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We studied the drag and lift forces acting on an inclined plate while it is dragged on the surface
of a granular media, both in experiment and numerical simulation. In particular, we investigated
the influence of the horizontal velocity of the plate and its angle of attack. We show that a steady
wedge of grains is moved in front of the plow and that the lift and drag forces are proportional to
the weight of this wedge. These constants of proportionality vary with the angle of attack but not
(or only weakly) on the velocity. We found a universal effective friction law which accounts for the
dependence on all the above-mentioned parameters. The stress and velocity fields are calculated
from the numerical simulations and show the existence of a shear band under the wedge and that
the pressure is non-hydrostatic. The strongest gradients in stress and shear occur at the base of the
plow where the dissipation rate is therefore highest.

PACS numbers: 45.70.-n, 81.05.Rm, 62.40.+i

The forces required to disturb the surface of soil have
been an important concern of humankind since the in-
vention of the plow, the principal animal-powered tool
for this task, about 6 000y ago [1]. In this paper we con-
sider the forces on the simplest possible plow, a flat blade
inclined in the direction of motion, interacting with the
simplest possible soil, a non-cohesive granular material.
Remarkably, this ancient problem has recently received
significant attention [2, 3] because of renewed interest
in the complex and poorly understood rheology of dry
granular materials [4].

A simple inclined blade has also been studied as a sur-
rogate for the more complicated situation of a rolling
wheel moving over a granular roadbed [5–12]. Both plows
and rolling wheels exhibit an oscillatory instability which
produces a spontaneous rippling of the roadbed, lead-
ing to a condition known as washboard or corrugated

road. Washboard ripples bedevil drivers on unpaved
roads worldwide and their mitigation is a serious engi-
neering challenge [13–15]. The modern framework of non-
linear pattern formation [16] gives new insight into the
formation of washboard ripples [10–12]. A key feature
of the washboard instability is the existence of a critical
speed vc below which the flat roadbed is stable. It has
been shown that neither a spring and dashpot suspension,
nor compaction of the roadbed are essential to the exis-
tence of the instability [10]. For a wide plow, the problem
can be reasonably studied in a 2D vertical plane. Dimen-
sional analysis arguments suggest [10, 11] that the criti-

cal speed for the instability scales as vc ∼ (mg2/ρw)1/4,
where g is the acceleration due to gravity, m is the mass
of the plow, w is its width and ρ is the density of the
granular material [11].

In this paper, we examine the case of a fixed plow us-
ing a combination of experiment and molecular dynam-
ics simulation. An understanding of this basic state is a
pre-requisite to the elucidation of its subsequent insta-
bility to form a washboard pattern. To do this, we must
account for the lift and drag forces experienced by the
plow as a function of its speed v and its vertical position
y, relative to the position of the undisturbed surface y0.
These forces are related to their familiar hydrodynamic
equivalents, but, as we will show, a straightforward fluid
mechanical analogy is not particularly helpful.

The lift and drag forces acting on a totally immersed
intruder in a granular medium have been studied for more
than 30 years [17–21]. In a recent paper on immersed in-
truders [3], it was observed that the lift and drag forces
exhibit a strong correlation, indicating that they scale
similarly with system parameters. Gravish et al. [2] con-
sidered the drag on a vertical blade which plowed the free
surface of a granular medium and found oscillatory flow
in certain regimes. This paper concerns the similar case
of a fixed inclined blade for which this type of oscillation
is not observed. Our main result is that the plowed ma-
terial behaves as a solid block sliding over the granular
bed. By focusing on the basic state of a flat bed, this
study opens the way to a better understanding of the
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FIG. 1: (Color online)A schematic view of the experiment.
The system consists of a circular track which is 5-m long, 25-
cm wide and 25-cm high filled with sand. A plow is moved
over the sand bed at constant (but variable) horizontal veloc-
ity and vertical position.

washboard instability.
This paper is organized as follows: in Sec. I and Sec. II

we describe the experimental apparatus and the numeri-
cal simulations. The results of both of these are presented
in Sec. III. Sec. IV contains a general discussion, while
Sec. V presents our conclusions.

I. EXPERIMENT

The experimental apparatus, shown schematically in
Fig. 1, consisted of a circular track which is 25 cm high
and 25 cm wide. It is filled with sand of typical grain
size 300 ± 100 µm. The circumference of the track was
L = 5 m.

A plow consisting of a flat, inclined blade was moved
around the track by a rotating arm. It was held at a
fixed, but adjustable, vertical position y, relative to the
position y0 of the undisturbed bed. The plow was a 15
cm wide PVC plate and its angle of attack α with respect
to the horizontal could be varied. The plow blade was
rigidly attached to a translation stage, which allows its
vertical position y to be adjusted to within a precision of
5 µm. The speed of the plow over the roadbed can be var-
ied from 0.1 to 1.5 ms−1, which covers the range of speed
where the washboard instability occurred in previous ex-
periments [11]. However, in the fixed plow experiments
we discuss here, no washboard instability occurs and the
roadbed is always smoothed by the motion of the plow.
These values of the speed are high enough to produce a
continuous flow regime and low enough to avoid a gaseous
regime.

The contact forces acting between the plow and the
sand were measured by two force transducers (Testwell
KD40S) operating in parallel. Using two transducers re-
duces the torque acting on them and increases the stiff-
ness of the plow support system. The force transducers
provide a voltage proportional to the stress exerted along
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FIG. 2: A schematic view of the forces on the plow and of the
geometry of the mound of plowed sand. The drag force FD is
defined to be the horizontal component of the force, while the
lift FL is the vertical one. M is the total mass of the mound
of plowed sand, which varies with the speed of the plow v.

their axis. The sum of the transducer voltages was ampli-
fied and digitized at 500 Hz. Since the force transducers
are only sensitive to one direction of stress, we modified
the arrangement of the transducers in order to measure
the two perpendicular forces, lift and drag, in different
runs of the experiment.

The action of the plow pushes a triangular mound of
sand in front of the blade. The geometry and flow of this
plowed material is crucial to producing the lift and drag
forces. We measured the upper position of this mound on
the blade using a one dimensional laser position sensor
(optoNCDT 1302). This device provided the length ℓ of
the part of the mound that was in contact with the plow
blade, as shown in Fig. 2. The length ℓ was measured to
within an accuracy of 0.2 mm.

Further measurements were performed using a laser
sheet which allows for the computation of the entire
shape of the mound of plowed sand. We found that
this shape can be reasonably approximated by a trian-
gular prism with a constant dynamic angle of avalanche
θ ≃ 35◦.

The mound was uniform across the front of the plow,
which had lateral width w, and the sand was prevented
from escaping around the ends of the plow by thin for-
ward facing fins on each end of the plow. Given the angle
of attack of the plow α, the volume V of the mound is
determined if ℓ and the angle of avalanche θ are known.
The mound contains sand with mass M = ρφV , where
ρ is the density and φ is the compaction of the grains.
Combining this information gives the mass of the sand
in the mound

M = ρφV =
1

2
w ρ φ ℓ2 sin2 α

(

1

tan α
+

1

tan θ

)

. (1)

In this experiment, w = 15 cm and ρ = 2500 kgm−3.
We will show in what follows that the length ℓ changes
with the speed v and position y of the plow, while the
other quantities in Eqn. 1 remain constant.

The forward flow down the front of the mound pro-
duced a constant angle of avalanche which was found to
be θ = 35◦ for any plow velocity v and angle of attack
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FIG. 3: A typical snapshot of the 2D molecular dynamics
simulations (just showing the region of interest). A plow is
dragged at constant velocity and vertical position over a layer
of grains which is periodic in the horizontal direction.

α. By collecting and weighing the mound of plowed sand
we found the compaction of the mound was essentially
constant with φ = 0.55. It will emerge that the mass M
is the main dynamically important quantity that is re-
quired to understand the lift and drag forces on the plow
blade.

The experimental protocol was as follows. Initially,
the plow was lifted above the sand surface and remained
empty. Then its vertical position y was slowly decreased
until it plowed ahead of it a mound of grains with a mass
of nearly 1 kg. The plow was then kept fixed at this po-
sition for at least 10 rotations around the track. After
this pre-conditioning step, force measurements were be-
gun. The vertical position of the plow was increased in
steps of approximately 10 µm every 2 seconds. In this
way, the mound ahead of the plow was slowly drained, so
that after 5 to 15 rotations it was empty again. Lifting
the plow five times faster or slower did not change the
measured forces significantly, so we may assume that the
system evolved quasi-statically.

II. NUMERICAL SIMULATION

Two-dimensional molecular dynamics simulations were
carried out to model the granular motion in the vertical
plane perpendicular to the face of the plow. A snap-
shot of such a simulation is shown in Fig. 3. While such
2D simulations cannot provide quantitative agreement
with experiments, they provide good qualitative agree-
ment and can be used to gain insight into the origin of
the lift and drag forces. In addition, the simulations allow
studies of the positions, forces, velocities and stresses on
individual simulated grains, which are difficult to mea-
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FIG. 4: The Fourier power spectrum of a time series of the
lift force FL found in experiments (left panel) and simulation
(right panel). The spectrum of the drag force FD is similar.
No special frequencies are evident in the flow in either case.
The dashed lines have a slope -1.

sure directly in an experiment.
The simulation models the individual grains as de-

formable disks, rotating and colliding with one another.
The collision forces acting on each grain are computed
each time step and the equations of motion are integrated
using the Verlet method [9]. The collision force acting be-
tween two colliding grains is computed from their overlap
δ. A spring-dashpot scheme is used to compute the nor-
mal force, Fn, given by

Fn = −2
kr

R
δ −

ηR

2r
δ̇ , (2)

where R is the mean radius of the grains and 1/r =
1/ri + 1/rj, where ri and rj are the radii of the two col-
liding grains, and k and η are parameters. The first term
describes a Hertz’s law repulsion due to the small overlap
δ of the two disks (whereas Fn ∝ δ3/2 for spheres). The
second term in Eqn. 2 describes the dissipation during
collisions, which is linear in the velocity δ̇ = dδ/dt.

The tangential force acting between colliding grains,
Ft, was computed using a two-parameter regularized
Coulomb scheme [22]:

|Ft| = min(µFn, γtvs) , (3)

where the microscopic friction coefficient µ was 0.3, while
the slope of the regularized region was γt = 100 and vs

is the sliding velocity of the contact. A tangential spring
model [22] was also tested and showed no significant dif-
ferences.

A typical numerical simulation used 20 000 disks with
a 20% polydispersity in their diameter to prevent crys-
tallization, giving a periodic domain of length L = 500 d
and depth y0 = 40 d. We used the average diameter d,
the average mass m̄ and

√

d/g as the units of length,
mass and time respectively. In these units, the moment

of inertia I = m̄d2

8
= 1/8. Unless otherwise specified,

we used parameters k = 104 and η = 7.085, so that
the coefficient of restitution of a collision is e = 0.8. The
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FIG. 5: On the left, FD as a function of v for a constant
altitude of the bottom of the plow. On the rigth, M as a
function of v.
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FIG. 6: The drag and lift forces FL and FD as functions of
the plowed mass M , for different velocities at fixed α=45◦.
m̄ is the average mass of the grains in the simulation. For
the experiments, the symbols are: + v=0.1 m s−1, ∗ v=0.5 m
s−1 and ◦ v=1 ms−1. For the simulation results, the symbols
are: + v = 2
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time step was chosen to be about 1% of the collision time
τ = π

√

m̄/(2k).
The simulation used periodic boundary conditions in

the x direction, which mimics the circular track of the
experiment. The simulated plow was formed of smaller
disks (10 times smaller) fused together. The size of the
disks forming the plow does not change the results as
long as they remain much smaller than the disks in the
bed. The layer of disks was prepared by dropping grains
with a random initial position and velocity, and then left
to settle under gravity. A numerical run began with the
plow above the surface. Its horizontal speed v was con-
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FIG. 7: The drag and lift forces FL and FD as function of
the plowed mass M , for various angles of attack α. The sym-
bols are: + α=15◦, ◦ α=30◦,∗ α=45◦, × α=60◦,△ α=75◦, �

α=90◦ (simulation only).

stant throughout the run, while its vertical position was
slowly decreased through y0 until it reached the desired
height y. Thereafter, the numerical system was allowed
to evolve to a statistically stationary state (after several
“rotations”). The lift and drag forces on the plow were
defined to be the sum of the vertical and horizontal forces,
respectively, on all the grains making up the plow.

In the 2D simulation, the mass of plowed mound can
be found from a similar geometrical measurement of ℓ
following Eqn 1, or by estimating the area occupied by
the disks above the level y of the tip of the plow. Since
the velocities of the individual grains are known in the
simulation, a third definition of M is the following:

M =
1

v

N
∑

i=1

mivi , (4)

which implicitly computes the average mass of the grains
which are carried along at the speed of the plow. All
three methods gave the same results for the simulations.

III. RESULTS

In this section, we diagnose the origin and parameter
dependence of the lift and drag forces by moving back and
forth between the experiment and the 2D simulations.
We will then show how the data in each case may be
scaled to produce a general result which can be seen as a
simple Coulomb’s law of friction with an effective friction
coefficient.
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A. Frequency spectrum of the lift and drag forces

We studied time series of the lift and drag forces in
both the experiment and in simulation (for velocities for
which the washboard instability develops when the plow
is free to move vertically). Both forces naturally fluctuate
as the noisy granular flow proceeds, even in the steady
state regime. As shown in Fig. 4, the Fourier power spec-
tra of these time series show a roughly power-law depen-
dence on frequency, with no special frequencies evident
and an exponent of roughly -1. This indicates that the
flow of the grains is continuous in the regime of plowing
speeds we consider, in contrast to the oscillatory flows
observed in previous experiments at lower speeds [2]. In
addition, Gravish et al. [2] showed that the oscillations
in the drag force increase with increasing packing frac-
tion of the sand bed. In our system that packing fraction
is rather low since the sand bed is decompacted at each
rotation. The qualitative agreement between the experi-
ments and the numerics is excellent.

This rather simple result has important implications
for the mechanism of the instability to washboard road,
in the case when the plow is free to move vertically.
The absence of special frequencies for flow around the
fixed plow indicates that the washboard instability is not
merely triggered by some internal oscillatory avalanch-
ing mode characteristic of the plowed material alone. In-
stead, the continuous flow regime must become unstable
to an oscillatory mode with a new frequency that emerges
from the coupled motion of the grains and the free plow
itself. For the present fixed plow study, this result simply
means that we can characterize the lift and drag forces
by their average values in the steady state.

B. Influence of the plowing speed

The lift and drag forces increase with the plowing speed
v for fixed altitude y and angle of attack, both in the
experiment (figure 5 left) and in the simulations (data not
shown). This increase is a manifestation of the increase
in the volume of plowed material that builds up in front
of the blade, which increases with v (figure 5 right).

Fig. 6 shows the remarkable result of this analysis (for
an angle of attack of α = 45◦): the lift and drag forces
exhibit a simple linear relationship when plotted as a
function of the plowed mass M , roughly independent of
the plowing speed v. This shows that FL and FD are not
directly velocity dependent, as would be the case for hy-
drodynamic forces, but rather depend only indirectly on
velocity, via the mass of the mound of plowed material
and small changes to the effective friction. Again, note
the excellent qualitative agreements between experimen-
tal and numerical results.

This behavior is quite consistent with previous experi-
ments on totally immersed intruders [17, 21], in which
it was observed that the drag or lift forces have an
extremely weak dependence on velocity. This result

shows that it is not possible to make any straightforward
analogy with a hydrodynamic system such as skipping
stones [12, 23], since both viscous and inertial hydrody-
namic forces crucially depend on v.

The simulations can be extended to very high velocities
where the bed becomes fluidized and the drag and lift
force become strongly velocity dependent. This regime
is far above what is accessible experimentally, however.

C. Influence of the angle of attack

We repeated the experimental protocol described
above for different angles of attack α. For each angle, the
plow was operated at three different velocities, 0.2 ms−1,
0.5 ms−1 and 1.0 ms−1 and various values of the vertical
position y. As before, we found that the lift and drag
forces depend on the mass of the plowed material M and
not directly on the velocity. Fig. 7 shows how the forces
depend on M and α. In Fig. 7, the forces were averaged
over the three velocities. A similar protocol was used
in the simulations. As might be expected, the lift force
FL decreases with the angle of attack. Interestingly, the
drag force has a similar dependence on α. These data in-
corporate some small contributions due to the non-zero
thickness of the plow blade. The experiments and the
simulations show again a very good agreement.

In the following, we will show how this phenomenology
can be understood and these data collapsed onto a single
curve. We next turn to the simulations for insight into
the interior of the flowing granular material.

D. The interior of the plowed material

Fig. 8 show several views of the results of the 2D sim-
ulation. We can clearly see the triangular region of the
plowed material and the forces and flows within it.

Within the plowed material, the streamlines in Fig. 8a,
computed in the moving frame of reference of the plow,
show a region of forward circulating flow just below the
free surface of the plowed material. Nearer the bottom
tip of the plow, the flow is downward. On the face of
the plow, the flow velocity is nearly zero relative to the
plow. The packing fraction φ is quite homogeneous in
the plowed sand, similarly to what was measured exper-
imentally, although the values are much higher in this
2D system. The plowed material slips over the bed at
a well-defined region of high shear running horizontally
from the bottom of the plow to the end of the free surface.

This shear band, shown in Fig. 8b, cleanly separates
the plowed material, which is mostly carried along with
the plow, from the sand in the bed, which makes its way
under the tip of the plow. Along this band, there are two
localized regions of very high shear, one near the tip of
the blade, and the other at the forward toe of the slip
face.
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FIG. 8: (Color online) Four views of the simulation, showing different aspects. (a) shows the packing fraction φ (color) and
average motion of the grains in the plowed region. Arrows show the velocity field in the frame of reference of the plow, while
the solid lines are streamlines. (b) shows the shear rate γ̇ in the plowed material, and (c) shows the pressure σ distribution.
Finally, (d) shows the dissipated power per unit volume.
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Pf/Pd, as a function of the friction coefficient µ for different
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tion coefficients of: � e=1 ,△ e=0.9, ◦ e=0.8, . e=0.5 .

Using the simulation, we can learn more about the
origin of the drag forces by considering the energetics
of the flow both locally and globally. Denoting by E,
K and U the total energy, total kinetic energy and total
gravitational potential energy of the grains, global energy
conservation requires

dE

dt
=

dK

dt
+

dU

dt
= Pi + Pd , (5)

where Pi is the total power injected by the machinery
driving the plow and Pd is the total power dissipated by
the grains. In steady state, the total energy is constant
and:

Pd = −Pi = FDv. (6)

This implies that the drag force is due to the dissipation
in the whole of the flowing granular material. By mea-
suring the drag force and independently integrating the
local dissipation over the flow we checked that this steady-
state result is indeed true. In particular this shows that
the time step used in the simulation is not too large.

The local dissipation comes from two sources, the col-
lisional restitution and the friction between the grains.
The collisional dissipation is due to the form taken for
the normal forces, given by Eqn. 2 and depends on the
parameters k and η, which contribute to the coefficient
of restitution e. The frictional dissipation depends on
the form of the tangential forces and depends on the fric-
tion coefficient µ used in the regularized Coulomb scheme
given by Eqn. 3. It is possible to calculate the total power
dissipated by each of these mechanisms, so that

Pd = Pc(e) + Pf(µ) , (7)

where Pc and Pf are the total dissipation by collisional
and friction forces, respectively. Fig. 9 shows the frac-
tion of the total dissipation due to friction forces as a
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function of the friction coefficient µ for various values of
e. As long as the friction coefficient is reasonably high
(µ > 0.2 ≃ tan 11◦), most of the dissipation is frictional
(approximately 80%), even for relatively low values of the
restitution coefficient (e = 0.5). For lower values of the
friction it is expected that most of the total dissipation
should originate from the inelasticity of the collisions.

Returning to Fig. 8, we can use the simulation results
to examine the localization of the dissipation within the
flow. Fig. 8c shows that the pressure is concentrated near
the tip of the plow. This pressure maximum is much
larger than what the hydrostatic pressure would be at
that depth. The combination of the high pressure with
the high rate of shear at the tip of the plow gives a highly
localized region of dissipation, as shown in Fig. 8d. This
dissipation is due to the large loading of the sliding fric-
tional contacts in this small region.

The simulation thus gives us a rather clear picture of
the processes within the flow that give rise to the dissi-
pation, and hence the drag force. The plowed material is
an undilated region of circulating flow with a well defined
triangular shape, as sketched in Fig. 2. This material
slides over the grains in the bed at its lower surface. Its
geometry and mass M depend on the plowing speed v,
plow depth y and angle of attack α in such a way that
the lift and drag forces are linear in M and independent
of v.

IV. DISCUSSION

The linear relationship between the lift and drag forces
and the plowed mass M suggest that all the forces might
be accounted for by modeling the plowed material as
a solid sliding block moving over a flat surface with
Coulomb friction. The lift and drag forces on the plow,
shown in Fig. 2, have corresponding equal and opposite
reaction forces on the plowed material, considered as a
triangular solid block. The reaction to the lift force FL

acts downward on the block, while the reaction partner
of the drag force FD pushes the block forward in the di-
rection of ~v. In addition, the block weight Mg, is exerted
downward. Modeling the shear band shown in Fig. 8b as
a simple sliding surface with Coulomb friction subjected
to a normal force FL + Mg, we arrive at a simple rela-
tionship between FD, FL and M ,

FD = µeff(FL + Mg) . (8)

Fig. 10 shows that this model relationship achieves a
near perfect collapse of all the data for both experiment
and simulation, using a single universal value of µeff in
each case. For experiments, we find µeff = 0.7, while
the simulations give µeff = 0.3. This difference reflects
the rather ideal nature of the 2D simulations, that used
perfect disks, which makes them only a very qualitative
model of the real grains. Nevertheless, the main features
of the flow are recovered by the simulation, including all
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FIG. 10: The drag force FD as a function of total downward
force FL + Mg on the plowed material, modeled as a sim-
ple sliding block. Good data collapse is found for all speeds
v, vertical positions y and angles of attack α, in both the
experiment (upper panel) and simulation (lower panel).

the qualitative parameter dependences observed experi-
mentally.

Having found a linear law between the drag, FD,
and the plowed mass, M , FD = µD(α)Mg, on the
one hand, and the lift, FL, and M on the other hand,
FL = µL(α)Mg, it is expected that FD should also be a
linear function of FL + Mg (equation 8). Therefore,

µeff =
µD(α)

1 + µL(α)

However our results show that µeff is indeed a constant,
meaning that the dependence on α cancels out. This uni-
versal effective friction law demonstrates that the hori-
zontal drag force FD is a simple function of the vertical
force FL+Mg and depends only indirectly on the altitude
y, the velocity v and the angle of attack α.
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V. CONCLUSION

We have studied both experimentally and numerically
the drag and lift forces on an inclined plow blade acting
on the surface of a dry granular material. We consid-
ered the case of a wide plow which had no grains flowing
around its ends. The flow was nearly two-dimensional
and could thus be simulated in the vertical plane. We
studied how the forces depended on the mass and ge-
ometry of the mound of granular material transported
by the blade. Using molecular dynamics simulation, we
examined the forces, flow and energy dissipation within
this plowed material. We found that the flow is steady in
the velocity regime we studied, so that the washboarding
instability of a free plow could not be explained by any
pre-existing unsteady motion within the plowed material
in front of the fixed plow. The lift and drag forces did
not depend ,significantly on the velocity of the plow if
they are considered as functions of the mass of the trans-
ported material. We also found that the two forces and
the weight of the plowed material could be combined into
a simple relationship in which the plowed material be-
haves as a solid block sliding over the underlying granular

bed. The sliding was characterized by a single effective
Coulomb friction coefficient.

The case of the fixed plow discussed in this paper must
be generalized in order to establish a linear stability anal-
ysis of a free plow, which is unstable to the formation of
washboard ripples. Non-stationary states of the plow and
of the mound of plowed material, and the time-dependent
effect of these on the lift and drag forces, must be ac-
counted for in such a stability analysis. In future work
the response of the system to small, imposed vertical os-
cillations at various frequencies will be studied using the
same experimental and simulation techniques described
here. This approach will shed some light on the dynamic
origin of the washboard instability.
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