are interesting, because each field “sees” the others in different 
ways ...

Soft-Collinear Effective Theory (“SCET”): the Essentials

Monday, February 22, 2010
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What SCET buys us:  Soft and collinear modes FACTORIZE:

Similarly, partons moving different collinear directions factorize:

jet of collinear 
particles

soft particle can’t resolve jet - just 
sees a colour charge moving at 
speed of light

soft particle couples to 
collinear jet as a lightlike 
Wilson line

collinear particles in this 
jet can’t resolve structure 
of the other jet

collinear particles couple 
to other jets as lightlike 
Wilson lines moving in 
anticollinear direction

Monday, February 22, 2010



dσ ∼ H · J ⊗ S
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Factorization at the level of the Lagrangian can be used 
to prove various factorization theorems:

“hard” function

energy

“soft” function“jet” function

(this form of factorization has been known since the 
1980’s, but now it is manifest in the Lagrangian)

Monday, February 22, 2010
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Factorization at the level of the Lagrangian can be used 
to prove various factorization theorems:

“hard” function

energy

“soft” function“jet” function

(this form of factorization has been known since the 
1980’s, but now it is manifest in the Lagrangian)
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Factorization at the level of the Lagrangian can be used 
to prove various factorization theorems:

“hard” function

energy

“soft” function“jet” function
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Factorization at the level of the Lagrangian can be used 
to prove various factorization theorems:

“hard” function

energy

“soft” function“jet” function

(this form of factorization has been known since the 
1980’s, but now it is manifest in the Lagrangian)
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“hard” function

energy

“soft” function“jet” function

each of H, J and S depends on physics at a single scale - 
choose renormalization scale appropriately, using RGE to evolve 
to appropriate scales sums large logarithms in perturbation theory

cutoff/
renormalization 
scale

RGE
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Technical aside ... zero-bin subtraction

Describing different momenta of the same (in QCD) field with 
separate fields can be subtle ... i.e. what is the difference 
between a p → 0 collinear mode and a soft mode??

A:  none!  need to avoid double-counting

Manohar and Stewart, Phys.Rev.D76:074002,2007
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Describing different momenta of the same (in QCD) field with 
separate fields can be subtle ... i.e. what is the difference 
between a p → 0 collinear mode and a soft mode??

A:  none!  need to avoid double-counting

Manohar and Stewart, Phys.Rev.D76:074002,2007

Monday, February 22, 2010



Johns HopkinsFebruary 16, 2010 39

Technical aside ... zero-bin subtraction

includes integration over soft region 
(already accounted for in soft loop)

“zero-bin”
In most examples before this work, the zero-bin integral was scaleless and vanished in 
dimensional regularization, but it will be critical to getting phase space integrals right.

Describing different momenta of the same (in QCD) field with 
separate fields can be subtle ... i.e. what is the difference 
between a p → 0 collinear mode and a soft mode??

A:  none!  need to avoid double-counting

Manohar and Stewart, Phys.Rev.D76:074002,2007
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For definiteness, look at three different jet definitions:  SW, JADE, kT, 
calculate 2-jet rate in SCET at O(αs)

Back to e+e- → jets:  how do we calculate this in SCET?
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3 jets

2 jets

p+
3

p−
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Q

Q

At O(αs), a jet definition just determines the dijet region in 3-body 
phase space:
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Q

Q

A

A

At O(αs), a jet definition just determines the dijet region in 3-body 
phase space:
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Q

Q

A

A

B

B

At O(αs), a jet definition just determines the dijet region in 3-body 
phase space:
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Q

Q

A

A

B

B

C

C

At O(αs), a jet definition just determines the dijet region in 3-body 
phase space:
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Q

Q

A

A

B

B

C

C

D E

F

G

D

E

F

G

At O(αs), a jet definition just determines the dijet region in 3-body 
phase space:
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How do we do integrate over the 2-jet region in SCET?

C

D E

F

G

Q

Q

A

B
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How do we do integrate over the 2-jet region in SCET?

C

D E

F

G

Q

Q

A

B

(1) partition phase space?
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How do we do integrate over the 2-jet region in SCET?

C

D E

F

G

Q

Q

A

B

(1) partition phase space?
- SCET has no hard cutoff on momenta
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How do we do integrate over the 2-jet region in SCET?

C

D E

F

G

Q

Q

A

B

(1) partition phase space?
- SCET has no hard cutoff on momenta

(2) integrate all modes over all phase space?
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How do we do integrate over the 2-jet region in SCET?

C

D E

F

G

Q

Q

A

B

(1) partition phase space?
- SCET has no hard cutoff on momenta

(2) integrate all modes over all phase space?
- particles can’t carry momenta above the 
cutoff!
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How do we do integrate over the 2-jet region in SCET?

C

D E

F

G

Q

Q

A

B

(1) partition phase space?
- SCET has no hard cutoff on momenta

(2) integrate all modes over all phase space?
- particles can’t carry momenta above the 
cutoff!

(3) as (2), but be consistent with power counting
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p3 ∼ Q(λ2, λ2, λ2)

p1 ∼ Q(λ2, 1, λ)
M2

13 = (p1 + p3)2

O(λ2)
�

+ +

p±
i ∼ Q kµ

i ∼ λ2Qp⊥
i ∼ λQ

M2
13 < jQ2 ⇒ p−

1 k+
3 < jQ2

∼ p
−
1 k

+
3 + O(λ3)
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(3) as (2), but be consistent with power counting:

All of these processes occur, but momenta of different modes scale 
differently with λ:

QCD n-collinear n-collinear soft

Phase space constraints must be consistent with scaling: 

so QCD constraint in SCET
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ex:  JADE

NB: phase space integrals 
are unbounded in some 
directions - get new UV 
divergences in phase 
space integrals

(a) (b)
(zero-bin is the same as the soft phase space)
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ex:  kT

(0 bin)
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FIG. 3: Three-body phase space for different jet definitions in QCD. The shaded region corresponds to the two jet region; the
unshaded region in the centre is the three-jet region.

For massless particles this is equal to

yij =
M

2
ij

Q2
min

�
Ei

Ej
,
Ej

Ei

�
. (3)

The final states with the smallest yij , given that it is less

than a resolution parameter yc, are combined according

to a combination prescription. This process is repeated

until all pairs have yij > yc. In Fig. 3 we illustrate

the two-jet regions in QCD as defined by the JADE, SW

and k⊥ algorithms. The SCET regime for the two-jet

cross section corresponds to choosing the parameters δ,

β, j or yc to be much less than one in the respective jet

definition.

For the two jet JADE cross section, for example, in-

tegrating k
+
3 in the soft sector all the way up to Q, as

in Fig. 3(a), corresponds to integrating the gluon mo-

mentum far above the cutoff. In the EFT, the upper

limit of integration should therefore be replaced by an

ultraviolet cutoff. Indeed, while the regions of integra-

tion for the various jet definitions are quite complicated,

as far as the soft gluon is concerned they should have

no structure above the soft scale. A similar situation

holds for collinear gluons, where the effective cutoffs in

the perpendicular and anti-collinear directions are para-

metrically smaller than Q.

At O(αs), the JADE algorithm corresponds to a cut

on the invariant masses Mij of each pair of partons: if

M
2
ij < jQ

2, the partons are considered to lie in the same

jet, and the event is a two-jet event. The constraints in

full QCD shown in Fig. 3(a) are

M
2
qg

Q2
=

p
+
3

Q − p
−
3

< j,
M

2
q̄g

Q2
=

p
−
3

Q
−

p
+
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−
3

Q(Q − p
−
3 )

< j,

M
2
qq̄

Q2
=

Q − p
−
3 − p

+
3

Q
< j. (4)

Expanding these constraints in the n-collinear sector, we

find

M
2
qg

Q2
=

k
+
3

Q − p
−
3

< j,
M

2
q̄g

Q2
=

p
−
3

Q
< j,

M
2
qq̄

Q2
=

Q − p
−
3

Q
< j (5)

while in the soft sector we obtain

M
2
qg

Q2
=

k
+
3

Q
< j,

M
2
q̄g

Q2
=

k
−
3

Q
< j (6)

(while the constraint M
2
qq̄ < jQ

2 is never satisfied). Fi-

nally, in order to avoid double-counting of the soft sector,

the zero-bin of the collinear region must be subtracted

[18]. Taking the soft limit of the n-collinear region in

Eq. (5) gives the same region as the soft sector, Eq. (6).

The corresponding regions of phase-space are shown in

Fig. 4(a, b).

We note that, as required, the phase space contains

no explicit reference to any scales above the cutoff of the

theory and has no structure above this scale.

Similar constraints in the soft, collinear and zero-bin

sectors are easily obtained for the SW and k⊥ defini-

tions, and are summarized in Table I. Note that in both

SW and k⊥, the zero-bin region is not the same as the

soft region, since taking the soft limit of the n-collinear

phase space is not the same as taking the soft limit of

the full QCD phase space. The corresponding regions

are illustrated in Figs. 5 and 6.

Note that we have not had to specify the SCET expan-

sion parameter λ in order to expand the phase space in

the soft and collinear sectors; we have only assumed that

λ � 1 so that the multipole expansion is valid. Simi-

larly, we have not assumed any relative scaling between

β and δ in the SW jet definition.

III. DIJET RATES TO O(αs)

In this section we calculate the NLO dijet rate (denoted

f2) in the JADE, SW and k⊥ schemes in SCET, which

is straightforward to do given the phase space regions of

the previous section. We show that in each case SCET

reproduces full QCD, as it must. We examine the scales

that appear in the soft and collinear cross sections, where

the power counting parameter λ is determined by the

dynamics in each algorithm. It is instructive to note

the cancellation of ultraviolet divergences between the

soft and collinear real emission contributions. We also

consider the infrared safety of the soft and collinear rates

separately.

At O(αs) the only contribution to the dijet rate comes

from the two-jet SCET operator O2 = ξ̄nWnγµ
W

†
n̄ξn̄.

The matching calculation from the full QCD current

ψ̄γµψ onto O2 has been performed many times in the

literature [15, 19, 20], with the Wilson coefficient

C2 = 1+
αsCF

2π
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−

1
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ln2 µ
2
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−
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and the MS counterterm

Z2 = 1 +
αsCF
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+
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+
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where we are working in d = 4 − 2� dimensions. The

SCET differential cross section for soft gluon emission is

3

FIG. 3: Three-body phase space for different jet definitions in QCD. The shaded region corresponds to the two jet region; the
unshaded region in the centre is the three-jet region.
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The final states with the smallest yij , given that it is less

than a resolution parameter yc, are combined according

to a combination prescription. This process is repeated

until all pairs have yij > yc. In Fig. 3 we illustrate

the two-jet regions in QCD as defined by the JADE, SW

and k⊥ algorithms. The SCET regime for the two-jet

cross section corresponds to choosing the parameters δ,

β, j or yc to be much less than one in the respective jet

definition.

For the two jet JADE cross section, for example, in-

tegrating k
+
3 in the soft sector all the way up to Q, as

in Fig. 3(a), corresponds to integrating the gluon mo-

mentum far above the cutoff. In the EFT, the upper

limit of integration should therefore be replaced by an

ultraviolet cutoff. Indeed, while the regions of integra-

tion for the various jet definitions are quite complicated,

as far as the soft gluon is concerned they should have

no structure above the soft scale. A similar situation

holds for collinear gluons, where the effective cutoffs in

the perpendicular and anti-collinear directions are para-

metrically smaller than Q.

At O(αs), the JADE algorithm corresponds to a cut

on the invariant masses Mij of each pair of partons: if

M
2
ij < jQ

2, the partons are considered to lie in the same

jet, and the event is a two-jet event. The constraints in

full QCD shown in Fig. 3(a) are
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find
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(while the constraint M
2
qq̄ < jQ

2 is never satisfied). Fi-

nally, in order to avoid double-counting of the soft sector,

the zero-bin of the collinear region must be subtracted

[18]. Taking the soft limit of the n-collinear region in

Eq. (5) gives the same region as the soft sector, Eq. (6).

The corresponding regions of phase-space are shown in

Fig. 4(a, b).

We note that, as required, the phase space contains

no explicit reference to any scales above the cutoff of the

theory and has no structure above this scale.

Similar constraints in the soft, collinear and zero-bin

sectors are easily obtained for the SW and k⊥ defini-

tions, and are summarized in Table I. Note that in both

SW and k⊥, the zero-bin region is not the same as the

soft region, since taking the soft limit of the n-collinear

phase space is not the same as taking the soft limit of

the full QCD phase space. The corresponding regions

are illustrated in Figs. 5 and 6.

Note that we have not had to specify the SCET expan-

sion parameter λ in order to expand the phase space in

the soft and collinear sectors; we have only assumed that

λ � 1 so that the multipole expansion is valid. Simi-

larly, we have not assumed any relative scaling between

β and δ in the SW jet definition.

III. DIJET RATES TO O(αs)

In this section we calculate the NLO dijet rate (denoted

f2) in the JADE, SW and k⊥ schemes in SCET, which

is straightforward to do given the phase space regions of

the previous section. We show that in each case SCET

reproduces full QCD, as it must. We examine the scales

that appear in the soft and collinear cross sections, where

the power counting parameter λ is determined by the

dynamics in each algorithm. It is instructive to note

the cancellation of ultraviolet divergences between the

soft and collinear real emission contributions. We also

consider the infrared safety of the soft and collinear rates

separately.

At O(αs) the only contribution to the dijet rate comes

from the two-jet SCET operator O2 = ξ̄nWnγµ
W

†
n̄ξn̄.

The matching calculation from the full QCD current

ψ̄γµψ onto O2 has been performed many times in the

literature [15, 19, 20], with the Wilson coefficient

C2 = 1+
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and the MS counterterm

Z2 = 1 +
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+
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where we are working in d = 4 − 2� dimensions. The

SCET differential cross section for soft gluon emission is

C2
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dσ ∼ H · J ⊗ S

= -

++

�

Q

(1) Hard scale:  matching onto SCET operator O2
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dσ ∼ H · J ⊗ S

6

A. JADE

Integrating the soft rate over the soft dijet region (6)

in the JADE definition gives

1
σ0

σs
JADE

=
αsCF

2π

�
−

2
�2

−
2
�

ln
µ2

j2Q2
− ln2 µ2

j2Q2
+

π2

6

�

(12)

where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find

1
σ0

σ̃n
JADE =

αsCF

2π

�
3
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ln j +
3
2

ln
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jQ2

+2 ln
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ln j − 3 ln2 j −
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3
+

7
2

�
(13)

where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is

1
σ0

σn
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1
σ0

(σ̃n
JADE − σn0

JADE) =
1
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7
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�
. (14)

The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only

need to add up the real emission contributions:

1
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σR
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=
1
σ0

�
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5π2

6
+ 7

�
. (15)

Note that the soft contribution enters into the final ex-

pression with a minus sign. This is a consequence of zero-

bin subtraction and the fact that zero-bins are identical

to the soft contribution. Similar observations have been

pointed out in [21–23]. The divergent terms in Eq. (15)

are cancelled by the counter term |Z2|2, and including

the Wilson coefficient, |C2|2, gives the two-jet fraction

fJADE
2 =

|C2|2

|Z2|2

�
1 +

1
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��
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�
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(16)

This result agrees with the full QCD calculation given in

[24, 25].

It is instructive to comment on a few details of the

SCET result. First of all, since dimensional regular-

ization regulates both the infrared and ultraviolet di-

vergences, the cancellation of ultraviolet divergences be-

tween the soft and collinear emissions is not explicit. To

show how this works, we can repeat the calculation with

the quark and anti-quark offshell, p2
1, p2

2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.

The calculation is given in Appendix A. The resulting

rate for soft gluon emission over the JADE phase space

is
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where the ellipses denote finite constant terms which are

not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same

as that for n-collinear gluon emission with the replace-

ment p2
1 → p2

2. Note that the 1/�2
divergence from

6

A. JADE

Integrating the soft rate over the soft dijet region (6)
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where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find
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where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is
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The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only

need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-

pression with a minus sign. This is a consequence of zero-
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This result agrees with the full QCD calculation given in

[24, 25].

It is instructive to comment on a few details of the
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show how this works, we can repeat the calculation with
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TABLE I: Two-jet regions of three-body phase space for JADE, Sterman-Weinberg (SW) and k⊥ jet algorithms.

given by
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dσs =
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Γ(1 − �)
dk+
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3 )
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(9)

while for n-collinear gluon emission it is

1
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dσn =
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dk+
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(10)

where σ0 = (4πα2/Q2)
�

f e2
f is the leading order

Born cross section with a sum over the (anti-)quark

charges ef . The dependence on �k⊥
3 and �p⊥

3 has been

eliminated via the gluon on-shell condition, and the in-

tegral over the 2 − 2� perpendicular components of the

gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin re-

gion, dσn0
, is obtained by taking the soft limit of

Eq. (10), which is the same as the soft rate,

dσn0 = dσs. (11)

(There are also zero-bin regions corresponding to the

quark and antiquarks becoming soft, but they are higher

order in λ and we will not consider them here.) For the

n-collinear region there are two zero-bins: p−
3 → 0 and

p−
1 → 0, but the contribution to the cross section from

the latter is of higher order in λ and so we will not con-

sider them here.

A. JADE

Integrating the soft rate over the soft dijet region (6)

in the JADE definition gives
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−
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�

(12)

where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find

1
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σ̃n
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+
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�

ln j +
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(13)

where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is

1
σ0

σn
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1
σ0

(σ̃n
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JADE) =
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+
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−
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2
+

7
2

�
. (14)

The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only

4

Jet Definition n-collinear regions soft regions zero-bin regions
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TABLE I: Two-jet regions of three-body phase space for JADE, Sterman-Weinberg (SW) and k⊥ jet algorithms.
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3

2 θ(k+
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3 )1+�(k−
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while for n-collinear gluon emission it is

1
σ0

dσn =
αsCF

2π

µ2�e�γE
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dk+

3 dp−
3
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3 )−�
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(1 − �) + 2

Q − p−
3
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(10)

where σ0 = (4πα2/Q2)
�

f e2
f is the leading order

Born cross section with a sum over the (anti-)quark

charges ef . The dependence on �k⊥
3 and �p⊥

3 has been

eliminated via the gluon on-shell condition, and the in-

tegral over the 2 − 2� perpendicular components of the

gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin re-

gion, dσn0
, is obtained by taking the soft limit of

Eq. (10), which is the same as the soft rate,

dσn0 = dσs. (11)

(There are also zero-bin regions corresponding to the

quark and antiquarks becoming soft, but they are higher

order in λ and we will not consider them here.) For the

n-collinear region there are two zero-bins: p−
3 → 0 and

p−
1 → 0, but the contribution to the cross section from

the latter is of higher order in λ and so we will not con-

sider them here.

A. JADE

Integrating the soft rate over the soft dijet region (6)

in the JADE definition gives

1
σ0

σs
JADE

=
αsCF

2π

�
−

2
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−
2
�

ln
µ2

j2Q2
− ln2 µ2

j2Q2
+
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(12)

where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find

1
σ0

σ̃n
JADE =

αsCF

2π

�
3
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+
2
�

ln j +
3
2

ln
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jQ2

+2 ln
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Q2
ln j − 3 ln2 j −
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3
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7
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(13)

where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is

1
σ0

σn
JADE =

1
σ0

(σ̃n
JADE − σn0

JADE) =
1
σ0

(σ̃n
JADE − σs

JADE)

=
αsCF

2π

�
2
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3
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+
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2

ln
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+ ln2 µ2

jQ2
−

π2

2
+

7
2
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. (14)

The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only

(2) Jet scale:  emission of collinear gluons (incl. zero-bin subtraction)

(loop graphs are scaleless - vanish in dim. reg.)
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Jet Definition n-collinear regions soft regions zero-bin regions
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< δ2 k+
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TABLE I: Two-jet regions of three-body phase space for JADE, Sterman-Weinberg (SW) and k⊥ jet algorithms.

given by
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dk+

3 dk−
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2 θ(k+
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while for n-collinear gluon emission it is

1
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2π
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dk+
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where σ0 = (4πα2/Q2)
�

f e2
f is the leading order

Born cross section with a sum over the (anti-)quark

charges ef . The dependence on �k⊥
3 and �p⊥

3 has been

eliminated via the gluon on-shell condition, and the in-

tegral over the 2 − 2� perpendicular components of the

gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin re-

gion, dσn0
, is obtained by taking the soft limit of

Eq. (10), which is the same as the soft rate,

dσn0 = dσs. (11)

(There are also zero-bin regions corresponding to the

quark and antiquarks becoming soft, but they are higher

order in λ and we will not consider them here.) For the

n-collinear region there are two zero-bins: p−
3 → 0 and

p−
1 → 0, but the contribution to the cross section from

the latter is of higher order in λ and so we will not con-

sider them here.

A. JADE

Integrating the soft rate over the soft dijet region (6)

in the JADE definition gives
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where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find

1
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(13)

where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is
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σn
JADE =

1
σ0
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JADE − σn0

JADE) =
1
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The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only
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TABLE I: Two-jet regions of three-body phase space for JADE, Sterman-Weinberg (SW) and k⊥ jet algorithms.
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while for n-collinear gluon emission it is

1
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where σ0 = (4πα2/Q2)
�

f e2
f is the leading order

Born cross section with a sum over the (anti-)quark

charges ef . The dependence on �k⊥
3 and �p⊥

3 has been

eliminated via the gluon on-shell condition, and the in-

tegral over the 2 − 2� perpendicular components of the

gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin re-

gion, dσn0
, is obtained by taking the soft limit of

Eq. (10), which is the same as the soft rate,

dσn0 = dσs. (11)

(There are also zero-bin regions corresponding to the

quark and antiquarks becoming soft, but they are higher

order in λ and we will not consider them here.) For the

n-collinear region there are two zero-bins: p−
3 → 0 and

p−
1 → 0, but the contribution to the cross section from

the latter is of higher order in λ and so we will not con-

sider them here.

A. JADE

Integrating the soft rate over the soft dijet region (6)

in the JADE definition gives
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=
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2π
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−
2
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j2Q2
− ln2 µ2
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+
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(12)

where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find

1
σ0

σ̃n
JADE =

αsCF

2π
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+
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ln j +
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2

ln
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where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is

1
σ0

σn
JADE =

1
σ0

(σ̃n
JADE − σn0

JADE) =
1
σ0

(σ̃n
JADE − σs

JADE)

=
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The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only
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(3) Soft scale:  emission of soft gluons

(loop graphs are scaleless - vanish in dim. reg.)
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3

FIG. 3: Three-body phase space for different jet definitions in QCD. The shaded region corresponds to the two jet region; the
unshaded region in the centre is the three-jet region.

For massless particles this is equal to

yij =
M

2
ij

Q2
min

�
Ei

Ej
,
Ej

Ei

�
. (3)

The final states with the smallest yij , given that it is less

than a resolution parameter yc, are combined according

to a combination prescription. This process is repeated

until all pairs have yij > yc. In Fig. 3 we illustrate

the two-jet regions in QCD as defined by the JADE, SW

and k⊥ algorithms. The SCET regime for the two-jet

cross section corresponds to choosing the parameters δ,

β, j or yc to be much less than one in the respective jet

definition.

For the two jet JADE cross section, for example, in-

tegrating k
+
3 in the soft sector all the way up to Q, as

in Fig. 3(a), corresponds to integrating the gluon mo-

mentum far above the cutoff. In the EFT, the upper

limit of integration should therefore be replaced by an

ultraviolet cutoff. Indeed, while the regions of integra-

tion for the various jet definitions are quite complicated,

as far as the soft gluon is concerned they should have

no structure above the soft scale. A similar situation

holds for collinear gluons, where the effective cutoffs in

the perpendicular and anti-collinear directions are para-

metrically smaller than Q.

At O(αs), the JADE algorithm corresponds to a cut

on the invariant masses Mij of each pair of partons: if

M
2
ij < jQ

2, the partons are considered to lie in the same

jet, and the event is a two-jet event. The constraints in

full QCD shown in Fig. 3(a) are

M
2
qg

Q2
=

p
+
3

Q − p
−
3

< j,
M

2
q̄g

Q2
=

p
−
3

Q
−

p
+
3 p

−
3

Q(Q − p
−
3 )

< j,

M
2
qq̄

Q2
=

Q − p
−
3 − p

+
3

Q
< j. (4)

Expanding these constraints in the n-collinear sector, we

find

M
2
qg

Q2
=

k
+
3

Q − p
−
3

< j,
M

2
q̄g

Q2
=

p
−
3

Q
< j,

M
2
qq̄

Q2
=

Q − p
−
3

Q
< j (5)

while in the soft sector we obtain

M
2
qg

Q2
=

k
+
3

Q
< j,

M
2
q̄g

Q2
=

k
−
3

Q
< j (6)

(while the constraint M
2
qq̄ < jQ

2 is never satisfied). Fi-

nally, in order to avoid double-counting of the soft sector,

the zero-bin of the collinear region must be subtracted

[18]. Taking the soft limit of the n-collinear region in

Eq. (5) gives the same region as the soft sector, Eq. (6).

The corresponding regions of phase-space are shown in

Fig. 4(a, b).

We note that, as required, the phase space contains

no explicit reference to any scales above the cutoff of the

theory and has no structure above this scale.

Similar constraints in the soft, collinear and zero-bin

sectors are easily obtained for the SW and k⊥ defini-

tions, and are summarized in Table I. Note that in both

SW and k⊥, the zero-bin region is not the same as the

soft region, since taking the soft limit of the n-collinear

phase space is not the same as taking the soft limit of

the full QCD phase space. The corresponding regions

are illustrated in Figs. 5 and 6.

Note that we have not had to specify the SCET expan-

sion parameter λ in order to expand the phase space in

the soft and collinear sectors; we have only assumed that

λ � 1 so that the multipole expansion is valid. Simi-

larly, we have not assumed any relative scaling between

β and δ in the SW jet definition.

III. DIJET RATES TO O(αs)

In this section we calculate the NLO dijet rate (denoted

f2) in the JADE, SW and k⊥ schemes in SCET, which

is straightforward to do given the phase space regions of

the previous section. We show that in each case SCET

reproduces full QCD, as it must. We examine the scales

that appear in the soft and collinear cross sections, where

the power counting parameter λ is determined by the

dynamics in each algorithm. It is instructive to note

the cancellation of ultraviolet divergences between the

soft and collinear real emission contributions. We also

consider the infrared safety of the soft and collinear rates

separately.

At O(αs) the only contribution to the dijet rate comes

from the two-jet SCET operator O2 = ξ̄nWnγµ
W

†
n̄ξn̄.

The matching calculation from the full QCD current

ψ̄γµψ onto O2 has been performed many times in the

literature [15, 19, 20], with the Wilson coefficient

C2 = 1+
αsCF

2π

�
−

1
2

ln2 µ
2

−Q2
−

3
2

ln
µ

2

−Q2
− 4 +

π2
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�

(7)

and the MS counterterm

Z2 = 1 +
αsCF

2π

�
1
�2

+
3
2�

+
1
�

ln
µ

2

−Q2

�
(8)

where we are working in d = 4 − 2� dimensions. The

SCET differential cross section for soft gluon emission is

3

FIG. 3: Three-body phase space for different jet definitions in QCD. The shaded region corresponds to the two jet region; the
unshaded region in the centre is the three-jet region.
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,
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. (3)

The final states with the smallest yij , given that it is less

than a resolution parameter yc, are combined according

to a combination prescription. This process is repeated

until all pairs have yij > yc. In Fig. 3 we illustrate

the two-jet regions in QCD as defined by the JADE, SW

and k⊥ algorithms. The SCET regime for the two-jet

cross section corresponds to choosing the parameters δ,

β, j or yc to be much less than one in the respective jet

definition.

For the two jet JADE cross section, for example, in-

tegrating k
+
3 in the soft sector all the way up to Q, as

in Fig. 3(a), corresponds to integrating the gluon mo-

mentum far above the cutoff. In the EFT, the upper

limit of integration should therefore be replaced by an

ultraviolet cutoff. Indeed, while the regions of integra-

tion for the various jet definitions are quite complicated,

as far as the soft gluon is concerned they should have

no structure above the soft scale. A similar situation

holds for collinear gluons, where the effective cutoffs in

the perpendicular and anti-collinear directions are para-

metrically smaller than Q.
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on the invariant masses Mij of each pair of partons: if

M
2
ij < jQ

2, the partons are considered to lie in the same

jet, and the event is a two-jet event. The constraints in

full QCD shown in Fig. 3(a) are
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Q
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find

M
2
qg

Q2
=

k
+
3

Q − p
−
3

< j,
M

2
q̄g

Q2
=

p
−
3

Q
< j,

M
2
qq̄

Q2
=

Q − p
−
3

Q
< j (5)

while in the soft sector we obtain

M
2
qg

Q2
=

k
+
3

Q
< j,

M
2
q̄g

Q2
=

k
−
3

Q
< j (6)

(while the constraint M
2
qq̄ < jQ

2 is never satisfied). Fi-

nally, in order to avoid double-counting of the soft sector,

the zero-bin of the collinear region must be subtracted

[18]. Taking the soft limit of the n-collinear region in

Eq. (5) gives the same region as the soft sector, Eq. (6).

The corresponding regions of phase-space are shown in

Fig. 4(a, b).

We note that, as required, the phase space contains

no explicit reference to any scales above the cutoff of the

theory and has no structure above this scale.

Similar constraints in the soft, collinear and zero-bin

sectors are easily obtained for the SW and k⊥ defini-

tions, and are summarized in Table I. Note that in both

SW and k⊥, the zero-bin region is not the same as the

soft region, since taking the soft limit of the n-collinear

phase space is not the same as taking the soft limit of

the full QCD phase space. The corresponding regions

are illustrated in Figs. 5 and 6.

Note that we have not had to specify the SCET expan-

sion parameter λ in order to expand the phase space in

the soft and collinear sectors; we have only assumed that

λ � 1 so that the multipole expansion is valid. Simi-

larly, we have not assumed any relative scaling between

β and δ in the SW jet definition.

III. DIJET RATES TO O(αs)

In this section we calculate the NLO dijet rate (denoted

f2) in the JADE, SW and k⊥ schemes in SCET, which

is straightforward to do given the phase space regions of

the previous section. We show that in each case SCET

reproduces full QCD, as it must. We examine the scales

that appear in the soft and collinear cross sections, where

the power counting parameter λ is determined by the

dynamics in each algorithm. It is instructive to note

the cancellation of ultraviolet divergences between the

soft and collinear real emission contributions. We also

consider the infrared safety of the soft and collinear rates

separately.
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W

†
n̄ξn̄.

The matching calculation from the full QCD current
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1
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and the MS counterterm
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�
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�
(8)

where we are working in d = 4 − 2� dimensions. The

SCET differential cross section for soft gluon emission is
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where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find
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where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is
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The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only

need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-

pression with a minus sign. This is a consequence of zero-

bin subtraction and the fact that zero-bins are identical

to the soft contribution. Similar observations have been

pointed out in [21–23]. The divergent terms in Eq. (15)

are cancelled by the counter term |Z2|2, and including
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This result agrees with the full QCD calculation given in

[24, 25].

It is instructive to comment on a few details of the

SCET result. First of all, since dimensional regular-

ization regulates both the infrared and ultraviolet di-

vergences, the cancellation of ultraviolet divergences be-

tween the soft and collinear emissions is not explicit. To

show how this works, we can repeat the calculation with
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2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.

The calculation is given in Appendix A. The resulting
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where the ellipses denote finite constant terms which are

not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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TABLE I: Two-jet regions of three-body phase space for JADE, Sterman-Weinberg (SW) and k⊥ jet algorithms.
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where σ0 = (4πα2/Q2)
�

f e2
f is the leading order

Born cross section with a sum over the (anti-)quark

charges ef . The dependence on �k⊥
3 and �p⊥

3 has been

eliminated via the gluon on-shell condition, and the in-

tegral over the 2 − 2� perpendicular components of the

gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin re-

gion, dσn0
, is obtained by taking the soft limit of

Eq. (10), which is the same as the soft rate,

dσn0 = dσs. (11)

(There are also zero-bin regions corresponding to the

quark and antiquarks becoming soft, but they are higher

order in λ and we will not consider them here.) For the
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The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-
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given by
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while for n-collinear gluon emission it is
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where σ0 = (4πα2/Q2)
�

f e2
f is the leading order

Born cross section with a sum over the (anti-)quark

charges ef . The dependence on �k⊥
3 and �p⊥

3 has been

eliminated via the gluon on-shell condition, and the in-

tegral over the 2 − 2� perpendicular components of the

gluon momentum has been performed in each case.

Finally, the differential rate in the gluon zero-bin re-

gion, dσn0
, is obtained by taking the soft limit of

Eq. (10), which is the same as the soft rate,

dσn0 = dσs. (11)

(There are also zero-bin regions corresponding to the

quark and antiquarks becoming soft, but they are higher

order in λ and we will not consider them here.) For the
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3 → 0 and

p−
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where we have taken j � 1 and kept only the lead-

ing terms in j. Integrating the n-collinear rate over the

region (5), we find
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where the tilde denotes that the zero-bin has not been

subtracted. The rate in the zero-bin region is identical

to that in the soft region, and so the zero-bin subtracted

result for the emission of an n-collinear gluon is

1
σ0

σn
JADE =

1
σ0

(σ̃n
JADE − σn0

JADE) =
1
σ0

(σ̃n
JADE − σs

JADE)

=
αsCF

2π

�
2
�2

+
3
2�

+
2
�

ln
µ2

jQ2
+

3
2

ln
µ2

jQ2

+ ln2 µ2

jQ2
−

π2

2
+

7
2

�
. (14)

The emission of a collinear gluon in the n̄ direction, i.e.

from the anti-quark, can be calculated in a similar way,

and it gives the same contribution.

In pure dimensional regularization, all the virtual ver-

tex corrections and the wavefunction renormalizations in-

volve scaleless integrals and thus vanish. Hence we only

jQ

Q

�
jQ

Combine the results - reproduce QCD result
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need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction

fJADE
2 =

|C2|2

|Z2|2

�
1 +

1
σ0

�
σn

JADE + σn̄
JADE + σs

JADE

��

= 1 +
αsCF

2π

�
−2 ln2 j − 3 ln j +

π2

3
− 1

�
.

(16)

This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by

1
σ0

�
σs

JADE + σs
V

�
=

αsCF

2π

�
−

2
�2

−
4
�

ln
µ

jQ

�
+. . . .

(23)

5

need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction

fJADE
2 =

|C2|2

|Z2|2
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1 +
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= 1 +
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This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by
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need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction
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�
1 +

1
σ0

�
σn

JADE + σn̄
JADE + σs

JADE

��

= 1 +
αsCF

2π

�
−2 ln2 j − 3 ln j +

π2

3
− 1

�
.

(16)

This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:

1
σ0

σR
JADE

=
αsCF

2π

�
2 ln

p2
1

Q2
ln

p2
2

Q2
+

3
2

ln
p2
1

Q2
+

3
2

ln
p2
2

Q2

�
+ . . . .

(21)

This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by
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need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction
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This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction
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This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by
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5

need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction

fJADE
2 =

|C2|2

|Z2|2

�
1 +

1
σ0

�
σn

JADE + σn̄
JADE + σs

JADE

��

= 1 +
αsCF

2π

�
−2 ln2 j − 3 ln j +

π2

3
− 1

�
.

(16)

This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by
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5

need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction

fJADE
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|Z2|2
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This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is

1
σ0

σn
JADE =

αsCF

2π

�
2
�

ln
p2
1

jQ2
− ln2 p2

1

Q2

+ 2 ln
µ2

Q2
ln

p2
1

Q2
+

3
2

ln
p2
1

Q2

�
+ . . . .

(20)

The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by
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5

need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction
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This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions
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The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by
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5

need to add up the real emission contributions:
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Note that the soft contribution enters into the final ex-
pression with a minus sign. This is a consequence of zero-
bin subtraction and the fact that zero-bins are identical
to the soft contribution. Similar observations have been
pointed out in [21–23]. The divergent terms in Eq. (15)
are cancelled by the counter term |Z2|2, and including
the Wilson coefficient, |C2|2, gives the two-jet fraction
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This result agrees with the full QCD calculation given in
[24, 25].

It is instructive to comment on a few details of the
SCET result. First of all, since dimensional regular-
ization regulates both the infrared and ultraviolet di-
vergences, the cancellation of ultraviolet divergences be-
tween the soft and collinear emissions is not explicit. To
show how this works, we can repeat the calculation with
the quark and anti-quark offshell, p2

1, p2
2 ∼ λ2 �= 0, so

that all 1/� divergences in the calculation are ultraviolet.
The calculation is given in Appendix A. The resulting
rate for soft gluon emission over the JADE phase space
is
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where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted n-

collinear cross section is
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while the zero-bin region gives
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Thus, the zero-bin subtracted n-collinear cross section is
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The result for n̄-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replace-
ment p2

1 → p2
2. Note that the 1/�2 divergence from

collinear emission is removed by the zero-bin. Combin-
ing the real emission contributions to the JADE cross
section, Eq. (21), we see that while the phase-space inte-
grals for soft and collinear gluon emission are individually
ultraviolet divergent, with mixed ultraviolet infrared di-
vergent terms, the ultraviolet divergences cancel in the
sum:
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(21)

This is the same cancellation which occurs at the one-
loop level in SCET [1], in which separately ultraviolet
and infrared divergent terms cancel in the sum of the
soft and collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual
vertex correction is given by [20], and contributes equally
to the two-jet rate in all definitions

1
σ0

σs
V

=
αsCF

2π

�
−

2
�2

−
2
�

ln
�

−
µ2Q2

p2
1p2

2

�
− ln2

�
−

µ2Q2

p2
1p2

2

��

+ . . . . (22)

The soft wavefunction renormalization graphs are zero
and so the cross section in the soft sector is given by

1
σ0

�
σs

JADE + σs
V

�
=

αsCF

2π

�
−

2
�2

−
4
�

ln
µ

jQ

�
+. . . .

(23)
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not 
necessarily the same as soft

(2) UV divergences in soft and collinear phase space integrals 
cancel ... demonstrate with explicit IR regulator

UV divergences

UV divergences cancel in sum
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not 
necessarily the same as soft

(2) UV divergences in soft and collinear phase space integrals 
cancel ... demonstrate with explicit IR regulator

(3) the soft physics is more subtle than it appears ...
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Comments:

(1) zero-bin is non-trivial and required - phase space region is not 
necessarily the same as soft

(2) UV divergences in soft and collinear phase space integrals 
cancel ... demonstrate with explicit IR regulator

(3) the soft physics is more subtle than it appears ... it appears we 
can use the RGE to renormalize H, J, S at the appropriate scales 
and sum leading logs in the dijet rate ...

BUT this is known not to work for JADE!  there are leading log 
effects that are not captured by O(αs) calculation (“non-global logs”).  
Failure of factorization?  (presumably) - need to understand further!
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(a) (b) (c)

Other jet definitions (SW, kT) are similar, but each introduces a new 
twist:

SW:  phase space for zero bin is different from soft phase 
space

n-collinear soft zero-bin
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7

Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a
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Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a

βQ

δQ
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Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a
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Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a
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Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2
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+
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−
2π2

3
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(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π
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1
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+
3
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+
2
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ln
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+ 3 ln
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+ 2 ln2 µ
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3π2

4
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13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a

7

Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a

7

Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a

7

Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a
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Integrating the differential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
σ0

σs
SW

=
αsCF

2π

�
4
�

ln δ − 4 ln2 δ + 8 ln δ ln
µ

2βQ
−

π2

3

�
.

(28)

By introducing quark and anti-quark off-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution,

�
σs

SW + σs
V

�
/σ0, is infrared

finite, and the 1/� terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln δ in the 1/� term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
σ0

σ̃n
SW =

αsCF

2π

�
1
�

�
3
2

+ 2 ln 2β

�
+ 3 ln

µ

δQ

+2 ln 2β ln
µ

2

2βδ2Q2
+

13
2

−
2π2

3

�
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p

−
3 → 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1
σ0

σn0
SW =

αsCF

2π

�
−

1
�2

−
2
�

ln
µ

2βδQ

−2 ln2 µ

2βδQ
+

π2

12

�
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale in
the n-collinear zero-bin, βδQ, corresponds to the p⊥ of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, βQ. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the effective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
σ0

(σ̃n
SW − σn0

SW) =
αsCF

2π

�
1
�2

+
3
2�

+
2
�

ln
µ

δQ

+ 3 ln
µ

δQ
+ 2 ln2 µ

δQ
−

3π2

4
+

13
2

�

(31)

where the logarithms are now minimized at µ = δQ,
unlike in Eq. (29). The collinear scale, δQ, corresponds
to the p⊥ of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter β, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
βQ, where β � 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale βQ and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

f
SW
2 =

|C2|2

|Z2|2

�
1 +

2
σ0

(σ̃n
SW − σn0

SW) +
1
σ0

σs
SW

�

= 1 +
αsCF

π

�
−4 ln 2β ln δ − 3 ln δ −

π2

3
+

5
2

�

(32)

in agreement with the full QCD calculation [14].

2. k⊥

The k⊥ two-jet rate in SCET reveals a more subtle
cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that σs

k⊥
is not regulated in dimen-

sional regularization. Performing the k
+
3 integral first

over the q̄g jet region of phase space, we obtain a term
proportional to

dσs
k⊥

dk
−
3

∝

�
Q

2
yc − (k−

3 )2
�−�

� k
−
3

+ · · · , (33)

where the ellipses denote terms which are finite in d =
4 − 2� dimensions. This term causes the k

−
3 integration

to diverge at zero. A similar problem arises when inte-
grating over the soft region generated by the qg jet con-
straint. Despite this divergence, the total two-jet cross
section is finite in QCD and so must be finite in SCET.
The region that gives rise to this divergence is also in-
tegrated over in the zero-bin calculations and since the
soft and zero-bin integrands are the same the divergence
cancels in the difference. Integrating the soft differential
rate over the combined soft and zero-bin regions gives a

NB:  RGE won’t let us sum logs of delta in soft function!  need a new EFT in soft sector?
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kT:  soft and jet functions are separately IR divergent
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soft zero-bin has same asymptotic behaviour - 
divergence cancels between soft and (zero-bin) 
collinear - sum is FINITE
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finite result in d dimensions:

1
σ0

(σs
k⊥

− σn0
k⊥

− σn̄0
k⊥

)

=
αsCF

2π

�
2
�2

+
2
�

ln
µ2

ycQ2
+ ln2 µ2

ycQ2
−

π2

3

�

(34)

where we see the soft scale
√

ycQ appear as in Fig. 6.

We combine this with the rate to produce an n-collinear

gluon,

1
σ0

σ̃n
k⊥

=
αsCF

2π

�
1
�

�
3
2

+ ln yc

�
+ ln

µ2

ycQ2

�
3
2

+ ln yc

�

− 3 ln 2 −
π2

3
+

7
2

�
(35)

to obtain the total two-jet rate for emission of a real gluon

1
σ0

(σ̃n
k⊥

+ σ̃n̄
k⊥

+ σs
k⊥

− σn0
k⊥

− σn̄0
k⊥

)

=
αsCF

2π

�
2
�2

+
1
�

�
2 ln

µ2

Q2
+ 3

�
+ ln2 µ2

Q2

+ 3 ln
µ2

Q2
− ln2 yc − 3 ln yc − 6 ln 2 − π2 + 7

�

(36)

where again n and n̄ collinear gluon emission give the

same contribution and the virtual piece vanishes. In-

cluding the counter-term Z2 and the Wilson coefficient

C2, we reproduce the known NLO k⊥ result [25]

fk⊥
2

= 1 +
αsCF

2π

�
− ln2 yc − 3 ln yc − 6 ln 2 +

π2

6
− 1

�
.

(37)

This calculation re-emphasizes the importance of zero-

bin subtraction: without it, the evaluation of a finite

fk⊥
2 would not be possible. Since the soft and collinear

cross sections are not regulated in dimensional regular-

ization, it is useful to regulate the infrared and ultravio-

let divergences separately by taking the outgoing quark

and antiquark off-shell. The resulting rate for soft gluon

emission then becomes

1
σ0

σs
k⊥

=
αsCF

2π
ln2 p2

1p2
2

Q4 yc
+ . . . . (38)

Note that unlike the previous algorithms, the soft real

emission result is not ultraviolet divergent. Combining

this with the contribution from the soft virtual vertex

correction (22) gives
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=
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�
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+ 2 ln
p2
1p2

2

Q4
ln

µ2
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�

+ . . . . (39)

This shows explicitly that the rate in the soft sector is

not infrared safe.

The rate for n-collinear gluon emission and the zero-

bin are, respectively,
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+ . . .
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+ . . . . (40)

and their difference gives us the zero-bin subtracted re-

sult
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=
αsCF

2π
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− ln2 p2

1

yc Q2
+

3
2

ln
p2
1

yc Q2

�
+ . . . .

(41)

As with the soft sector, the phase-space integration for

the n-collinear real emission is ultraviolet finite but in-

frared divergent. Combining the real emission contribu-

tions to the k⊥ two-jet cross section, we find
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σR
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=
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+ σn̄
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+ . . . . (42)

The infrared divergences in Eq. (42) are completely can-

celled by the total virtual contribution σV given in

Eq. (A10). As expected, the virtual graphs convert the

infrared divergences in the real emission diagrams into ul-

traviolet ones. While SCET reproduces the known NLO

k⊥ result, the soft and collinear rates are not indepen-

dently infrared safe, indicating for the k⊥ phase space the

soft and collinear modes do not factorize in SCET using

dimensional regularization to regulate the ultraviolet.

IV. FACTORIZATION AND
SCHEME-DEPENDENCE

It is useful to examine the failure of SCET to factorize

the k⊥ rate into separately infrared safe soft and collinear

pieces, particularly given the fact that the regions of inte-

gration for the soft gluons are quite similar in the infrared

between k⊥ and JADE. Instead, the bad behaviour in

Eq. (33) comes from the region of large k+ and small k−

and vice-versa - a region which is infrared divergent, but

sensitive to the ultraviolet regulator. Since, as we have

8

finite result in d dimensions:
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where we see the soft scale
√

ycQ appear as in Fig. 6.

We combine this with the rate to produce an n-collinear

gluon,
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to obtain the total two-jet rate for emission of a real gluon
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(36)

where again n and n̄ collinear gluon emission give the

same contribution and the virtual piece vanishes. In-

cluding the counter-term Z2 and the Wilson coefficient

C2, we reproduce the known NLO k⊥ result [25]
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− 1

�
.

(37)

This calculation re-emphasizes the importance of zero-

bin subtraction: without it, the evaluation of a finite

fk⊥
2 would not be possible. Since the soft and collinear

cross sections are not regulated in dimensional regular-

ization, it is useful to regulate the infrared and ultravio-

let divergences separately by taking the outgoing quark

and antiquark off-shell. The resulting rate for soft gluon

emission then becomes
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ln2 p2
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2
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+ . . . . (38)

Note that unlike the previous algorithms, the soft real

emission result is not ultraviolet divergent. Combining

this with the contribution from the soft virtual vertex

correction (22) gives
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=
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This shows explicitly that the rate in the soft sector is

not infrared safe.

The rate for n-collinear gluon emission and the zero-

bin are, respectively,
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and their difference gives us the zero-bin subtracted re-

sult

1
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αsCF

2π

�
− ln2 p2

1

yc Q2
+

3
2

ln
p2
1

yc Q2

�
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(41)

As with the soft sector, the phase-space integration for

the n-collinear real emission is ultraviolet finite but in-

frared divergent. Combining the real emission contribu-

tions to the k⊥ two-jet cross section, we find

1
σ0

σR
k⊥

=
1
σ0

(σn
k⊥

+ σn̄
k⊥

+ σs
k⊥

)

=
αsCF

2π

�
3
2

�
ln
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1

Q2
+ ln

p2
2

Q2

�
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p2
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Q2
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+ . . . . (42)

The infrared divergences in Eq. (42) are completely can-

celled by the total virtual contribution σV given in

Eq. (A10). As expected, the virtual graphs convert the

infrared divergences in the real emission diagrams into ul-

traviolet ones. While SCET reproduces the known NLO

k⊥ result, the soft and collinear rates are not indepen-

dently infrared safe, indicating for the k⊥ phase space the

soft and collinear modes do not factorize in SCET using

dimensional regularization to regulate the ultraviolet.

IV. FACTORIZATION AND
SCHEME-DEPENDENCE

It is useful to examine the failure of SCET to factorize

the k⊥ rate into separately infrared safe soft and collinear

pieces, particularly given the fact that the regions of inte-

gration for the soft gluons are quite similar in the infrared

between k⊥ and JADE. Instead, the bad behaviour in

Eq. (33) comes from the region of large k+ and small k−

and vice-versa - a region which is infrared divergent, but

sensitive to the ultraviolet regulator. Since, as we have
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shown, the ultraviolet divergences in the phase space in-
tegrals cancel between the soft and collinear degrees of
freedom, this is an unphysical region, and so cancels from
the total rate. The same cancellation occurs at the one-
loop level, in which terms of order 1/�UV ln p2

i cancel
between soft and collinear graphs [1]. However, this un-
physical region can also be eliminated by defining the soft
function with a cutoff Λf . In particular, we show in this
section that while the k⊥ algorithm in dimensional reg-
ularization does not factorize in SCET into separate in-
frared safe contributions, regulating the ultraviolet with
a cutoff on the light-cone components of the gluon mo-
mentum,

|k+| < Λf , |k−| < Λf (43)

results in an infrared safe soft function.
Integrating the soft rate over the relevant region for

k⊥, including the cutoff (43), and continuing to work in
d dimensions to regulate the infrared, we find for real
soft gluon emission

1
σ0

σs
k⊥

=
αsCF

2π

�
2
�2

+
2
�

ln
µ2

Λ2
f

− ln2 ycQ2

Λ2
f

+ ln2 µ2

Λ2
f

−
π2

3

�

(44)

Similarly, the same regulator for soft real gluon emis-
sion in the JADE algorithm gives

1
σ0

σs
JADE =

αsCF

2π

�
2
�2

+
2
�

ln
µ2

Λ2
f

−
1
2

ln2 j2Q2

Λ2
f

+ ln2 µ2

Λ2
f

−
π2

6

�

(45)

Note that with a cutoff, the 1/�2 and Sudakov double
logs ln2 j and ln2 yc are entirely contained within the
soft function, as opposed to pure dimensional regulariza-
tion, in which the collinear graphs also contain double
logs. This is in agreement with [25, 26], where the Su-
dakov logs are calculated entirely from the soft graphs.

The soft virtual vertex correction with a cutoff of Λf

in |k+| and |k−| gives a modified vertex correction

σs
V =

αsCF

2π

�
−

2
�2

−
2
�

ln
µ2

Λ2
f

− ln2 µ2

Λ2
f

+
π2

6

�

(46)
giving the finite results

1
σ0

�
σs

k⊥
+ σs

V

�
= −

αsCF

2π

�
ln2 ycQ2

Λ2
f

+
π2

6

�
.

1
σ0

�
σs

JADE + σs
V

�
= −

αsCF

4π
ln2 j2Q2

Λ2
f

. (47)

Note that the infrared divergences cancel between the
real and virtual graphs, and that there are no large logs
in the soft function for Λf of order the relevant soft scale,
jQ or √

ycQ.
These results demonstrate the fact that factorization

of rates in SCET into soft and collinear components is
scheme-dependent. Such dependence on infrared regu-
lators was also noted in a different context in [11] and
[28]. Using the method introduced in [11] to test infrared
safety at one loop, one would conclude that the soft con-
tribution to the k⊥ rate is infrared divergent. This differs
from our results, because, as we have shown, the infrared
safety of the soft function is ultraviolet regulator depen-
dent. Introducing a cutoff removes the unphysical region
of k± → 0 and k∓ → ∞ and results in an infrared
safe soft contribution to the two-jet k⊥ rate.3 The bad
behaviour of k⊥ in dimensional regularization in SCET
is therefore a feature of dimensional regularization, not
of SCET. The factorization for jet rates depends on the
ultraviolet regulator of the theory as well as the infrared.

V. CONCLUSION

We have presented a consistent treatment of phase-
space integrals over soft and collinear degrees of freedom
in SCET, illustrating this with the explicit example of the
NLO dijet rate for three different jet algorithms. In this
approach the phase space for different modes in the effec-
tive theory are insensitive to details above their cutoff,
giving real emission contributions with ultraviolet diver-
gences which cancel between the collinear and soft sec-
tors. Although the leading order SCET Lagrangian sep-
arates soft and collinear modes and the differential cross
section has been shown to factorize, we demonstrated
that using dimensional regularization the k⊥ algorithm
does not factorize into infrared safe soft and collinear
rates. We showed that this is related to a divergence
in an unphysical region which cancels between the soft
and collinear sectors, and is sensitive to the ultraviolet
regulator.

Zero-bin subtraction is necessary to consistently inte-
grate over the phase space configurations that need to
be considered in a given jet algorithm. The zero-bin sub-
traction was shown to entirely remove regions of the näıve
collinear rate where n and n̄ collinear degrees of free-
dom form a jet at NLO in the JADE algorithm and for
collinear partons outside the cone in SW. The k⊥ and
SW dijet rates provide nontrivial examples of zero-bin
subtraction, which are different from the soft contribu-
tion.

We have not attempted to sum logarithms of the small

3 Similarly, the NLO soft function for angularities, τa , for 1 <
a < 2 integrated over τa between 0 and 1 can be shown to be

infrared finite if defined with an ultraviolet cutoff.
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shown, the ultraviolet divergences in the phase space in-
tegrals cancel between the soft and collinear degrees of
freedom, this is an unphysical region, and so cancels from
the total rate. The same cancellation occurs at the one-
loop level, in which terms of order 1/�UV ln p2

i cancel
between soft and collinear graphs [1]. However, this un-
physical region can also be eliminated by defining the soft
function with a cutoff Λf . In particular, we show in this
section that while the k⊥ algorithm in dimensional reg-
ularization does not factorize in SCET into separate in-
frared safe contributions, regulating the ultraviolet with
a cutoff on the light-cone components of the gluon mo-
mentum,

|k+| < Λf , |k−| < Λf (43)

results in an infrared safe soft function.
Integrating the soft rate over the relevant region for

k⊥, including the cutoff (43), and continuing to work in
d dimensions to regulate the infrared, we find for real
soft gluon emission
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Similarly, the same regulator for soft real gluon emis-
sion in the JADE algorithm gives
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Note that with a cutoff, the 1/�2 and Sudakov double
logs ln2 j and ln2 yc are entirely contained within the
soft function, as opposed to pure dimensional regulariza-
tion, in which the collinear graphs also contain double
logs. This is in agreement with [25, 26], where the Su-
dakov logs are calculated entirely from the soft graphs.

The soft virtual vertex correction with a cutoff of Λf

in |k+| and |k−| gives a modified vertex correction
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giving the finite results
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Note that the infrared divergences cancel between the
real and virtual graphs, and that there are no large logs
in the soft function for Λf of order the relevant soft scale,
jQ or √

ycQ.
These results demonstrate the fact that factorization

of rates in SCET into soft and collinear components is
scheme-dependent. Such dependence on infrared regu-
lators was also noted in a different context in [11] and
[28]. Using the method introduced in [11] to test infrared
safety at one loop, one would conclude that the soft con-
tribution to the k⊥ rate is infrared divergent. This differs
from our results, because, as we have shown, the infrared
safety of the soft function is ultraviolet regulator depen-
dent. Introducing a cutoff removes the unphysical region
of k± → 0 and k∓ → ∞ and results in an infrared
safe soft contribution to the two-jet k⊥ rate.3 The bad
behaviour of k⊥ in dimensional regularization in SCET
is therefore a feature of dimensional regularization, not
of SCET. The factorization for jet rates depends on the
ultraviolet regulator of the theory as well as the infrared.

V. CONCLUSION

We have presented a consistent treatment of phase-
space integrals over soft and collinear degrees of freedom
in SCET, illustrating this with the explicit example of the
NLO dijet rate for three different jet algorithms. In this
approach the phase space for different modes in the effec-
tive theory are insensitive to details above their cutoff,
giving real emission contributions with ultraviolet diver-
gences which cancel between the collinear and soft sec-
tors. Although the leading order SCET Lagrangian sep-
arates soft and collinear modes and the differential cross
section has been shown to factorize, we demonstrated
that using dimensional regularization the k⊥ algorithm
does not factorize into infrared safe soft and collinear
rates. We showed that this is related to a divergence
in an unphysical region which cancels between the soft
and collinear sectors, and is sensitive to the ultraviolet
regulator.

Zero-bin subtraction is necessary to consistently inte-
grate over the phase space configurations that need to
be considered in a given jet algorithm. The zero-bin sub-
traction was shown to entirely remove regions of the näıve
collinear rate where n and n̄ collinear degrees of free-
dom form a jet at NLO in the JADE algorithm and for
collinear partons outside the cone in SW. The k⊥ and
SW dijet rates provide nontrivial examples of zero-bin
subtraction, which are different from the soft contribu-
tion.

We have not attempted to sum logarithms of the small

3 Similarly, the NLO soft function for angularities, τa , for 1 <
a < 2 integrated over τa between 0 and 1 can be shown to be

infrared finite if defined with an ultraviolet cutoff.
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shown, the ultraviolet divergences in the phase space in-
tegrals cancel between the soft and collinear degrees of
freedom, this is an unphysical region, and so cancels from
the total rate. The same cancellation occurs at the one-
loop level, in which terms of order 1/�UV ln p2

i cancel
between soft and collinear graphs [1]. However, this un-
physical region can also be eliminated by defining the soft
function with a cutoff Λf . In particular, we show in this
section that while the k⊥ algorithm in dimensional reg-
ularization does not factorize in SCET into separate in-
frared safe contributions, regulating the ultraviolet with
a cutoff on the light-cone components of the gluon mo-
mentum,

|k+| < Λf , |k−| < Λf (43)

results in an infrared safe soft function.
Integrating the soft rate over the relevant region for

k⊥, including the cutoff (43), and continuing to work in
d dimensions to regulate the infrared, we find for real
soft gluon emission
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Similarly, the same regulator for soft real gluon emis-
sion in the JADE algorithm gives
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Note that with a cutoff, the 1/�2 and Sudakov double
logs ln2 j and ln2 yc are entirely contained within the
soft function, as opposed to pure dimensional regulariza-
tion, in which the collinear graphs also contain double
logs. This is in agreement with [25, 26], where the Su-
dakov logs are calculated entirely from the soft graphs.

The soft virtual vertex correction with a cutoff of Λf

in |k+| and |k−| gives a modified vertex correction
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giving the finite results
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Note that the infrared divergences cancel between the
real and virtual graphs, and that there are no large logs
in the soft function for Λf of order the relevant soft scale,
jQ or √

ycQ.
These results demonstrate the fact that factorization

of rates in SCET into soft and collinear components is
scheme-dependent. Such dependence on infrared regu-
lators was also noted in a different context in [11] and
[28]. Using the method introduced in [11] to test infrared
safety at one loop, one would conclude that the soft con-
tribution to the k⊥ rate is infrared divergent. This differs
from our results, because, as we have shown, the infrared
safety of the soft function is ultraviolet regulator depen-
dent. Introducing a cutoff removes the unphysical region
of k± → 0 and k∓ → ∞ and results in an infrared
safe soft contribution to the two-jet k⊥ rate.3 The bad
behaviour of k⊥ in dimensional regularization in SCET
is therefore a feature of dimensional regularization, not
of SCET. The factorization for jet rates depends on the
ultraviolet regulator of the theory as well as the infrared.

V. CONCLUSION

We have presented a consistent treatment of phase-
space integrals over soft and collinear degrees of freedom
in SCET, illustrating this with the explicit example of the
NLO dijet rate for three different jet algorithms. In this
approach the phase space for different modes in the effec-
tive theory are insensitive to details above their cutoff,
giving real emission contributions with ultraviolet diver-
gences which cancel between the collinear and soft sec-
tors. Although the leading order SCET Lagrangian sep-
arates soft and collinear modes and the differential cross
section has been shown to factorize, we demonstrated
that using dimensional regularization the k⊥ algorithm
does not factorize into infrared safe soft and collinear
rates. We showed that this is related to a divergence
in an unphysical region which cancels between the soft
and collinear sectors, and is sensitive to the ultraviolet
regulator.

Zero-bin subtraction is necessary to consistently inte-
grate over the phase space configurations that need to
be considered in a given jet algorithm. The zero-bin sub-
traction was shown to entirely remove regions of the näıve
collinear rate where n and n̄ collinear degrees of free-
dom form a jet at NLO in the JADE algorithm and for
collinear partons outside the cone in SW. The k⊥ and
SW dijet rates provide nontrivial examples of zero-bin
subtraction, which are different from the soft contribu-
tion.

We have not attempted to sum logarithms of the small

3 Similarly, the NLO soft function for angularities, τa , for 1 <
a < 2 integrated over τa between 0 and 1 can be shown to be

infrared finite if defined with an ultraviolet cutoff.
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Λf

Λf

not necessarily ... the cancellation occurs between unphysical (arbitrarily high 
momentum) degrees of freedom in soft and collinear - is this an artifact of the UV 
regulator?  (dim. reg.)

Introduce UV cutoff in +/- directions

so the form of factorization is UV-regulator dependent

jet and soft functions can’t be separately defined for kT ... failure of 
factorization?
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The story thus far ...

- we have demonstrated consistent power counting for phase 
space integrals in SCET - nontrivial zero bins, cancellations of 
UV divergences between soft and collinear sectors

- soft logs don’t resum at this stage - failure of factorization?  
presence of additional soft scales? - “non-global” logs 
(Dasgupta & Salam):  can we get a handle on these in EFT?

- kT may factorize, but appears dependent on UV regulator

To go further, we need to understand factorization theorems for jet 
rates (in progress ...)
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(Lee, Sterman; Lee, Hornig, Ovanesyan;
Ellis, Vermilion, Walsh, Hornig, Lee)Event Shapes in Jet production:

- probing structure of jets provides a powerful tool to distinguish light parton 
jets to those produced by heavy particle decays

- define event shape parameters which can probe structure of jets, calculable 
in QCD

τaQ

τ
1

2−a
a Q

a = 0 : “Thrust”
a = 1: “jet broadening”

Q
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Angularity Distributions in SCET Christopher Lee
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Figure 1: Angularity distributions for−2 < a < 1
2 at Q = 100 GeV, with O(αs) hard, jet, and soft functions,

NLL resummation, and gapped model soft function.
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Figure 2: Correlated variation of jet and soft scales µJ and µS together by factors of 1/2 and 2 in angularity
distributions at Q = 100 GeV for a =−1, a = 0, and a = 1

2 .

7. Conclusion

We have predicted angularity distributions resummed in perturbation theory to NLL accuracy,
including for the first time the jet and soft functions in the factorization theorem to NLO, and a
universal model for the nonperturbative soft function. We used the framework of SCET to perform
the factorization, resummation, and incorporation of the nonperturbative model in a unified way.
Comparison to data from LEP or a future linear collider will test the robustness of the model
we employed for the nonperturbative soft function. Extension of the notion of event shapes to
individual “jet shapes” can also allow the probing of jet substructure in hadron collisions [22, 23].

This work was supported in part by the U.S. Department of Energy under Contract DE-AC02-
05CH11231 and the National Science Foundation under grant PHY-0457315.
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(Lee, Sterman; Lee, Hornig, Ovanesyan;
Ellis, Vermilion, Walsh, Hornig, Lee)Event Shapes in Jet production:

a = 0 : “Thrust”
a = 1: “jet broadening”

Ellis, Vermilion, Walsh, Hornig, Lee (arXiv:1001.0014) have 
recently generalized this analysis to multijet final states:  
defined distributions for shapes of individual jets in various 
schemes, proved factorization (nontrivial!) for jet shape 
distributions and demonstrated renormalization group 
running - still have an issue with “non-global” logs

scales:  jet energies, cut on angular size of each jet, 
measured values of jet shapes, other parameters introduced 
by jet algorithm - difficult to do in traditional QCD approach
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LHC and hadron colliders:  life is complicated by nontrivial 
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final 
states ... less inclusive states introduce anything from large logs 
(resummation required) to new NP information.  SCET is being 
used to study these more complex factorization theorems.

(Stewart, Tackman, Wallewijn, arXiv:0910:0467)
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LHC and hadron colliders:  life is complicated by nontrivial 
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final 
states ... less inclusive states introduce anything from large logs 
(resummation required) to new NP information.  SCET is being 
used to study these more complex factorization theorems.

ex:  Drell-Yan

X

!+
X

!−

Pa Pb

a) fully inclusive:  parton 
model holds

(Stewart, Tackman, Wallewijn, arXiv:0910:0467)
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LHC and hadron colliders:  life is complicated by nontrivial 
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final 
states ... less inclusive states introduce anything from large logs 
(resummation required) to new NP information.  SCET is being 
used to study these more complex factorization theorems.

ex:  Drell-Yan

Soft

Soft

!−

!+

Pa Pb

b) threshold:  new soft 
function required

(Stewart, Tackman, Wallewijn, arXiv:0910:0467)
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LHC and hadron colliders:  life is complicated by nontrivial 
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final 
states ... less inclusive states introduce anything from large logs 
(resummation required) to new NP information.  SCET is being 
used to study these more complex factorization theorems.

ex:  Drell-Yan

!−

Soft

Soft

!+

Pa Pb

Jet b Jet a

c) veto on hard central 
jets:  new “beam 
function” required

(Stewart, Tackman, Wallewijn, arXiv:0910:0467)
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LHC and hadron colliders:  life is complicated by nontrivial 
initial state - incoming collinear fields in SCET

The parton model is only strictly applicable for fully inclusive final 
states ... less inclusive states introduce anything from large logs 
(resummation required) to new NP information.  SCET is being 
used to study these more complex factorization theorems.

ex:  dijet production - a similar story is conjectured

Jet 2

Soft

Soft

Jet 1

Pa Pb

Jet b Jet a

Jet 2 Soft

Soft Jet 1

Pa Pb

d) as (b), with leptons 
replaced by jets

e) as (c), with leptons 
replaced by jets

(Stewart, Tackman, Wallewijn, arXiv:0910:0467)
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-

• electroweak processes & gauge boson production (Manohar, Kelley, Chiu, 
Fuhrer, Hoang)

• hard photon production in hadronic collisions (Becher, Schwartz)

• Higgs transverse momentum distribution (Mantry, Petriello)

• Drell-Yan (Neubert, Becher)

• t-t production - soft radiation and precision extraction of the top 
quark mass (Fleming, Hoang, Mantry, Stewart)

There have been many other recent applications of SCET to collider 
physics ... for example:

and lots more ...
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Summary:

Effective Field Theory provides a powerful new tool to study 
traditional pQCD problems, with distinct advantages over 
traditional pQCD methods.

We are working on understanding factorization and jet 
algorithms in this framework.

Lots of interesting work being done!
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