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0.1 Introduction

The Mott Problem was first set out in a 1929 paper by Sir Neville Mott [3],
and is still highly relevant to modern interpretations of quantum mechanics.
The problem was originally formulated in terms of a radioactive nucleus in a
Wilson cloud chamber. The radioactive decay process is represented as an α
particle slowly leaking out of the nucleus, where the α wavefunction is spherical.
Experimentally we observe that the α produces a straight track of ionized atoms
in the cloud chamber. So: how does a spherical wavefunction lead to a straight
track?

Mott’s original paper focuses on a couple particular aspects of the issue:
namely, what exactly constitutes the quantum system under consideration, and
when exactly is an observation made? The paper then proceeds to go through
how the wave mechanics actually do predict the emergence of a linear track, in
a ”shut-up-and-calculate” spirit. Various subsequent papers by various authors
set out extensions to the original problem, and use such extensions to probe
other questions in quantum foundations.

Some key issues we can probe via the Mott Problem and its extensions:

• Emergence of classical trajectories, which are radial. The problem
is much more general than a radioactive atom in such a chamber. It’s
great to work out (as in Mott’s original paper) the details of the α+gas
system, but we could just as easily have an [other s-wave particle]+[other
particle detector]+[other surrounding environment] system where radial
trajectories would still be found.

• QM → classical statmech. In general, what’s going on at this limit?

• Emergence of time, causality, and the choice of only outgoing
solutions. We have a timeless formalism:

Hψ(x) = ωψ(x)

H =
−1

2Mr2

∂

∂r
r2 ∂

∂r
+

L2

2Mr2
+W (r)

And yet, time is clearly necessary to describe classical radial motion. Is
time something we have to just “add in” by hand, or is time somehow
emergent? Furthermore, how does time end up with an “arrow”, with
only outgoing particle solutions (not incoming particle solutions) being
“chosen”?

• What constitutes a measurement, and what constitutes a mea-
suring apparatus. It’s obvious that the ionization of an atom constitutes
a measurement, but what about the failure of an atom to be ionized? In
general, what if a null result provides some new knowledge that affects
the probability distribution corresponding to an observable of the parti-
cle? (This would seem to imply a change to the particle’s wavefunction,
without any apparent interaction.)
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This talk will examine how all of these questions can be addressed – some in
the original Mott formulation, and some in view of key modern concepts in
quantum foundations. The resulting discussions enter a wide range of fields,
from statistical mechanics to quantum cosmology.

0.2 Original Formulation

• Naive intuition: because of the spherical wavefunction, the α should ion-
ize atoms in a spherically symmetric random distribution throughout the
space of the cloud chamber. Clearly wrong... but why?

• Naive explanation: the spherical wavefunction is just for predicting the
probability of disintegration; the α has wave-like properties only while it is
still in the nucleus. As soon as the particle leaves the nucleus, an observa-
tion is made, via interaction with the gas of the cloud chamber. Then the
α takes on particle-like properties, i.e. it should be represented by a wave
packet moving in a definite direction, so as to produce the straight track.
This assumes that the α alone constitutes the entire quantum system un-
der consideration, such that the gas constitutes a measurement apparatus
external to the system.

• Rebuttal of the naive explanation: Actually, we must consider the α and
the gas all together as one system. “... Then it is ionized atoms we observe;
interpreting the wavefunction should give us simply the probability that
such and such an atom is ionized. Until this final interpretation is made,
no mention should be made of the α-ray being a particle at all. The
difficulty that we have in picturing how it is that a spherical wave can
produce a straight track arises from our tendency to picture the wave as
existing in ordinary 3-dimensional space, whereas we are really dealing
with wavefunctions in the multispace formed by the co-ordinates both of
the α-particle and of every atom in the Wilson chamber.” [3]

• Better explanation: When we properly consider the entire system and
crunch through the calculations, we find that the probability of any two
atoms both being ionized is essentially zero unless they form a straight
line with the nucleus. So overall, we end up with a linear track. But any
direction for the linear track is equally probable (hence the role of the
spherical symmetry.)

The procedure for the calculations in Mott’s paper:

• Consider spherical coordinates, with the radioactive nucleus at the origin,
one hydrogen atom at position ~a1, and the other at ~a2 (with a2 > a1.

Construct a periodic wavefunction Ψ(~R, ~r1, ~r2)eiEt/h̄ for the α and the
two atomic electrons, all together. Also construct a wavefunction for each
of the two hydrogen atoms, yielding Φ1

J(~r) and Φ2
J(~r) where the subscript

J indicates the state of the atom (ground or excited).
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• Expand Ψ in a series of wavefunctions of Φ1 and Φ2:

Ψ(~R, ~r1, ~r2) =
∑
J1J2

fJ1J2(~R)Φ1
J1(~r1)Φ2

J2(~r2)

so that |fJ1J2(~R)|2dV is the probability of finding the α in the volume
element dV at the same time as the first atom is in the state J1 and the
second is in J2.

• Treat the interaction of the atoms and the α as a perturbation, and employ
a Born-style method of successive approximations:

Ψ = Ψ(0) + Ψ(1) + Ψ(2) + ...

• Non-zero possibility of both atoms being excited doesn’t show up in the
expansion until Ψ(2). Solving for this term, we obtain a term we’ll call
ϕ(~r) (the term from Ψ(1) corresponding to one atom excited and one in
ground state) multiplied by a term we’ll call ξ(~r − ~a2). The ϕ(~r) term
vanishes except in the neighbourhood of a narrow cone with its vertex at
~a1, pointed directly away from the origin. The ξ(~r − ~a2) vanishes except
in the neighbourhood of ~a2. To have a significantly non-zero probability
of both atoms being excited, there must exist some ~r that lies near ~a2 and
that lies in the narrow cone. This is only possible if the origin, ~a1 and ~a2

form a straight line. Hence, the radial track of excited atoms.

0.3 A Modern View: Decoherence

Here it is useful to employ density matrices ρ rather than wavefunctions Ψ.
To compute the mean value of some observable O for a quantum system with
density matrix ρ, we use

〈O〉ρ = Tr(ρO).

The off-diagonal terms of ρ represent quantum interference terms. If these
terms go to 0, calculations of quantum-mechanical probabilities (via amplitudes
and norms) reduce to classical-style calculations where probabilities can simply
be added together. In decoherence, ρ becomes diagonalized so that quantum-
mechanical predictions go over to classical statmech predictions.

In the Lippmann-Schwinger basis {|ω+〉}, we can diagonalize the Hamilto-
nian as

H =

∫ 0

∞
ω|ω+〉〈ω + |dω.

We can express any observable O as

O =

∫ 0

∞
Oω|ω+〉〈ω + |dω +

∫ 0

∞

∫ 0

∞
Oωω′ |ω+〉〈ω′ + |dωdω′

where the functions Oω, Oωω′ are regular, and O ∈ O ⊂ H⊕ (H⊗H).
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We can now consider 〈O〉ρ as a linear functional ρ on the vectors O, where
ρ ∈ O′. The basis of O is {|ω), |ω, ω′)} where

|ω) = |ω+〉〈ω + |, |ω, ω′) = |ω+〉〈ω′ + |.

The basis of O′ is {(ω|, (ω, ω′|}. We have

(ω|ω′) = δ(ω − ω′)

and
(ω, ω′|ω′, ω′′′) = δ(ω − ω′)δ(ω′′ − ω′′′).

A generic quantum state now reads

ρ =

∫ 0

∞
ρω(ω|dω +

∫ 0

∞

∫ 0

∞
ρωω′(ω, ω′|dωdω′ (1)

or, with time evolution (more on the time situation later):

ρ(t) =

∫ 0

∞
ρω(ω|dω +

∫ 0

∞

∫ 0

∞
ρωω′ei(ω−ω

′t)(ω, ω′|dωdω′. (2)

When we consider the mean values of observables in quantum states, we
obtain:

〈O〉ρ(t) = (ρ(t)|O)

=

∫ 0

∞
ρωQωdω +

∫ 0

∞

∫ 0

∞
ρωω′Oωω′e−i(ω−ω

′t)dωdω′

(3)

It turns out [1] that, where ρ′ is a diagonal equilibrium state ρ′ =
∫∞

0
ρω(ω|dω:

lim
t→∞
〈O〉ρ(t) = 〈O〉ρ′

The off-diagonal terms here don’t vanish, they just oscillate such that the mean
value of any observable is the same as it would be if the terms were zero. This
reads as, “any quantum state goes to an equilibrium diagonal state weakly, if
we observe and measure the system evolution with any possible observation
of space” [1], and it can be considered as decoherence in energy. Note, we
are focusing on 〈O〉ρ(t), i.e. on the mean value of an observable, because we
are trying to bring QM to classical statmech (where the mean values are what
really matters). We’re not trying to bring QM to classical mechanics of a single
particle here.

The above applies only to energy – what about the other dynamical vari-
ables? It turns out, it is possible to define a basis, called the final pointer basis,
where the off-diagonal terms for the other dynamical variables all vanish for
t→∞. Then there is a “perfect and complete decoherence”. For a system with
spherical symmetry such as in the Mott Problem, the complete set of commut-
ing observables corresponding to the final pointer basis is simply {H,L2, Lz}.
(The hand-waving explanation for this is, the spherical symmetry requires the
CSCO to contain the generator of angular rotation.) So, the final pointer basis
is just the familiar {|ω, l,m〉}.
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0.4 A Modern View: h̄→ 0

In classical mechanics, position and momentum are of course treated as indepen-
dent dynamical variables. At so-called macroscopic scales, we can under certain
circumstances make the approximation h̄→ 0, allowing for this independence.

Applying this approximation, we can then find the “Wigner function” (or
Wigner quasi-probability distribution) of ρ′. Essentially, there is a map between
Hermitian operators and real phase-space function, by which a quantum density
matrix maps to a Wigner quasi-probability distribution. The Wigner P (x, p)
for wavefunction ψ and a pair of conjugate variables (x, p) is defined as:

P (x, p) =
1

πh̄

∫ ∞
−∞

ψ∗(x+ y)ψ(x− y)e2ipy/h̄dy.

Technically, the Wigner is the generating function for all spatial autocorrelation
functions of a given QM wavefunction, and is the quantum moment-generating
functional forming the basis of the phase space formulation of QM. In plainer
language, it plays an analagous role to the classical phase-space Liouville den-
sity, but does not satisfy all properties of a conventional probability distribution.
For quantum states that have no classical model (i.e. where is quantum inter-
ference), the Wigner distribution generally goes negative. Compact regions of
negative value do not extend to regions larger than a few h̄, and the Wigner can
be smoothed through a filter larger than h̄, i.e. convolved with a phase-space
Gaussian, to make it positive-semidefinite and coarsen it to a semi-classical dis-
tribution. The point of all this is, where we have eliminated all the interference
in ρ′ and have taken h̄ to zero, the Wigner transform ρ′cl([x], [k]) of ρ′ can be
expressed as:

ρcl
′
([x], [k]) =

∫
plaρ

cl
la0([x], [k])dlda

where ρclla0([x], [k]) is a classical density, strongly peaked in a trajectory de-
fined by the initial coordinates a and momenta l, and pla is the probability
of each trajectory. For each of the classical motions, {H,L2, Lz} are perfectly
well-defined and are constants of the motion. The classical motions are func-
tions only of {H,L2, Lz}, not of their classically canonically conjugate variables
(which are completely undefined.) The motions homogeneously fill the “surface”
{H,L2, Lz} = const, yielding the usual classical torus of phase space.

Note that if we take the classical analogue of the Hamiltonian, we obtain:

H =
p2
r

2M
+

L2

2Mr2
+W (r)

In the limit r →∞, we can therefore consider L2 = 0. So, classical motions far
from the nucleus are indeed radial.

0.5 Time and Causality

Remember we simply jumped from Eqn 1 to Eqn 2 (first we had a timeless
general expression for a quantum state, and then we stated an expression with
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time evolution)? How did the time get in there? Well, we can postulate that
there is a symmetry in the system, with a symmetry group e−iHt. Essentially,
we add time in by hand, not because anything in the preceding math suggests
we should do so, but simply because we know time is needed eventually. In
fancier language, it’s “a global fact imposed by the structure of the universe
where we suppose the model is immersed” [1].

Dissatisfied? Then, we can take an alternative view, by turning the tradi-
tional concept of time completely on its head. In our previous considerations,
we first postulated the existence of time, and then the time evolution served as
the origin of the decoherence in energy. And, in the decoherence of the other
variables, the preservation of spherical symmetry by the time evolution was
implied. But, what if we go the other way around? Namely, postulate deco-
herence first, by stating that there must exist “some kind of evolution with a
final diagonal state that corresponds to the fact that the universe really ends
in a classical state... the quantum physics of the universe is such that it has a
tendency toward the classical regime (decoherence + elimination of the uncer-
tainty relations). This tendency would be the primitive concept in this case and
time would be a derived concept” [1]. In technical language, we can postulate
the existence of a parameter η such that |η〉 = e−iHt|0〉. This parameter would
then decohere to become a classical one that plays the role of time. Classical
time in the Mott Problem would simply be the variable t for which, over the
classical trajectory labelled by ω and l,

M
dr

dt
=

√
2M

[
ω − l(l + 1)

2Mr2
−W (r)

]
.

A related issue is that of causality. In the Mott formulation, why do we
accept only outgoing-particle solutions, and not incoming-particle solutions?
More generally, why is the universe apparently time-asymmetric even though
its evolution laws are time-symmetric? Or, while the laws of physics yield two
t-symmetric solutions to a given problem, why does the universe correspond
to only one of these solutions? In more poetic terms, why does time have an
arrow? Comments that are frequently made regarding the arrow of time in QM
include:

• Outgoing scattering states behave spontaneously; incoming scattering states
must be produced by a source of energy. In the case of a nucleus, incoming
states transform the stable nucleus into an unstable one, while outgoing
states radiate the energy produced when the unstable nucleus evolves to
an equilibrium state.

• The space of admissible solutions in QM is not the whole Hilbert space,
but a subspace of it. We can relate causality to the analytic properties
of wavefunctions: promoting energy ω to a complex variable z, admissible
solutions can be defined as those that are analytic and bounded in the
lower complex half-plane of z rather than in the upper complex half-plane.
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• The choice to keep one solution and throw away the other must be global
(i.e. must be consistently carried out in the whole universe.)

0.6 What Constitutes a Measurement?

Instead of putting the radioactive atom in an old-fashioned cloud chamber, we
could put a hemispherical particle detector in the vicinity of the atom (say,
above the atom). Obviously, if the detector fires, we gain information about the
path of the α (i.e. the atom travelled upward not downward), and ψα changes
to take into account this new information. We can say that ψα was altered
because of the interaction with the detector. But, if the detector fails to fire,
we also gain information about the path – we know the α did not go upward
(assuming perfect detector efficiency) or is very unlikely to have gone upward
(assuming a slightly imperfect detector). So, a “null result” can still constitute
a measurement! Just because the detector did not fire, does not mean the α
did not “perceive” the detector’s presence. This may remind you of the idea of
a quantum particle probing all possible paths simultaneously.

An interesting modern thought experiment [2] involved an ion in a uniform
magnetic field, trapped in a quadratic electrostatic potential such that it oscil-
lates along the magnetic axis with a given frequency. An intense pulse of ener-
getic photons then illuminates part of the trap, such that

∫
illuminatedarea

|ψ|2 =
0.5. If the ion is found inside the illuminated area, it is multiply ionized and
hence destroyed, yielding photoelectrons that we detect. If the photoelectrons
are not detected, the ion survives, and is presumably located outside the il-
luminated area. So, the failure to detect photoelectrons alters ψ such that∫
illuminatedarea

|ψ|2 = 0. But now, with this altered ψ, the expectation value of
the energy is higher! So, an energy change of the particle apparently occurred
without any obvious interaction with the illuminating radiation.

One interpretation is that “the apparent lack of interaction between the
atom and the EM field is only illusionary. In lowest order the perturbation
calculation shows that the change in the atomic center-of-mass wave function
is associated with the absorption of a photon from the incident wave packet
and the subsequent return of the photon to the packet. If the absorbed photon
could have been assumed to have had a well-defined momentum and energy...
this type of photon absorption and re-emission would not result in the transfer
of either momentum or energy to the atom. But... the observation requires
the photons to be initially in a state for which neither the momentum nor the
energy of the photon is well defined. Consequently, the photon exchange can
result in a momentum or energy transfer.” [2]

0.7 Applicability to Quantum Cosmology

Regarding the questions raised by the Mott Problem: “At this stage we must
observe that this set of problems is very similar to those of quantum cosmol-
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ogy, where, in fact, we must explain the outcome of the classical regime, the
appearance of time, the nature of the classical trajectories in superspace, and
the direction of the corresponding motion, i.e., the arrow of time. Then several
of the most important quantum universe problems... are already contained in
our humble Mott model.” [1]

Note, in particular, that when we are considering quantum cosmology we
cannot treat time as “a global fact imposed by the structure of the universe
where we suppose the model is immersed”. The model isn’t immersed in any-
thing; the model is the entire universe! So, we cannot just add time in by hand
– the alternative views of time become very important.
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