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Abstract

Heterogeneous granular mixtures tend to segregate by size when tumbled in a partially

filled, horizontal rotating drum. After a few drum rotations the small grains move towards

the axis of rotation and form a buried radial core, which, after several hundred drum

rotations, splits into axial bands. This process can display complex, oscillatory wave

dynamics during the transient before segregation saturates. In this thesis, we report on

measurements of the axial transport of grains in the radial core, the dynamics of the axial

segregation process, and the oscillatory wave transient. We show experimentally that two

fields, the concentration and dynamic angle of repose, whose coupling was theoretically

postulated, do not evolve as predicted, which falsifies a recent model. We also report that

the axial transport of small grains in the radial core is subdiffusive. This does not depend

on grain type or rotation rate. We show that the self-mixing of monodisperse grains is

as well a subdiffusive mixing process. Lastly, we find that the growth rate scaling of the

axial segregation pattern increases as a function of drum diameter and grain size ratio.

None of these findings are accounted for by any theoretical model of this system.
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Chapter 1

Introduction

Granular media are everywhere. From sand grains, which can be several microns to

several hundred microns in size, to lentils and other dried foodstuffs, to boulders in rock

slides, to the constituents of the rings of Saturn, they are ubiquitous and easily taken for

granted – that is, until you consider the complex behaviour these materials can display.

What happens when granular media are in motion has interested and puzzled thinkers,

starting with Appolonius of Perga around 200 B.C., including Coulomb and Reynolds

in the modern era, to the present day [1]. Moreover, mixing, demixing, and pattern

formation of sands, powders, and grains is of immense practical interest; it is estimated

that 10 % of the world’s energy is used in the processing of grains [1, 2].

The physics of granular materials is complex, and the field is still in an early stage of

development. In some ways one can consider granular materials as a new state of matter

which is not a traditional solid or fluid; for example, in a narrow pipe a granular material

can flow as a liquid, but it can also form an arch and jam the pipe like a solid [1]. Driven

granular systems are systems far from equilibrium because they are dissipative due to

the frictional interactions between grains, and they have strong spatial and temporal

variations in density and local particle velocity [3]; the patterns which emerge in these

strongly dissipative systems can be quite striking. An example of this corresponds to

1



Chapter 1. Introduction 2

the surface patterns which develop spontaneously when several layers of particles are

vertically oscillated, a behaviour similar to Faraday patterns observed in a shaken fluid

layer, and convection patterns in fluids [1, 4]. In these experiments the granular material

organizes itself into stripes, squares and hexagons for particular values of acceleration

[5].

Another interesting phenomenon is often observed when one attempts to mix two

different granular materials which have different grain properties such as size, density, or

surface roughness. Instead of mixing, the materials tend to segregate partially or com-

pletely. The segregation of granular mixtures occurs in a wide variety of circumstances,

which have attracted the attention of the physics community in recent years. When

grains of different sizes are vibrated vertically, it has been observed that the large grains

typically rise to the top of the container. This so-called Brazil-nut effect, which gets its

name from the way large brazil nuts are inevitably at the top of a can of mixed nuts,

has been investigated using many different imaging, data analysis, and simulation tech-

niques [6, 7, 8, 9, 10]. Another example of a spontaneously-forming segregation pattern

arises when grains of different sizes are poured in a Hele-Shaw cell, which approximates

a two-dimensional geometry; in this case they separate into alternating layers of different

components of the mixture [11, 12, 13, 14]. This effect has been proposed as a possible

cause of sandstone or river bed stratification [11]. An example of this segregation pattern

in a mixture of large salt grains and small sand grains is shown in figure 1.1.

Segregation by size has also been investigated in a two-dimensional rotating drum

geometry. Typically in these experiments, small and large grains with mixed initial

conditions are placed in the drum, which is then rotated at a slow rate, where the flowing

layer forms intermittent avalanches or is smoothly streaming [15, 16]. The smaller grains

filter to the axis of rotation of the materials in the drum and form a core, surrounded by

the larger grains, as illustrated in figure 1.2; this effect is called radial segregation.

When a long cylindrical drum is partially filled with a mixture of grains and rotated
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Figure 1.1: An example of the segregation pattern which forms when large white table

salt grains and small black hobby sand grains are poured into a Hele-Shaw cell.

Figure 1.2: An example of a radial segregation pattern which forms when small black

177-212 µm sand grains and large 300-420 µm salt grains are placed in a 2.7 cm diameter

rotating drum which is 3 mm long. The drum rotation rate is 0.62 rev/s and the mixture

is composed of 1/3 sand grains and 2/3 salt grains.

about its long axis, as shown in figure 1.3, the mixture may separate by size into bands

of each of the components of the mixture along the length of the drum. This effect

was first observed by Oyama in 1939 [17], and was given the name axial segregation.

Though it has been more than six decades since the phenomenon was first discovered as
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yet very little is known about the mechanism of formation of these axial bands, despite

the apparent simplicity of the pattern. This is the most widely studied and modeled

segregation experiment [15]. In this thesis we will investigate the dynamics of axial band

formation, as well as subsurface phenomena that may give rise to it.

Ω

x

z
y

Figure 1.3: A schematic diagram of the rotating drum used in experiments. The mixture

of grains typically used in experiments consists of small black hobby sand grains and

large white table salt grains. The x axis runs along the axis of the drum, the y axis

runs along the cross section of the drum perpendicular to the axis, and the z axis points

vertically upwards. Ω refers to the drum rotation rate.

1.1 Phenomenology of the rotating drum system

Figure 1.4 shows a rotating drum filled with a mixture of small salt grains and large

black sand grains at different times during the segregation process. As can be seen in

figure 1.4a, bands near the end caps appear prior to axial band formation, within a few
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drum rotations. Donald and Roseman [18] were the first to report end-band formation in

the literature, and attributed the full axial segregation phenomenon to end-wall effects.

Later experiments showed that end-bands are an experimental artifact due to the fact

the caps sealing the tube were made from a material with different frictional properties

than the tube and grains [19].

Figure 1.4: a) An image of the rotating drum after 0 s of rotation, b) 50 s, c) 500 s, d)

1500 s and e) 2500 s. The mixture consists of large white table salt grains with sizes in

the range of 500-600 µm and small black hobby sand grains with sizes in the range of

177-212 µm. The drum diameter is 2.85 cm, its length is 20 cm and the rotation rate is

0.3 rev/s.
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As first reported by Donald and Roseman [18], the segregation of grains in a rotating

drum is actually a two-stage process. First the smaller grains filter through the larger

ones forming a core at the axis of rotation of the mixture in the drum. This occurs via a

“dynamic sieve effect” which takes place quickly, within a few drum rotations, as shown

in figure 1.2 [18, 20, 21, 22, 23]. Under the influence of gravity, the small grains filter

through voids in between the larger ones when the particles are dilated due to the flow in

the drum. This is similar to the mechanism by which small particles penetrate through

mesh screens in mechanical size separation [24]. After several hundred to several thousand

drum rotations, axial bands form. While it was speculated as early as 1962 that these

effects were related [18], only recently has radial core instability has been investigated as

the mechanism responsible for axial band formation [20, 21, 22, 23, 25, 28, 29, 30]. In

this view, quasi-periodic modulations on the core grow and break through the flowing

surface layers of materials in the drum, forming axial bands. In the work presented here,

we greatly expand upon this idea.

Most axial segregation studies focus on bidisperse mixtures of grains in a circular

rotating drum [17, 20, 25, 26, 27]. In 1962, it was observed that, for mixtures consisting

of more than two components, the axial bands order themselves by particle size [31]; this

effect has been termed band-in-band segregation [29]. It has also been noted that the

radial core was comprised of the smallest grain size in the deepest layer, surrounded by

rings of increasing grain sizes.

In 1969, a new type of segregation called floating segregation was reported by Bridg-

water and co-authors [24]; here segregation occurs in the avalanching surface layer of

grains in the rotating drum. This was attributed by the authors to percolation effects,

since the large grains in the study were two orders of magnitude larger than the small

grains.

In 1994, Hill and Kakalios reported on the systematic variation of grain sizes in

bidisperse mixtures rotated at different rates. They observed three types of behaviour
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depending on the size of the grains involved: axial banding which would occur at high

rotation rates and re-mix at lower rotation rates, axial segregation which was not re-

versible at lower rotation rates, and finally, no segregation [32]. Measurements of the

dynamic angle of repose, the angle the flowing granular surface forms with the horizon-

tal (shown schematically in figure 1.5), revealed that when there was little difference in

dynamic angle of the small and large consitutents the mixture never formed axial bands,

but when the difference was large, axial bands formed and were non-reversible. Finally,

when the difference of the angles of repose increased with rotation rate, reversible axial

segregation occurred. It was also reported that small grains typically have higher angles

of repose than large grains.

Figure 1.5: A schematic illustration of the dynamic angle of repose, the angle φ the

flowing granular surface forms with the horizontal cross-section of the drum.

The so-called reverse diffusion model was first proposed by Savage [33], and further

developed by Zik et al. [34]. The “effective” diffusion coefficient is the difference be-

tween the diffusion coefficient and a quantity β with the same dimensions whose value

is determined by the difference in angles of repose of the mixed and large grain phases.

If the difference of the angles of repose of the mixed and large (grain) phases is small, β

will have a very small value and and normal positive diffusion will dominate, resulting in

a mixed phase as has been observed experimentally [18, 32, 34]. If the difference in dy-

namic angles is large, the sign of the effective diffusion coefficient becomes negative, and
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initial concentration fluctuations grow, leading to the collection of grains in areas of high

concentration, which correspond to axial bands. The reverse diffusion model developed

is described in more detail in chapter 3.

In 1997, a travelling wave transient occurring prior to axial segregation was first

reported by Choo et al. [35, 36]. Travelling waves were observed in mixtures consisting of

1/3 sand and 2/3 salt, whose sizes were taken from non-overlapping distributions. Video

imaging techniques were adapted to construct space-time diagrams in which the waves

are clearly seen passing to the left and right, and through each other. As well, standing

wave transients were observed in runs starting from presegregated initial conditions; these

decayed until they were absorbed by nearby axial bands. One example of a space-time

diagram of these traveling waves is shown in figure 1.6, from reference [35]. In this

experiment, a mixture of black sand and white table salt was presegregated into 1 and

2 cm bands respectively. Choo et al. performed a detailed study of the wave-speed

dependence on presegregated wavelength; they found that the wave speed decreases as

a function of wavelength, with a long wavelength cutoff above which the presegregated

bands remain in a frozen state [35, 36].

These results demonstrated that the Zik et al. theory mentioned above, which de-

scribes axial segregation as a reverse diffusion process, is insufficient to explain axial

banding since a diffusion equation cannot sustain standing or travelling waves. Recently,

this travelling wave transient was found in a bidisperse mixture of glass spheres [37],

suggesting that differences in frictional properties of the grains is not a potential driving

mechanism of the travelling wave transient [30]. It has also been reported that some

mixtures composed of three particle sizes, so-called ternary mixtures of glass beads, can

display an oscillatory band instability; the widths of small-particle bands oscillate in time

while the band widths of the larger particles remain unchanged in time [29].
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Figure 1.6: A space-time diagram of an oscillatory transient found in a presegregated

mixture of large white table salt grains and small black hobby sand grains, with a 3 cm

presegregated initial wavelength. From reference [42].
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The work of Choo et al. was a significant innovation in the study of axial segregation.

Prior to the publication of this work, authors in this field presented images of the initial

and final states with perhaps a few snapshots at intermediate times [17, 18, 23, 32]. By

taking many digital images of the drum in time and vertically averaging over them, and

effectively stacking them in time to create a space-time representation of the dynamics,

Choo and co-workers were able to determine that interesting phenomena are present

that are too slow to be observed by eye. One period of the travelling waves is typically

100 drum revolutions. It is possible that previous studies of axial segregation missed

interesting dynamical behavior of grains in the drum because they did not capture a

complete picture of the evolving pattern.

In light of Choo et al.’s work, a comprehensive new model was proposed by Aranson et

al. which reproduces axial segregation as well as the oscillatory travelling wave transient

which may occur prior to the axially segregated state [38, 39]. The main feature of

this model is that two reaction-diffusion fields, the relative concentration of large to

small grains and the dynamic angle of repose, are coupled such that they oscillate ninety

degrees out of phase during the oscillatory transient. They are in phase for later times,

in the axially segregated state. This promising theory, which is described in detail in

chapter 3, was able to reproduce the wave speed dependence on initial wavelength as

found by Choo et al. Testing the predicted phase relationships between the two coupled

fields was a goal of this thesis; a new measurement device, the scanning profilometer,

was developed to simultaneously measure both evolving fields and is described in chapter

2. The experiments described in chapter 3 using the scanning profilometer showed that

concentration and dynamic angle do not have the required phase relationship, thereby

falsifying this model.

In the last decade, attention has turned to non-invasive magnetic resonance imaging

(MRI) techniques to elucidate the dynamics of flow within the bulk of the rotating drum

system, using mixtures of MRI and non-MRI active particles [20, 21, 22, 23, 40]. One
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study shows that radial segregation evolves to axial segregation [23]. While this was a

reasonable assumption made four decades ago, it was not proven definitively until this

thesis study, as described in chapters 3 and 4.

Another report shows that the velocity in the flowing layer of grains is not uniform, but

varies with depth in a complex manner, depending on grain size and surface roughness

[20]. It was determined that the flowing surface layer intrudes upon material deeper

within the bulk and that the radial core is not isolated from the flow dynamics, as

was previously assumed. This report indicates that there is a complicated relationship

between the dynamics of the radial core and axial segregation that are not addressed in

theories that only consider surface flows, such as the reverse-diffusion model mentioned

above. While use of non-invasive MRI techniques have advantages for studying these

complex bulk flows, they have serious limitations as well. MRI techniques are getting

faster, but they are still too slow to determine the short-time development of segregation

transients. Typically, drums are rotated slowly within the device [23], or the drum

is rotated away from the magnet and stopped at discrete intervals, during which very

detailed images of the internal structure of the grains in the drum are produced [20, 40].

The choice of grains suitable for MRI studies is restricted as well. At least one of the

grains must contain some type of fluid, and the drum must be small enough to fit within

the bore of the magnet. As a consequence, the systematic variation of parameters is

limited in MRI studies. For this thesis, we developed a new bulk visualization technique

which does not suffer from these limitations in order to examine the radial core dynamics;

this technique is discussed in chapter 2.

Ristow and Nakagawa have recently investigated the transport properties of different-

sized grains in the rotating drum [40]. Starting from a two-band initial condition with a

sharp interface between the large and small grains, they rotated the drum and observed

the evolution of the radial core from the interface. Stopping the drum at regular intervals,

they measured detailed spatial concentration profiles of small to large grains and the
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shape of the interfacial front between the radial core and surrounding larger grains using

MRI techniques. They showed that the propagating front is described well by a one-

dimensional diffusion process, but they find that the agreement with a diffusion process

is better when a concentration dependent diffusion coefficient is used. Their concentration

profiles are slightly asymmetric since the small grain interface propagating into the larger

grains appears more quickly than the larger grains travelling over the surface of the

radial core. This model is described in detail in chapter 4. For this thesis, we conducted

detailed studies of the axial transport of grains in the radial core and the self-mixing

of one grain type and find that these processes are slower than diffusion i.e subdiffusive.

These experimental results are discussed in chapter 4.

Over the last four decades, only a few attempts have been made to determine the

parametric dependencies of axial segregation despite the enormous parameter space to

be explored. It was noted in 1962 that when the ratio of the large to small grains exceeds

1.2, axial segregation occurs [31]. The same authors also noted that the number of axial

bands increased with increasing surface roughness of grains by examining 30 different

binary mixtures of sands, salt and glass beads [18]. Alexander et al. [25] report that

the occurrence of axial segregation depends on the ratio of the drum diameter to average

particle diameter. When this ratio is smaller than a critical value, axial bands do not

appear at any drum rotation rate, and when this ratio is large, axial bands occur at all

rotation rates within the smoothly streaming regime. In between these extremes lies a

regime of “reversible segregation” as reported by Hill and Kakalios [32].

In collaboration with C. R. J. Charles, I examined the dependence of wavelength and

growth rate of the axial band pattern on drum diameter [27]. Charles et al. determined

that the wavelength to diameter ratio approaches a constant for drum diameters larger

than 120 times the average grain size. This study also determined that axial segregation

did not occur below a critical ratio of drum diameter to grain size. This work was also the

first to show that the growth rate of axial bands increases as a function of drum diameter.
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The results of these experiments are described in chapter 4. It is also interesting to note

that none of the current theoretical descriptions of axial segregation correctly predicts any

of the parametric dependencies or scaling regimes described above [32, 33, 34, 38, 39, 41].

1.2 Outline of the thesis

In chapter 2, the scanning profilometer, and bulk and surface visualization techniques are

described, as well as data analysis methods. In chapter 3, Choo’s discovery of traveling

waves is elucidated in detail. We examine the early theoretical model due to Zik et al. [34]

and offer a detailed description of Aranson et al.’s model [38, 39]. The experimental tests

of this model are then described, as well as investigations of the oscillatory instability in

the radial core.

Chapter 4 describes detailed experimental investigations of the transport of grains

within the radially segregated core in the absence of the oscillatory instability, and how

the growth rate of undulations on the core forming axial bands is enhanced as the drum

diameter and grain size differences are increased. The influences of varying these param-

eters on the axial transport of grains within the radial core is investigated, as well as the

axial self-mixing of the larger grains alone.

Chapter 5 describes promising new areas of theoretical investigation in granular phe-

nomena that could be extended to describe the dynamics observed here. Chapter 6

provides a summary of our results and suggestions for future experiments.



Chapter 2

Experimental Methods and Data

Analysis

This chapter describes the experimental methods used to measure both surface and bulk

flow properties of grains in the rotating drum. Grain preparation techniques and the

setup of well controlled and reproducible initial conditions are discussed in section 2.1,

and the apparatus used to rotate the grains is described in section 2.2. The scanning

profilometer device, described in section 2.3, was developed to simultaneously measure the

relative concentration of large to small grains and their dynamic angle of repose in order

to test a continuum model of axial segregation proposed by I. Aranson and L. Tsimring

[38, 39]. Surface imaging, described in section 2.4, is a standard tool used to measure

time and length scales relevant to axial segregation and granular mixing. Discrete Fourier

transforms can then be used on digital images obtained with a CCD camera to provide

detailed information about the pattern evolution. A new bulk visualization technique

was developed over the course of this study in order to elucidate the role of the radial

core in the traveling wave transient [28, 35, 36] and the axial segregation process. This

chapter is concluded with a discussion of this technique in section 2.5.

14
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2.1 Grain Preparation Techniques

For a majority of the experiments described in this thesis, the grains used were Sifto brand

white table salt and black “Scenic Sand” purchased from Activa Products Inc. [60]. The

density of the salt grains used here was measured to be 2.2 ± 0.1 g/mL and the density

of the sand grains was 2.0 ± 0.1 g/mL. The volume of the grains was measured using a

fluid displacement method, and the mass was measured using a laboratory scale. Glass

and bronze beads were also used in some experiments, their densities were measured to

be 2.3 ± 0.1 g/mL and 8.6 ± 0.2 g/mL respectively. In order to create grain mixtures

with consistent grain sizes, all grains were sieved using U.S. Standard mesh sieves and a

mechanical sieve shaker. The mesh sizes used for this work were 75, 106, 149, 177, 212,

250, 300, 420, 500, 600 and 750 micrometers. The sieves were stacked so grains would be

obtained between two of the mesh sizes listed above, and the sieves were always stacked in

the above order so no grain size range would be larger than 120 micrometers. Grains with

a size distribution of 100 micrometers or smaller were considered to be a monodisperse

mixture for the purpose of this study. Most of the work described in this thesis consists

of studies of bidisperse mixtures in a variety of initial configurations. These mixtures

consist of one sieve cut of small grains and one sieve cut of large grains, where the grain

types are different. These mixtures are described in context. However the travelling

wave study described in chapter 3 requires the use of certain polydisperse mixtures of

both sand and salt, the mixture components are shown in histogram form in figure 2.1.

This travelling wave mixture is composed of 1/3 of the sand mixture and 2/3 of the

salt mixture, and was used because of the need to reproduce the results of Choo et al.

[35, 36].
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Figure 2.1: Histogram of salt and sand grain sizes in a mixture which exhibits a travelling

wave and standing wave instability occurring prior to axial segregation. This was the

mixture used by Choo et al. in references [35, 36].
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It is possible for an accumulation of static charge between the rolling grains and the

drum walls to interfere with accumulating experimental data. The grains may collect

on drum walls obscuring visualization or may slip in the drum [50]. Humidity control

was sufficient to reduce static charge in experiments where table salt was used. For

these experiments either humidifiers were used in the winter in an enclosed space to

increase the humidity to 40-60 percent, or in the summer a dehumidifier was used to

reduce the humidity to the same range. For experiments using glass spheres increasing

the ambient humidity had little effect, so small amounts of a powdered antistatic agent

was used. We used Larostat FPE-S antistatic powder, which is manufactured by BASF

Specialty Products [62]. No information about its composition could be obtained due to

the proprietary nature of this product.

2.1.1 Initial Conditions

In order to cite reasonable statistics on the errors of the experiments, it was necessary to

start from reproducible initial conditions for most of these experiments since the largest

potential source of error is related to lack of reproducibility of initial conditions. The

spatial resolution error is on the order of one pixel (typically one-third of a millimeter)

and the temporal resolution error is on the order of 10 milliseconds, because we used a

real-time operating system, QNX, to perform digital image aquisition with time stamps

on each image.

For segregation experiments with randomly mixed initial conditions, the grains were

combined by mass in the smallest quantities before being loaded into the drum at the de-

sired filling fraction of 28-30 %. To ensure that the desired proportions did not segregate

in the handling of the mixtures, the grains were spooned into a U-shaped channel, and a

ruler was run along the top of the channel to remove excess grains and ensure that each

and every filling was performed consistently. Then this channel was inserted lengthwise

into the drum and rotated to deposit its contents.
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Segregation experiments with presegregated initial conditions were performed in a

similar manner, but first a threaded rod with thin aluminum spacers aligned according

to the presegregated wavelength desired was placed in the channel. The large and small

grains were placed between the appropriate spacers with the use of a narrow funnel,

and a small flat piece of metal was used to flatten each filled space and remove any

excess grains. The rod was carefully removed, and the channel inserted into the drum

and rotated to deposit its contents. This method was originally developed by Choo and

co-authors [35, 36].

2.2 Experimental Apparatus

The drum used in the majority of experiments described in this thesis was a precision Ace

Glass pyrex drum of length 90 cm and inner diameter 2.85 cm [61] with teflon endcaps. It

was used to rotate mixtures of white sand and black table salt. The drum was driven at

one end by a motor controlled by a Hewlett-Packard function generator which controlled

the drum rotation rate, and was supported by a pair of black rubber wheels at the opposite

end. The drum and wheels were placed on a leveling table, one end of which could be

raised or lowered by turning a screw. The drum was kept horizontally leveled to avoid

axial tilt since the wave speed of left and right-going traveling waves are not equal if the

drum is tilted. In fact, we were able to use the wave speeds of left and right-going traveling

waves to verify that the drum was level. All data were captured using a high-speed black

and white CCD camera. The camera was a Dalsa black and white CCD with 512×512

pixel resolution, and a maximum frame rate of 77 Hz. The segregation dynamics were

measured using three different visualization techniques, scanning profilometry described

in section 2.3, surface video imaging described in section 2.4 and backlit bulk visualization

described in section 2.5. An image of the drum, wheels, leveling table, lights and camera

are shown in figure 2.2, in addition to the scanning profilometer device.
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In some experiments described in chapter 4 drums with inner diameters of 4.4 and 5.6

cm with acrylic endcaps were used to determine the dependence of axial grain transport

properties on drum diameter. The apparatus used to rotate these drums was constructed

by C. R. J. Charles, and is described in his undergraduate thesis report [63]. The back-

lit bulk visualization technique was used to capture data from this apparatus, and this

technique is described in section 2.5. A software control loop written in the C program-

ming language and implemented on the QNX operating system by Z. S. Khan rotated

the drum at the input frequency, and gave commands to the high speed black and white

CCD camera to obtain images at predetermined intervals.

2.3 The Scanning Profilometer Visualization Tech-

nique

The scanning profilometer was developed to measure the relative concentration of large

(white) to small (black) grains, and their dynamic angle of repose. From this data, we

obtained space-time diagrams of the dynamics of these two fields, wave speed information,

and their phase relationship, as described below.
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Figure 2.2: Image of the scanning profilometer experimental apparatus. The camera,

laser, microstepping motor controlling the translating stage and stepper motor control-

ling the drum rotation are computer controlled. The angle Ψ was used to correct fore-

shortening of the images obtained, as described in the text.
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An image of the scanning profilometer device is shown in figure 2.2. The streaming

surface layer of grains was illuminated by a diode laser obtained from a laser pointer.

The beam was spread into a thin vertical sheet using a horizontally mounted cylindrical

lens with a 2.1 mm diameter. The laser sheet was visualized using a CCD video camera

which views the light sheet with a 50 mm focal length lens at an angle of Ψ = 41.2±0.2o.

This angle was determined by measuring the distance of the center point of the lens to

the drum perpendicular to the drum, and by measuring the distance of that point to the

position on the drum where the light sheet struck the drum. The camera, laser and lens

were mounted on a translation stage which slides parallel to the drum, so the surface

could be observed at multiple locations along the drums axis. The translation stage was

driven by a Compumotor microstepping motor whose rotation rate was controlled by a

computer interface card.

To track the position of the camera, the Compumotor was given a command to rotate

206600 microsteps. The resulting displacement of the translation stage was measured to

be 909.6 mm, which results in a conversion factor of 227.1 microsteps per mm. This

conversion factor was then used to translate the scanning distance to Compumotor mi-

crosteps, and the position of the camera could then be determined. The timing of the

measurements was done using the QNX real-time operating system. The entire setup

was enclosed in a black canvas tent to eliminate all outside light. The video signal was

captured by a frame-grabber card and stored as 8-bit TIFF images on the computer.

The software control was developed in collaboration with W. A. Tokaruk, and imple-

mented in the C programming language. The software moved the translating stage to

the input locations given as a length along the axis of the drum with stops every given

distance, typically 20 cm and 2 mm, respectively. At each stop, the camera took ten

images with the laser sheet on, and the laser was turned off and an image was taken

with no laser sheet present, a background image. The images were labeled by software to

record the time, axial position and whether the image taken is a background image. The
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images with a laser sheet present were averaged to correct for uneven lighting conditions

and the average time of the ten images were recorded on the resulting image. Each scan

took approximately 7.5 seconds or 6 drum revolutions.

2.3.1 Analysis of Scanning Profilometer Data

Data from the camera were stored in 8 bit format as black and white tiff files, one file

for each image captured. Two types of image were collected, some with the laser sheet

striking the granular surface and some without the laser sheet present.

To isolate the laser image from background data and noise, the background was

subtracted from the laser image. The remaining signal is composed of all the pixels in

the laser image where the sheet is present. The laser images and background images

were taken 0.2 seconds apart to ensure that the background lighting did not change

significantly within the black canvas enclosure. Then a circle was cropped around the

image of the laser sheet, and the pixel grey-scale values outside of that circle were set

to 0 (black), this eliminated unwanted signals such as the laser sheet reflecting off the

back of the rotating drum. Finally the images were read into Matlab as unsigned 8-bit

matrices and converted to double precision. This allowed mathematical operations to be

performed on the images.
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Figure 2.3: Calibration curve relating average image intensity to the relative concentra-

tion of grains.
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To calibrate intensity levels of a laser sheet image to a concentration or ratio of large

white to small black grains, samples with concentrations ranging from 0 percent salt to

100 percent salt in increments of 10 percent were imaged as described above. For each

mixture 200 frames were analyzed. The integrated intensity was calculated for each image

by adding the pixel greyscale values ranging from 0 to 255 and dividing by the number of

pixels in the image. This was done for each of the 200 frames corresponding to a particular

mixture concentration, and the average value of these was taken to represent the intensity

corresponding to that particular concentration value. The standard deviation was used

as the uncertainty in the measurement. These data are shown in figure 2.3. A weighted

quadratic least-squares fit to the data yields, where I is the image intensity and C is the

concentration of large to small grains,

I =
(

−2.00 × 10−5
)

C2 +
(

8.52 × 10−2
)

C +
(

9.75 × 10−1
)

(2.1)

This curve is also shown in figure 2.3. From this calibration curve, intensity measurements

of the laser image constitute measurements of the concentration at a given axial position.

After calibration, extracting data from the double-precision image matrices was com-

pleted in four steps: determining the concentration, applying a foreshortening correction,

thresholding the image to eliminate noise, and fitting the resulting data to a fifth-order

polynomial to determine the surface profile and dynamic angle of repose. Each of these

steps are described in detail below.

The quadratic polynomial calibration curve given above has two roots for the concen-

tration C, both real valued in the range of I that is measured. One is always between

0 and 100 and the other is greater than 100. We discarded the latter as unphysical and

used the former to calculate the concentration of large to small grains from the average

laser intensity of the image we measured.
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Figure 2.4: Histogram of image intensity, and the threshold value used to eliminate noise

pixels.
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To eliminate noise pixels from the images, a reasonable threshold value was deter-

mined by examining histograms of pixel intensities, such as in figure 2.4. This figure

shows the pixel intensity values on the horizontal axis and the logarithm of the number

of pixels having the corresponding intensity on the vertical axis. The data was taken

from two calibration images, one with a relative concentration value of 100 percent, the

other 0 percent. From the histograms it can be seen that a threshold value of 7 (also

shown in figure 2.4) adequately reduces the noise from the large number of pixels with

low intensity while retaining information from the black sand mixtures. All pixels whose

intensity was larger than the threshold value were output to data sets as (x, y, I) points,

where the x and y values correspond to the position of a pixel in a Cartesian coordinate

system. From images of the laser sheet viewed at an angle Ψ such as that from figure 2.2,

we determined the surface profile as though it were taken from the end of the drum. To

do this we needed to effectively elongate the image along the horizontal x-direction while

the keeping the vertical length unaffected. By applying the foreshortening correction

x′ = x/ cos Ψ (2.2)

y′ = y (2.3)

we obtained this end view, where x′ and y′ are the corrected pixel positions. As mentioned

earlier for the experiments cited here, Ψ = 41.2 ± 0.2o.
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Figure 2.5: a) Image of the laser sheet for a pure sand mixture, b) image of the laser

sheet for a pure salt mixture. These images have been inverted to aid in the visualization

of the laser sheet. Note the kink in the sand image.
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Once the foreshortening correction was applied to an image of the laser sheet, the

resulting data were fit to a fifth-order polynomial. This high order was chosen as mixtures

with a high sand concentration generally have a kink in their surface profile, as can be

seen in figure 2.5a, where the relative concentration is 0 percent salt. Figure 2.5b shows

that the profile of a 100 percent salt mixture is much closer to a straight line. A weighted

least-squares scheme was used for the fit, as the coefficients of higher-order terms vanish

if they are not necessary to describe the data. Figure 2.5b shows that the beam spreads

when it strikes the grains. To compensate for this effect each pixel was assigned a weight

of (1/I) in the fitting scheme. Recall that for a general least-squares fitting scheme, the

χ2 merit function is defined as

χ2 =
N

∑

i=1

[

yi −
∑M

k=1 akXk(xi)

σi

]2

where the Xk are basis functions, yi are the data points and the ak are the linear coeffi-

cients to be determined [58]. If the error σi is set as (1/I) then brighter pixels carry more

weight in the fitting scheme. Since brighter pixels carried more weight the polynomial

was fit to the center of the width of the laser sheet. The surface slope below the kink

was rather insensitive to the concentration. We therefore calculated the dynamic angle

of repose from the average arctangent of the slope of the polynomial profile above the

kink. Further details about this measurement technique, such as the reconstruction of

surface profiles of flowing grains in the drum can be found in Z. S. Khan’s M. Sc. report

[64].
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Figure 2.6: Graph of the time and position of each scanning profilometer measurement

for a section of the data run. The mixture being imaged is a standing wave mixture with

a presegregated wavlength of 33 mm and with a drum rotation rate of 0.77 rev/s.
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Figure 2.7: a) a space-time diagram of the concentration field corresponding to the

graph in figure 2.6. The concentration values of each pixel in the image are shown in the

colourbar to the right, b) the space time diagram of the dynamic angle of repose field

corresponding to figure 2.6 and (a).
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Space-time diagrams of the relative concentration of grains and dynamic angle of

repose are necessary to analyze the evolution of the travelling wave transient and axial

segregation. These diagrams were constructed as follows: A portion of the scanning

profilometers’ space-time trajectory is shown in figure 2.6. The translating stage begins

at the far right, at a position labeled 200 mm and travels to the left by 2 mm steps, to a

position labeled as the axis origin, 0 mm. At each step a measurement is taken. When it

reaches the origin it returns quickly to the starting position and repeats the measurement.

Each scan takes approximately 7.5 seconds to complete, or 6 drum revolutions

To reconstruct the space-time evolution from this data set, we interpolated to obtain

values of concentration and dynamic angle at regular time intervals. Linear interpolation

at constant positions was performed for 5 second intervals. Then a space-time diagram

was constructed from the measured positions at the interpolated time values. Figure 2.7a

is an example of a space time diagram of relative concentration values of a standing wave

transient which occurs in a presegregated mixture of sand and salt whose presegregated

wavelength is 3.3 cm. Its composition and the setup of the initial condition are described

in section 2.1. Figure 2.7b shows the corresponding space-time diagram of the dynamic

angle of repose.
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Figure 2.8: a) The power spectrum of the discrete two-dimensional fast-Fourier transform

(fft) of the concentration field shown in figure 2.7a). b) The power spectrum of the

discrete two-dimensional fft of the dynamic angle of repose field shown in figure 2.7b).
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Figure 2.9: The phase angle of the area in the black box of the power spectrum shown

in figure 2.8 calculated using Matlab’s angle function.
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In order to compare this data to a physical model [38, 39], we determined the wave

speed and phase relationship between the dynamic angle and relative concentration fields.

We accomplished this using the two-dimensional fast-Fourier power spectra of the evolv-

ing spatio-temporal fields from the space-time diagrams. Examples of two-dimensional

discrete Fourier power spectra for the concentration and dynamic angle fields are shown

in figures 2.8a and b respectively. First we fit a Gaussian to the upper-left and upper-

right peaks in the power spectra. The wavenumber of the peak of the Gaussian gives

the wavlength of the travelling wave pattern, the inverse of its wavenumber (1/k). The

frequency divided by the wavenumber yields the wave speed of the pattern. Matlab’s

angle function calculates the phase angle of the input discrete fft. This is shown plotted

in figure 2.9 for the region corresponding to the boxed area in the power spectrum of

the concentration field in figure 2.8a. The phase difference was taken to be the average

of the absolute value of the angles located within the full-width half-maximum of the

peaks in the power spectrum. We discuss in chapter 3 the implications of this data for

the Aranson et al. model [38, 39].

2.4 Surface Video Imaging

The pioneering work of Choo et al. showed that by capturing video images at regular

but short intervals, and essentially stacking them in time, one could observe dynamics

of axial segregation that had not been observed before [35, 36]. These dynamics include

a travelling wave transient and band merging events. This technique enabled them to

measure the relevant length and time scales in the axial segregation process. We used

this now standard technique to examine the coupling of the radial core with the relative

surface concentration of grains, and the mixing of differently coloured but otherwise

identical grains.
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Figure 2.10: An image of the experimental apparatus used to investigate surface axial

segregation. The drum is lit from above and the lights are covered by a Mylar sheet

which acts as a light diffuser. The camera and stepper motor are computer controlled.
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An image of the surface video imaging apparatus is shown in figure 2.10. A high

speed CCD camera was mounted so that it viewed the grains perpendicular to the flowing

granular surface and parallel to the drum. Typically this camera imaged a 20 cm portion

of the drum, located at the midpoint of the drum. The overhead lights consisted of six

60 W incandescent light bulbs mounted above and parallel to the drum. The lights were

covered in Mylar to reduce the reflected glare on the drum. The entire apparatus was

enclosed in a black tent to isolate the experiment from variable background lighting.

The controlling software was written in C and implemented on a computer with the

QNX operating system by Z. S. Khan and W. A. Tokaruk. This software turned on the

camera, rotated the drum at the input frequency, and controlled image acquisition. The

images were taken at input intervals, typically five images per drum rotation, and were

time stamped for the purposes of data analysis.

2.4.1 Data Analysis of Surface Video Images

Figure 2.11 shows a typical image taken of the rotating drum. The region of interest is

highlighted by a grey box in the image. The format of the digital image is 8-bit black

and white TIFF, the pixel intensity ranging from 0 (pure black) to 255 (pure white).

Using Matlab’s image processing software, the time-stamped digital images were input

and converted to double format matrices. The region of interest was then subtracted from

each image. Typically the length of this region was 20 cm located at the midsection of the

drum. Longer regions of the drum were not generally examined due to the small diameter

of the drum (2.85 cm); in order to capture more length the number of pixels spanning

the width of the drum would have had to be descreased, and axial band dynamics would

then be partially lost.
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Figure 2.11: An image of the rotating drum containing a mixture undergoing axial seg-

regation lit from above. The region of interest for image processing as described in the

text is shown in a grey box
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Figure 2.12: a) Vertically averaged greyscale values of an image of the rotating drum

taken of the region of interest shown in figure 2.11. b) A space-time diagram constructed

from vertically averaged greyscale values such as the one shown in (a). The region

corresponding to (a) is enclosed in a grey box.
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The digital images were taken at a rate of five per drum revolution, and averaged

to produce a view of the drum at each revolution. Then the vertical greyscale average

was determined by averaging row components for each column in the matrix (columns

represent axial position). Figure 2.12a shows the vertical greyscale average of five images

averaged at the drum revolution corresponding to figure 2.11. Averaging is performed

over the full vertical extent of the drum because if the band is slightly wider at the top of

the flowing layer than the bottom, the vertical average captures this information, whereas

a horizontal line of pixels at some arbitrarily chosen location on the flowing granular

surface does not. Due to the sharp colour contrast of the grains, the concentration of

large to small grains was taken to be linearly proportional to the greyscale values [35, 36].

The average greyscale values, as shown in figure 2.12a were combined to create an

m by n matrix. The m dimension refers to the number of averaged times taken; the

five images per drum revolution were averaged to produce a mean view of the drum per

revolution, and the five times stamped on these pictures were then averaged to determine

the mean time. The n dimension refers to the axial position of each pixel along the drums

axis. This matrix, when displayed as a black and white image, is a space-time diagram

of the grain dynamics. The pixel colour corresponds to its value, and the pixel position

corresponds to its time and position along the drum axis. Typically colour bars are not

displayed for these space-time diagrams; the darkest regions correspond to regions of

small black grains and the lightest regions correspond to regions of large white grains.

The greyscale space-time values were used for more quantitative analysis, such as Fourier

methods [35, 36]. An example of a space-time diagram is shown in figure 2.12b. The

region of this diagram corresponding to the average greyscale values shown in figure 2.12a

are at the center of the grey box. A detailed description of the Fourier methods used to

determine the growth rate of the axial band pattern is given in section 2.5.1.
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2.5 Bulk Visualization Technique

Many important and outstanding questions concern the role of the radial core in the

axial segregation process. How are the radial and axial segregation modes related? Can

the radial mode be taken to be the driving force of axial banding [43]? In an effort to

elucidate answers to these questions, as well as questions about the radial core width and

axial band coupling, a new bulk visualization technique was developed.

Since salt grains are translucent and sand grains are opaque, if a bright light is shone

behind the rotating drum, one can observe the shadow of the radial core cast on the front

face of the flowing granular surface. This was the basic idea behind the backlighting

technique. The apparatus used for these backlit experiments is essentially identical to

the one mentioned in section 2.4 with three important additions. A light fixture with

bright 90 W incandescent light bulbs was mounted behind and parallel to the drum,

and a mirror was placed beneath the drum at an angle in order to reflect light through

the widest volume of grains in the drum. Finally, a light shield was mounted parallel

to and behind the contact line between the grains and the back wall at the drum, to

prevent the flooding of the CCD camera with the bright light, which would obscure the

images. An image of this apparatus is presented in figure 2.13. Though this method

only provides two-dimensional data, it poses an advantage over slower MRI methods

since it is very fast. Five images per drum revolution were obtained and averaged to

determine the evolution of the radial core. This method was combined with surface

video imaging for some experiments, with the computer controlling both sets of lights

via a triac-based switch developed by S. W. Morris. By sending a 5 V signal to the

switch through a digital-analog-signal card, the lights were turned on and off, switching

between the overhead lights described in section 2.4, and the back lights described here.
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Figure 2.13: An image of the experimental apparatus used for the back-lit bulk visualiza-

tion technique. The camera, surface lights, back-lights and stepper motor are computer

controlled. A detailed image of the back-lights, light shield, drum and mirror are shown to

the right, illustrating this methods’ effectiveness in investigating subsurface phenomena.
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A similar experimental technique has been used by Fiedor et al. [37]. In that work

a bright light shone behind the drum filled with large transparent and small black glass

spheres. The drum was filled with water which acts as an index-matching fluid to the

large transparent spheres, so only the smaller black spheres comprising the radial core of

this slurry mixture are visible. The techniques described here is better for the analysis of

dry segregation because it eliminates the complicated interaction of the grains with the

index-matching fluid and allows dry segregation to be studied. This technique was also

used to examine the propagation of the radial core in mixtures containing glass spheres,

as described in chapter 4.

2.5.1 Analysis of Bulk-Visualized Data

Figure 2.14a shows a typical image of the radial core shadow. This image was then

subtracted from a background image of the drum filled only with large grains, that is,

no sand grains present. This reduced noise effects on the data images, such as uneven

lighting effects. Using Matlab’s edge detection software package, the radial core height

h(x, t) was measured from background-subtracted data images as shown in figure 2.14b

and expressed as a fraction of the full height of the material in the drum.

If we assume that any cross section of the three-dimensional structure of the radial

core perpendicular to the axis of the drum is a fraction of a circular disk, then h2, the

fraction of the contents of the drum occupied by the radial core, is proportional to the

concentration C(x, t) of small grains contained in the radial core at each axial position

x. We justify this assumption by noting that Ristow et al. [40] state that for their

experiments in a half-full drum filled with small particles, the radial core occupies a

half-circle in 2D axial cross sections of the drum. They further assume that for lower

concentrations of small particles in the radial core, the small particles occupy regions in

the shape of half-circles in axial cross-sections of the drum, albeit with a smaller radii,

in order to calculate the concentration of small grains in the radial core. MRI images
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of axial cross-sections of radial cores justify Ristow et al.’s assumption that the radial

core in a half-full drum has a cross-sectional shape of a half circle [20]. Since we conduct

experiments in an approximately 30 % full drum, we follow Ristow et al.’s argument and

assume that the radial core occupies a 30 % fraction of a circle in axial cross-section of

varying radius depending on the quantity of small grains within the radial core. We can

then relate the concentration of small grains occupying the radial core with the fraction

of the radial core h that we have measured, when we consider that h is the chord length

of a circular segment, as shown schematically in figure 2.14c. The area of a 30 % fraction

of a circular disk of radius r is area = 0.3πr2. The chord length h = 2r sin
(

θ
2

)

where θ is

the central angle made by the chord. We then express the area of this circular segment

to the chord length via area = 0.3πh2/4sin2
(

θ
2

)

, which gives C(x, t) ∝ h2.

Figure 2.15a shows the time evolution of the x integral of h, which increases with time.

Figure 2.15b shows that the x integral of h2 is constant in time, as it should be for a

conserved quantity. This supports our assumption about the core shape and demonstrates

that h2 can be used as a local concentration measure. The error in measurement of h2

corresponds to an error in h of ±2 pixels.

Our concentration profiles of small grains in the radial core then consisted of the

values of h2 for each spatial position and time for the course of the experiment. One such

concentration profile is shown in figure 2.15c. These values of h(x, t)2 were also used

to construct space-time diagrams of radial core dynamics by creating a two dimensional

image.
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Figure 2.14: a) An example of data collected using the bulk visualization technique.

This is a 1.5 mm presegregated pulse of black hobby sand in the size range of 177-212

µm spreading into surrounding salt grains in the size range of 300-420 µm. The drum

rotation rate was 0.3 rev/s. b) An example of edge detection used on the image shown

in (a). The fraction of the image occupying the radial core is denoted by h(x, t) and is

calculated for each axial position for each image taken with the time recorded on the

image. c) An illustration of the radial core forming a circular segment shaded in grey,

with a chord length h, making a central angle θ in a disk of radius r.
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Figure 2.15: a) The x integral of h is not constant in time and is thus not proportional

to the volume of small grains contained within the radial core. b) The integral of h2 is

constant in time and is assumed to be proportional to the desired concentration. c) A

concentration profile corresponding to the data shown in figure 2.14a, it was calculated

from h2 at each axial position in the image.
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Another example of data obtained with the backlit bulk visualization technique is

shown in figure 2.16a. This image was taken of a mixture undergoing axial segregation in

a mixture of 1/3 black hobby sand grains in the size range 177 − 212 µm and 2/3 white

table salt with sizes in the range 300− 420 µm in a 5.6 cm diameter drum. Figure 2.16b

shows the fraction of the radial core squared or concentration of small grains measured

at each axial position in figure 2.16a. A space-time diagram was constructed by creating

an m by n matrix of these h(x, t)2 values where the m-dimension corresponds to time and

the n-dimension corresponds to the axial position x. Figure 2.16c shows a space-time

diagram for the run from which image 2.16a was obtained.

In addition, for some experiments, growth rate measurements of axial bumps on the

radial core were required [35, 36]. The growth rate was determined by taking a one-

dimensional Fast Fourier Transform at each time step of axial pixels obtained at that

time step and finding the largest bin which corresponds to the largest amplitude mode.

Figure 2.17a shows a three dimensional plot for each time step of the 1D FFT for the

space-time diagram shown in figure 2.16b. Then the logarithm of the power in the largest

bin was plotted against time, and the early-time exponential growth was fit to a straight

line to determine the growth rate as shown in Figure 2.17b.

In this chapter we described the experimental techniques used to produce the results

we describe in the remainder of this thesis. Among the techniques common to research

in this area are grain preparation and surface visualization methods, and digital image

analysis. Our own original contributions to the methodology consist of the scanning

profilometer and backlighting technique for bulk visualization. The scanning profilometer

was used to establish the results discussed in chapter 3, which deals with our traveling

wave experiments; the bulk visualization technique was instrumental in obtaining the

results discussed in chapters 3 and 4; the latter outlines our investigation of subdiffusion

in the axial transport of grains.
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Figure 2.16: a) An example of data obtained using the bulk visualization technique

described in the text. The mixture used in this run is composed of 1/3 sand in the

size range 177-212 µm and 2/3 salt in the size range 300-420 µm with randomly mixed

initial conditions. The drum rotation rate was 0.3 rev/s. This image was taken at t

= 180 s. b) A concentration profile calculated from the radial core fraction squared

h(x, t)2 corresponding to the image in (a). c) A space-time diagram constructed from

concentration profiles such as the one in (b) for the data run corresponding to (a).



Chapter 2. Experimental Methods and Data Analysis 48

Figure 2.17: a) The power series of the spatial fft stacked in time for the space- time

data shown in figure 2.16c). b) An example of the growth rate calculation for the axial

segregation pattern shown in 2.16c). The logarithm of the power series for the largest

bin in (a) is plotted in time, and early-time exponential growth is fit to a straight line.



Chapter 3

Traveling Waves; Experimental

Results and Discussion

In 1997, Choo and co-authors discovered that a traveling wave transient can occur prior

to axial band formation in a mixture of sand and salt grains [35, 36]. Using presegregated

initial conditions with different wavelengths to study uniform regions of standing waves,

they determined that the wave speed depended on wavelength, and that the standing

waves ceased to propagate above an initial wavelength of 54 ± 1 mm. These intially

segregated bands remained in a frozen state. With this data Choo et al. constructed a

dispersion relation for the wave transient in their mixture.

This discovery falsified a detailed continuum model of axial segregation by Zik et al.

[34], as described below, and prompted Aranson and Tsimring [38] and Aranson, Tsimring

and Vinokur [39] to develop a new theory which models both axial segregation and the

traveling wave transient. This chapter contains a discussion of both theories, including

experimental tests of the predictions of the Aranson et al. model, and concludes with

an examination of numerical simulations of axial segregation and how they are related

to our experiments [30, 66]. We also discuss the observation of traveling wave dynamics

in a bidisperse mixture of glass spheres by Fiedor et al. [37], and describe a more

49
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recent attempt by Aranson and Tsimring [65] to theoretically model an oscillatory axial

segregation transient found in ternary granular mixtures by Newey et al. [29].

3.1 An early theoretical model of axial segregation

The first detailed continuum model of axial segregation was proposed by Zik et al. [34].

This model was based on the dynamics of a thin mobile layer of particles flowing down the

free surface of the grains in the drum; several experimental observations of segregation

in mixtures of large glass and small sand grains provided the motivation. It was assumed

that segregation is driven by an instability nucleated by concentration fluctuations due

to the motion of the grains on or near the free surface, that bulk motion can be ignored,

that the shape of the free surface plays a vital role, and that friction is essential to the

occurrence of segregation.

The authors [34] elucidate the importance of friction between the different types of

small and large grains by observing that the different frictional properties of the grains

lead to different dynamic angles of repose. The dynamic angle of repose is defined as the

angle of the slope of the free surface of grains in the drum as they are flowing continuously.

It was also observed by the authors that the free surface often deviates from a flat surface

to a more complicated S-shaped profile in experimental systems.

Zik et al. suggested that the variations in the dynamic angle of repose of the large

and small grains provide the driving mechanism of axial segregation. They reasoned that

if there is a local increase in the concentration of one type of particle with a larger angle

of repose the local slope of the free surface at that location will be larger; typically the

smaller grains have a larger angle of repose [32]. This will lead to a bump near the top of

the free surface and a dip near the bottom. Since the particles tend to travel along the

steepest path of descent, more particles with larger dynamic angles of repose accumulate

in that location. The segregation instability develops from this.
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The authors proposed the following continuum model

∂c

∂t
=

C

νT
(tanφg − tanφs)

∂

∂x
c(1 − c)

〈

(1 + h2
y)

hx

hy

〉

(3.1)

based on the conservation law for the fractional concentration of glass particles in a

mixture of sand and glass particles,

c(x, t) =
νg

νg + νs

where νg and νs are the number densities of glass and sand respectively.

In the model, x and y are Cartesian coordinates along the axis of the drum and across

the cross section of the drum, φg and φs are the dynamic angles of repose of glass and

sand particles, h(c, x, y, t) is a concentration-dependent function describing the shape of

the free surface of the grains flowing in the drum, and νT = νg + νs. C = p3
o/3ηg2 is a

constant related to the effective viscosity of the materials in the flowing layer and gravity,

where Zik et al. consider the flowing layer to be a fluid with constant viscosity η, po is a

constant pressure value, and g is the magnitude of the gravitational force. The term in

the angled brackets denotes the axial flux of material averaged over the cross section of

the drum.

In order to have axial segregation in this model, it is required that
〈

(1 + h2
y)

hx

hy

〉

< 0,

in which case equation 3.1 becomes a diffusion equation with a negative diffusion coef-

ficient, and so exhibits the segregation instability. The authors [34] also report that the

term in the angled brackets vanishes for a straight free surface profile, hy = constant(y).

This is due to their assumption that hx changes sign in the middle of the drum, therefore

the mixing and demixing processes cancel out. For the experimentally observed S-shaped

free surface profile, Zik et al. determined that the instability condition, a negative diffu-

sion coefficient is satisfied when the drum is more than 50 % full.

Experiments disagree with the predictions of this model, as axial segregation has been

reported to occur in less than half full drums [27, 35, 36]. Furthermore, the report of a

traveling wave transient which occurs prior to axial segregation [35, 36] invalidates this
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model. Choo et al. showed that these waves are sufficiently linear at early times to

form superposed standing wave patterns, and that the wave speed of left and right-going

traveling waves is constant. This behaviour is unlikely to result from nonlinearity in a

one dimensional diffusive PDE model which is first-order in time, as it cannot describe

counter-propagating waves which obey superposition [35].

3.2 A model which reproduces the traveling wave

transient

In order to account for the oscillatory transient preceding axial segregation found by

Choo et al. [35, 36], Aranson and Tsimring [38], and Aranson, Tsimring and Vinokur

[39], generalized Zik et al.’s model [34]. Aranson et al.’s assumption was that there is a

slow variable involved, in addition to the relative concentration of grains c = (cA−cB)/〈c〉,

and this accounts for the oscillatory band dynamics [38, 39]. Here the grain type cA has a

larger static angle of repose and typically represents the smaller grain size, and the grain

type cB has a smaller static repose angle, and typically represents the larger grain size.

The average concentration of particles over the entire length of the drum is represented

by 〈c〉 = 〈cA + cB〉. They conjectured that this slow variable is the dynamic angle of

repose φ, which in contrast to Equation 3.1 is not slaved to the relative concentration

of grains c, but is dynamically independent. Both c and φ are functions of the axial

coordinate x and time t. The equations of the Aranson et al. model are:

∂c

∂t
=

∂

∂x

(

D
∂c

∂x
− g(c)

∂φ

∂x

)

(3.2)

∂φ

∂t
= α (Ω − φ + f(c)) + Dφ

∂2φ

∂x2
+ γ

∂2c

∂x2
. (3.3)

The first term on the right hand side of Equation 3.2 describes mixing due to diffusion,

and the second term describes the differential flux of particles as a result of gradients in
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the dynamic angle of repose. This incorporates Zik et al.’s observation that a concen-

tration fluctuation results in a change in the dynamic angle of repose, as described in

section 3.1. Aranson et al. use g(c) = Go(1 − c2) where the constant Go can be elimi-

nated by rescaling the axial coordinate x by x → x/
√

Go. This term acts as a saturation

mechanism for the segregation instability, since when there is a pure grain state, |c| → 1

and g(±1) = 0, so the segregation flux is eliminated.

The constant α in Equation 3.3 establishes the time scale for axial segregation, and

is characterized by the ratio of the number of particles flowing within the thin surface

layer to the number of particles transported in the bulk flow. For slowly rotating drums,

particles are brought to the surface via solid body rotation, which results in α ∼ 1.

The parameter Ω is the angular velocity of the drum, and f(c) is the static angle of

repose of the grains which has been reported to be an increasing function of the relative

concentration of grains [67]. It has been observed that the angle of repose, as a function

of concentration, changes within a small range of angles [21], thus Aranson et al. assume

that f(c) is linearly dependent upon c, f(c) = F +foc. The constant F can be eliminated

by substituting φ → φ − F .

The first term in Equation 3.3 describes the local dynamics of the dynamic angle of

repose φ; increasing the angular velocity of the drum increases the dynamic angle, and

−φ+f(c) incorporates the concentration dependence of the dynamic angle of repose. The

second term in the equation, Dφ
∂2φ
∂x2 , describes the relaxation of the angle of repose due to

axial diffusion. In order to determine if variations in the dynamic angle were relaxed due

to diffusion in the absence of concentration gradients, we placed monodisperse salt grains

in the rotating drum, and scooped out a portion of the grains, creating a region with a

smaller static angle of repose, since less grains were present in that location. When the

drum was rotated, the axial transport of grains quickly filled that region, and the dy-

namic angle of repose relaxed to a uniform value throughout the drum. The last term in

Equation 3.3, γ ∂2c
∂x2 , represents the lowest order contribution from an inhomogeneous dis-
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tribution of the relative concentration of grains which results from the coupling between

the bulk flow and axial diffusion. This term is the source of the transient oscillatory

dynamics in a two-component or binary mixture of grains. When γ was set to 0 in the

simulation code provided by the authors [57], traveling wave dynamics did not occur.

Aranson et al. [38, 39] show that linear stability analysis of this model about a

homogeneously mixed state, c = co, φo = Ω+foco, gives for gofo > αD a long wavelength

perturbation which is unstable. If goγ > (Dφ − D)2/4 short wavelength perturbations

oscillate and decay. The dependency of oscillation frequency on wavenumber was shown

to agree quantitatively with experimental values measured by Choo et al. [35].

The results obtained by numerical simulations of Equations 3.2 and 3.3 are shown in

figures 3.1a and b. The simulation code was provided by the authors [57]. The code was

run for a dimensionless presegregated wavelength in the traveling wave regime. Figure

3.1a shows the concentration field exhibiting oscillatory band dynamics, and figure 3.1b

shows the corresponding dynamics in the dynamic angle of repose field.

A crucial feature of this model is that these two essentially diffusive fields are coupled

in such a way that they oscillate π/2 radians out of phase during the traveling wave

transient. The two order parameters have a conjugate relationship, like position and

momentum in a mechanical oscillator. Such a relationship is a generic feature of coupled

position-momentum models. It is shown below that the concentration of grains and

dynamic angle of repose do not have the required phase relationship and are in fact

slaved, falsifying this model [28]. When we assume that the dynamic angle of repose φ

is slaved to the concentration c in the above model via a linear relationship, φ = Ac + B

where A and B are constants, we obtained a steady-state solution from equations 3.2

and 3.3, where the concentration field does not evolve in time.
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Figure 3.1: a) A simulated run of the travelling wave transient using the simulation code

from Refs. [38, 39]. In this graph, the space and time dimensions are calculated in

dimensionless units. Here the concentration values range from −1 (pure large grains) to

1 (pure small grains). b) The simulated dynamic angle dynamic angle field corresponding

to a). The units of dynamic angle are presented in radians. For this run, presegregated

initial conditions were used. The decaying oscillations in the concentration and dynamic

angle fields are out of phase during the oscillatory transient, and are in phase for axially

segregated bands, such as the one which has formed near the lower left corner of the

space-time diagram.
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3.3 Experimental measurements of dynamic angle

and concentration.

The scanning profilometer device described in chapter 2 was used to simultaneously mea-

sure the dynamic angle and surface concentration of grains in a rotating drum. In order

to study uniform regions of standing waves; presegregated initial conditions were used.

Figure 3.2 shows the results for an initial wavelength of 30 mm. Decaying left and right

travelling waves pass through each other to form a standing wave until they are absorbed

into nearby axial bands. Figure 3.2a shows the relative concentration measurements and

figure 3.2b shows the corresponding dynamic angles. Traveling waves do not occur for

wavelengths above a cut-off, which was previously reported to be 54 ± 1 mm [35, 36].

Above the cut- off wavelength, presegregated bands were reported to remain frozen at

their initial position. We have studied the relationship between the concentration and

dynamic angle in numerous runs using presegregated wavelengths above and below the

cut-off as well as with random initial conditions.

To verify that we have experimentally reproduced Choo et al.’s original result, and

to check that these mixtures are devoid of any systematic errors in their preparation

which might produce similar wave transients but not identical to the ones described by

Choo et al. [35, 36], we plotted the wave speed dependence on wavelength for both the

concentration and dynamic angle fields, shown in figure 3.3a. The wave speeds were

calculated by fitting a Gaussian to the power spectrum of the 2D FFT of the space-time

diagrams. The wave number divided by the frequency of the peak yields the wave speed,

and the error in the wave number and the frequency were taken as the half-width of the

Gaussian at half-maximum. This data closely resembles Choo’s original data presented

in figure 2 of Reference [35]. Figure 3.3b shows the difference of the wave speeds of

concentration and dynamic angle as a function of wavelength. This figure shows that the

wave speed data for both fields are experimentally indistinguishable.
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Examining figures 3.2a and b, it is clear that the phase difference between the con-

centration and dynamic angle of repose fields must be close to a multiple of π radians.

This is most apparent from the temporal nodes, which occur at nearly the same time

for both fields. In order to determine the phase difference between the two fields, we

analyzed the two-dimensional Fourier spectra of their space-time evolution. The phase

difference for each peak was taken to be the average of the absolute value of the angles

located within the full-width half-maximum of the peaks in the power spectrum. The

error for each run was taken as the sum of the squares of the standard deviation of the

absolute value of the angles located within the full-width half-maximum and the devia-

tion between the values of each peak. The phase difference is shown in figure 3.4a, as a

function of the presegregated wavelength. In all cases, the standing waves are π out of

phase, within the uncertainties, including those above the cut-off wavelength. Note that

our anti correlation (the phase difference of π) is merely a consequence of our conven-

tions about concentration, that is, it is the same as measuring a phase difference of 0.

Thus, high concentration of the larger, white salt component is directly correlated with

small dynamic angles of repose, while black sand concentration is correlated with large

dynamic angles. This is the case both during the oscillatory transient and for the fully

segregated bands.



Chapter 3. Traveling Waves; Experimental Results and Discussion 58

Figure 3.2: (a) Space-time plot of relative concentration for a mixture with a 30 mm

presegregated wavelength initial condition. (b) The corresponding space-time plot of

dynamic angle of repose. The maximum amplitude of the standing wave in concentration

corresponds to the minimum amplitude of the standing wave in the dynamic angle, and

vice versa, thus the two fields are π out of phase throughout the oscillatory transient.

It is also apparent that the saturated axial bands in both fields maintain this phase

relationship.
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Figure 3.3: a) Velocity dependence of wavelength for the concentration (small solid sym-

bols) and dynamic angle (large open symbols) for mixtures with presegregated initial

conditions (squares) and randomly mixed initial conditions (triangles). b) The differ-

ence of wave speeds for dynamic angle and concentration as a function of wavelength

for mixtures with presegregated intial conditions (circles) and random initial conditions

(triangles).
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These results dramatically contradict the predictions of theory [38, 39]. In order to

compare them directly, we ran the full nonlinear simulations described in [38, 39, 57] for

presegregated initial conditions. Figures 3.1a and b shown in section 3.2 are an example of

these simulated runs, which are output in the same format as the experimental data. We

analyzed these results using the same procedure as for the actual data. Figure 3.4b shows

the absolute value of the phase difference for the simulated runs; below the cut-off the

phase difference is π/2, and the two fields are out of phase as one expects for conjugate

order parameters. For initial wavelengths above the cut-off, zero phase difference is

found. This clear contradiction with experiment demonstrates that the dynamic angle of

repose is not the order parameter conjugate to the surface concentration. Since no other

superficial feature appeared likely to be an independently evolving slow field, we turned

our attention to subsurface phenomena.

3.4 Subsurface phenomena

The radially segregated core, which is ignored in continuum models [34, 38, 39], has long

been suspected of being involved with the mechanism of axial segregation. Observations

using MRI imaging [20, 21] suggest that axial bands begin as subsurface bumps on the

core which only become visible when they break the surface. Thus, a possible candidate

for the second order parameter would be the local thickness of the core. In this view,

the waves are caused by the periodic exchange of material between the surface and the

core. We know that such a core is present in our sand and salt mixtures from excavating

the segregated mixture after the experiments, and from observations through a window

forming the end of the drum.
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Figure 3.4: a) The absolute value of the phase difference between the experimentally

measured concentration and the dynamic angle of repose fields as a function of wavelength

for presegregated initial conditions (squares) and random initial conditions (triangles).

The dashed line serves as a visual aid, demarcating the value of π radians. The data

indicates that the two fields have a constant phase difference of π radians. b) The

absolute value of the phase difference between the concentration field and dynamic angle

of repose as a function of wavelength for the theoretical simulation used in Refs. [38, 39].

The simulated wavelength values are dimensionless units. The phase relationship between

these two fields as predicted by the theory is in direct disagreement with the experimental

values shown above.
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In order to quantitatively investigate the role of the radial core, we developed the bulk

visualization technique as described in chapter 2. Since the salt grains are translucent

and sand grains are opaque, we found that positioning a bright light source behind

the rotating drum casts a shadow of the radial core on the front face of the mixture.

The shadow is in effect a two dimensional projection of the core. No index-matching

interstitial fluid is required [37]. By alternately illuminating the drum from above and

behind, we collected images of both the surface concentration and the projected core as

a function of time using a stationary camera.

Figures 3.5a-i show the actual core projections at different times through the transient.

From these images it is apparent that the transient is a result of an oscillatory radial core

instability, where the thickness of the core oscillates between the axial bands. Using edge

detection, the radial width of the shadow of the core was measured and expressed as a

fraction of the full width of the material in the drum. Figure 3.6 shows the space-time

evolution of a mixture with a 30 mm presegregated initial wavelength. The oscillatory

transient can be clearly seen in both the surface concentration and the core width. We

can see from figure 3.6 that, as in the case of the dynamic angle of repose, the width of

the radial core and the surface concentration are not π/2 out of phase; they are oscillating

in phase with one another. Thus, a simple order parameter based on the width of the

core also fails to satisfy the requirements of an order parameter conjugate to the surface

concentration.

Another possible mechanism of the traveling wave transient is static charging of grains

due to frictional contact with the drum walls or inter-grain frictional charging. It has

been observed by others that a variety of wave patterns are found to form in thin layers

of sand rotating in a glass drum at a constant rotation rate. In these experiments, the

sand coating the drum forms a standing wave pattern, where the peak of the waves form

cusps [50]. The coating of the grains was likely due to electrostatic forces and the grains

rearranged themselves into spatial patterns in response to forces exerted between
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Figure 3.5: Axial projections of the radial core at: a) 66 seconds, b) 88 seconds, c) 111

seconds, d) 133 seconds, e) 156 seconds, f) 178 seconds, g) 201 seconds, h) 223 seconds,

and i) 246 seconds. For this run, the drum was approximately 30 % full, with a 3.0 cm

presegregated initial wavelength. The drum rotation rate was 0.76 rev/s. Here we can

see that the transient results from an oscillatory radial core instability.
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Figure 3.6: (a) Space-time plot of greyscale surface measurements for a mixture with

a 30 mm presegregated wavelength initial condition. (b) The corresponding space-time

plot of the fraction of radial core from axial projections of the radial core. The maximum

amplitude of the surface measurements corresponds to the minimum amplitude of the

fraction of radial core, and vice versa, thus the two fields are π out of phase throughout

the oscillatory transient.
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neighbouring grains [51]. Note that in our own experiments static was controlled, as

described in chapter 2.

In order to test the possibility of static charging forming the second field in the

Aranson et al. model of the traveling wave transient, we performed a number of stopping

experiments in which the drum was halted and then restarted after a variable delay time.

The delay ranged from a few seconds to over an hour and in all cases was sufficiently

long that all grain motion ceased. Figure 3.7 shows space-time diagrams from stopping

experiments, the location of the thick black line on the space-time diagram shows when

the experiments were stopped and restarted. Figure 3.7a shows data from a run that was

stopped for five seconds, figure 3.7b was from a run that was stopped for one minute,

and figure 3.7c was from a run that was stopped for one hour. We observed that some

of the decaying oscillations continued after any delay, even when the drum was stopped

at a temporal node line. These oscillations continue to the left and right of axial bands,

in all three of the cases studied. This suggests that the memory of the pattern does not

reside in static electric charge effects, which we would expect to diffuse away with time.

In addition, it is not clear how simple static charge effects due to inter-grain friction

would account for oscillatory traveling-wave transients in a mixture of glass spheres of

two different sizes [37]. It is possible that inter-grain friction could result in an exchange

of electrons in a mixture of sand and salt, but this is unlikely to occur in a mixture of

spheres of the same material. Nor is it obvious how static charge effects between the

grains and the drum walls would result in an oscillatory radial core instability, where

the radial core is buried below the flowing surface layer. The experiments described

above appear to prove that the memory of the oscillatory instability resides in the three

dimensional configuration of the grains, not in momentum or charge effects.
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3.5 Simulation results in the literature

Parallel to the experimental and theoretical studies of the dynamics of axial segregation,

molecular dynamics simulations have also been performed by Rapaport [66] and Taberlet

et al. [30]. These simulations allow researchers to explore the role of material parameters

by modeling the force laws for each grain interaction, and the interactions between the

grains and the walls of the drum. Some of the parameters that are explored in these

studies are grain roughness and cylinder roughness; these parameters are more difficult to

explore experimentally than in a simulated environment. Below we discuss their results;

for details about the implementation the interested reader can see the cited publications.

In one molecular dynamics study, Rapaport [66] performed a systematic study of the

role of inter-particle and particle-wall friction separately. It was found that if the large

particle and cylinder wall friction coefficient was greater than the smaller particle and

cylinder wall friction coefficient, axial segregation always occurs regardless of the ratio of

the large and small inter-particle friction coefficients. It was also found that if the large

and small grain particle-wall friction coefficients are equal, axial segregation occurs if the

large grains have a higher inter-particle friction coefficient than the smaller grains.

This simulation study also revealed the presence of randomly oscillating segregated

bands along the axis of the drum, however this was attributed to the periodic boundary

conditions of those drums lacking longitudinal stability. In addition, views of the small

grains and large grains alone in the drum revealed that a radial core of the larger grains

was present when axial segregation occurred. This does not correspond to experimental

observations, where the radial core is composed of small grains [20, 21, 28].
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Figure 3.7: Space-time diagrams of the travelling wave transient where the drum is

stopped and restarted after: a) 5 seconds, b) 60 seconds, and c) 3600 seconds. The

space-time diagrams were constructed from surface-imaged data and the horizontal line

at 200 seconds in the space-time diagram indicates where the drum was stopped. The

time axis does not reflect the time delay in the stopping of the drum, only the length of

time for which the drum was rotated. In all of these space-time diagrams, oscillations

continue to the left and right of axially segregated bands which were formed at the center

of the drum
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Taberlet et al. [30] used molecular dynamics simulations of collisions between soft

frictional spheres to study axial segregation in a mixture of grains with two different

sizes, when the friction coefficients of the large and small grains were equal. When the

friction coefficients of the large and small grains were different, rapid axial oscillatory

motion of the small-grain bands occurred. It is not clear how these results are related to

experimental observations and measurements of oscillatory band motion as the period of

these simulated oscillations is on the order of several drum rotations, and the period of

experimentally observed oscillations is typically several hundred drum rotations [28, 29,

35, 36, 37]. Additionally, oscillatory axial band motion has been observed in mixtures of

glass spheres differing only by size [29, 37], thus the different frictional properties of the

small and large grains are unlikely to be the mechanism of these oscillations as proposed

by Taberlet et al..

3.6 Observations of traveling waves in a binary mix-

ture of glass spheres

A series of segregation experiments were performed by Fiedor et al. using mixtures

composed of 1/2 small black glass spheres with a diameter of 300 µm and 1/2 large

transparent glass spheres with a diameter of 900 µm in a circular and a square tumbler

with a 6.35 cm inner diameter and inner side length respectively. They observed that at

low rotation rates, from 10-15 rpm, the randomly mixed grains formed axial bands which

remained frozen in time for 2500 drum revolutions, at a faster rotation rate of 20 rpm

they observed band merging dynamics, and for a rotation rate of 25 rpm, they observed

that axial bands displayed traveling wave dynamics. They also reported that traveling

waves were observed in a square tumbler for a rotation rate of 10 rpm, and above this

rotation rate band merging dynamics were seen. When Fiedor et al. added water as an

index-matching fluid to these granular mixtures, the traveling wave dynamics no longer
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occurred.

In order to directly compare Fiedor et al.’s observations in a circular tumbler with the

traveling waves observed by Choo et al. [35, 36] and those reported here, we calculated

the Froude number of each of these systems. The Froude number is the ratio of the

centrifugal force of rotation to gravity, and is defined as Fr = Ω2R/g, where Ω is the

angular speed of the drum, R is the radius of the drum, and g is acceleration due to

gravity. This dimensionless number can be used to characterize flows in the rotating

drum system, where Fr ≪ 1 corresponds to the avalanching regime, where the flow

consists of discrete avalanches, and as the rotation rate increases, inertial effects become

more important. The regime of smoothly streaming flow corresponds to Fr < 1, and the

critical speed for centrifuging occurs at Fr = 1 [15]. While we do not expect experiments

performed with different physical parameters such as drum diameter or grain size to scale

with the Froude number, this balance of the relevant forces does allow us to compare

experiments performed at different scales. For Fiedor et al.’s results described above,

axial bands are frozen in time at Fr = 9 × 10−4 − 8 × 10−3, band merging was observed

at Fr = 1 × 10−2 and traveling waves were observed at Fr = 2 × 10−2. Choo et al. [36]

report that traveling waves are robust and have little dependence on rotation rate in the

range of 15-42 rpm, which corresponds to Fr = 7×10−3 to 7×10−2. The traveling waves

reported by Choo et. al persist for a larger range of Froude numbers, and it is unknown

if Fiedor et. al’s traveling waves have a dependence of wave speed on wavelength, thus

it is unknown how closely the two systems are related.

3.7 Axial band oscillations in ternary mixtures

Newey et al. [29] conducted a study of axial segregation using combinations of differently

sized glass spheres, all dyed different colors. They found that under certain conditions,

when they had a mixture with three non-overlapping sieve cuts or size distributions,
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bands oscillate axially. In these experiments, the width of axial bands of small particles

oscillate and the width of larger particle axial bands stay constant. Eventually the axial

bands merge and this oscillatory transient decays. In contrast to Choo et al.’s oscillatory

axial segregation transient which can be described as a periodic mixing and demixing of

axial bands as viewed from the surface of the flowing granular material, Newey et al’s

oscillatory transient in ternary mixtures is in the form of periodic band displacements as

viewed from the surface .

Aranson and Tsimring [65] proposed the following set of phenomenological equations

to describe the oscillation of axial bands in ternary grain mixtures. They define con-

centration differences CA = c1 − c2 and CB = c2 − c3 where c1,2,3 are the individual

concentrations of the components of the ternary mixture. By analogy with their pre-

vious model, Equations 3.2 and 3.3, they write a system of coupled equations for the

concentration differences linearized near a homogeneously mixed state:

∂CA

∂t
= DA

∂2CA

∂x2
+ µA

∂2CB

∂x2
(3.4)

∂CB

∂t
= DB

∂2CB

∂x2
+ µB

∂2CA

∂x2

When the cross-diffusion terms µA,B have opposite signs, the concentration differ-

ences CA,B will exhibit space-time oscillations. The authors state that this mechanism is

intrinsic to granular mixtures with three distinct size components or ternary mixtures,

but in experimental systems there may be no clear distinction between ternary and poly-

disperse granular mixtures of grains. As well, it is unclear how closely the oscillatory

band dynamics observed by Newey et al. [29] relate to the dynamics studied by Choo et

al. [35, 36] and Khan et al. [28], since no study was made of wave speed dependence on

wavelength in ternary mixtures which exhibit the oscillatory instability.

To recapitulate, in this chapter we have examined the development of several the-

ories which try to explain the occurence of axial segregation in a rotating drum. At
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the time when Zik et al. developed their model [34], the phenomenon had been re-

ported on, and detailed images and descriptions of the final segregated state were availble

[17, 18, 23, 24, 31, 32]; however, no spatio-temporal data was available on the dynamics

of band formation or segregation transients. Later experiments performed by Choo et

al., using digital video imaging techniques not available to previous generations of re-

searchers, showed that oscillatory transients occured prior to axial segregation [35, 36].

The discovery of these traveling waves invalidated Zik et al.’s theory, prompting Aran-

son et al. to generalize the Zik theory to account for the new dynamics [38, 39]. This

promising theory agreed quantitatively well with Choo’s detailed measurements, but an

additional slow variable, the dynamic angle of repose, was needed to account for oscilla-

tory dynamics, and this implied that the concentration and dynamic angle of repose fields

would have a conjugate phase relationship. The present author, in her masters research,

developed an experimental technique to test this implication [64], but in the course of

further experimentation found that these two fields are in fact slaved [28]. Hence the

Aranson et al. theory was also invalidated. This has led us finally to investigate other

candidate slow variables; upon consideration of various alternatives we are led to believe

that there is no independently evolving second surface field. Examination of the dynam-

ics of the radial core using a new bulk visualization technique provides evidence that

axial segregation and oscillatory dynamics of axial bands are a subsurface phenomenon.

Detailed investigations of the dynamics of the radial core in the absence of oscillatory

dynamics is the topic of the next chapter.



Chapter 4

Radial Core Dynamics: Models and

Experiments

Subsurface visualization of axial segregation in a rotating drum using MRI techniques

[20, 21, 43] and optical techniques [28, 29] gave rise to the view that axial bands may result

from a radial core instability that widens and narrows the core at roughly periodic spatial

intervals. This key aspect of axial segregation has long been of interest to experimentalists

[20, 21, 43], though it has been virtually ignored theoretically [33, 34, 38, 39, 41]. In this

thesis, we investigate this phenomenon with the backlighting bulk visualization technique

described in chapter 2. We focused on one aspect of this problem, which was a natural

extension of our previous work on the coupling betwwen the radial core width and surface

concentration described in chapter 3: the axial transport of grains in the radial core. We

investigated how the transport process depends on physical parameters such as drum

rotation rate, grain size, surface roughness and drum diameter. These parameters are

easily varied and are physically relevant to the axial segregation phenomenon [27].

In this chapter we discuss two models of the axial transport of grains in the radial

core, a one dimensional diffusion equation [47] and a one dimensional diffusion equation

with a nonlinear diffusion coefficient [40]. We present our experimental tests of these

72
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models and find that these previously proposed models do not describe our data well.

We instead find that the radial core of small grains evolving from a small pulse initial

condition spreads slower than diffusion, or subdiffusively. We propose two models which

describe subdiffusive transport processes. We also report on investigations of how the

growth of the axial segregation pattern depends on drum diameter and grain size ratio,

and how varying these parameters affects the radial core dynamics. We conclude this

chapter with an investigation of the self-mixing of identical grains differing only in colour,

and find that this mixing process is also subdiffusive.

4.1 Previous studies of the axial transport of grains

Work dating from 1962 by Hogg et al. investigated the mixing of identical grains differing

only in colour [47]. These measurements were performed by mixing yellow and transpar-

ent glass spheres in the size range of 75-105 µm from a two-band initial configuration

in a 4 inch diameter and 16 inch long drum which was approximately 60 % full, and

then at regular intervals, removing grains and counting their proportions. This sampling

was done at thirteen locations along the length of the drum, and only a few such mea-

surements were performed over several thousand drum rotations. The authors reasoned

that the mixing of the grains in the axial direction can only result from inter-particle

collisions and will be completely random. As a consequence the authors considered the

process of the mixing of identical grains to be analogous to diffusion in gases or liquids,

and they modeled their data using the one-dimensional diffusion equation integrated over

the cross-section of the drum

∂C(x, t)

∂t
=

∂

∂x

(

D
∂C(x, t)

∂x

)

. (4.1)

Here C(x, t) is the relative concentration of the mixture at time t from the beginning of

drum rotation and a distance x from the center of the drum, the location of the original

interface, and D is the diffusion coefficient. In this case, since the grains are identical the
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diffusion coefficient D was assumed to be concentration independent. Taking this into

account and replacing the time t with the number of drum revolutions N , Hogg et al.

write [47]

1

D

∂C(x, N)

∂N
=

∂2C(x, N)

∂x2
(4.2)

where the diffusion coefficient D is expressed in the units of in2/rev. The initial conditions

used were

C(x, 0) =











0 if − L
2

6 x < 0,

1 if 0 < x 6
L
2
,

(4.3)

to correspond to the two-band initial condition. Neumann boundary conditions were

employed because there is zero axial flux at the boundaries due to the presence of end

caps:

∂C
∂x

∣

∣

∣

x=−L/2
= 0

∂C
∂x

∣

∣

∣

x=L/2
= 0.

(4.4)

Equation 4.2 can be solved analytically for the initial and boundary conditions given

above, and the solution is

C(x, t) =
1

2
+

2

π

∞
∑

k=1

1

2k − 1
exp

(−(2k − 1)2π2DN

L2

)

sin

(

(2k − 1)πx

L

)

. (4.5)

In Ref. [47] Fig. 8, Hogg et al. superimposed their experimental data on theoretical con-

centration curves determined from equation 4.5, using the average value of the diffusion

coefficient determined for several different numbers of drum revolutions. The authors

determined that there was excellent agreement between this theory and their experimen-

tal data. We have found instead that the self-mixing of indentical grains is subdiffusive,

using higher spatial and time resolution digital imaging techniques, as described below.

Nakagawa et al. [44] investigated the mixing of differently-sized particles from a two-

band initial condition. These experiments were conducted in a 6.9 cm diameter, 27.5 cm

long acrylic drum rotating at 15 rev/min. The drum was designed so that it could be

separated into top and bottom parts for the setup of a two band initial condition. This



Chapter 4. Radial Core Dynamics: Models and Experiments 75

also facilitated sample removal, where 12 dividers were placed into the bottom part of

the drum and the contents of each of these 13 sections of the drum were examined. The

grains used in these experiments were pharmaceutical particles which contain a liquid

core of vitamin oil, with 1 mm, 5 mm, and 3 mm outer diameters. For these experiments,

two grain sizes were set up in a two band initial condition, and the radial core transport

was determined by weighing the portion of small spheres and large spheres in each of the

13 drum sections at different times.

The authors found that a radial core composed of small particles forms at the inter-

face between the band of large and small particles, and that it advances along the axis

of the drum. Removing the grains from the drum and counting them, they produced

concentration profiles for the advancing radial core. They found that their concentration

profiles were similar to the predictions given by diffusive front spreading for small num-

bers of drum rotations, but that deviations from symmetric concentration profiles were

observed for large numbers of drum rotations.

The axial advance of the radial core of small particles was also studied using non-

invasive MRI techniques by Ristow and Nakagawa [40]. In this study, a 10 cm long

and 7 cm diameter drum filled with small (1 mm diameter) and large (4 mm diameter)

pharmaceutical grains containing vitamin oil was rotated, stopped, and inserted into

the MRI bore to obtain concentration profiles of large particles evolving from a two-band

initial condition. The drum was rotated at a constant rate of 11.4 rpm, and measurements

were taken after 0, 15, 30, 45, 60, 75, 90 and 600 seconds of rotation. The authors observed

that the concentration profiles were slightly asymmetrical; they reasoned that this is due

to the presence of more voids in the cascading layer for the smaller particles to move

into, since the smaller particles advance more easily into the region occupied by larger

particles. The authors also observed that the larger particles traveling on the surface

reached the opposite end cap before the smaller particles; they argued that this is what

leads to a radially segregated core in these experiments.
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The authors assumed random particle motion in the axial direction, so they also used

the diffusion equation, equation 4.1, to describe the interface of their two-component

system, where in this case C(x, t) denotes the relative concentration by volume of the

smaller grains and D is the diffusion coefficient of the smaller grains. Ristow and Nak-

agawa used the two-band initial condition and the no-flux boundary conditions shown

above as equations 4.3 and 4.4 respectively [40]. For a constant diffusion coefficient the

authors solve equation 4.1 analytically for the specified initial and boundary conditions,

C(x, t) =
1

2
+

2

π

∞
∑

k=1

1

2k − 1
exp

(−(2k − 1)2π2Dt

L2

)

sin

(

(2k − 1)πx

L

)

. (4.6)

They noted that with a constant diffusion coefficient the model shown above always leads

to symmetric concentration profiles. The authors also showed that the front advancement

of the radial core is underestimated when the propagation of large particles from equation

4.6 is plotted with the experimental data. This motivated the authors to investigate the

effects of a concentration dependent diffusion coefficient on the particle motion. They

investigated two linear dependencies of the form

D± = D0 ± D0

(

C − 1

2

)

(4.7)

which fulfill the condition

〈D〉 =

∫ 1

0

D±dC = D0. (4.8)

They used the concentration dependent diffusion coefficient above in equation 4.1 and

solved this equation using a standard finite difference procedure with a value of D0 that

is identical to the one they previously used for the constant diffusion coefficient D. They

determined that there is better agreement with their experimental data using the above

model than with a constant diffusion coefficient.

In order to understand more fully Ristow and Nakagawa’s choice of concentration

dependent diffusion coefficients in equation 4.7 above, we constructed and ran simulations

of equation 4.1 using equation 4.7 as they described in reference [40] using a forward time
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centered step finite differencing scheme with a spatial step size of 0.05, a time step size of

0.01, and D0 = 0.02. This is the value of D0 used by Ristow and Nakagawa. We ran this

simulation using two different initial conditions: a two band initial condition as was used

in the experiments described above, and a narrow symmetrical pulse of small grains.

Figure 4.1a shows the simulation results for a concentration dependent diffusion co-

efficient with a positive sign, and figure 4.1b shows the results for a coefficient with a

negative sign; both are evolving from a two band initial configuration. It is clear both

positive and negative signs lead to non-symmetric concentration profiles; the choice of a

positive sign results in large grains diffusing into the small grain rich area more quickly,

while the choice of a negative sign results in small grains diffusing into the large grain

rich area more easily. Figures 4.2a and b show the simulation results for a diffusing small

pulse with a positive and negative sign respectively. Here, the pulses drift to the left or

to the right depending on the sign. This asymmetry is obvious from the symmetry of

the equation, but it violates the symmetry of the general physical situation. While the

small grains may spread more easily into the larger ones, this model does not reflect this

situation for arbitrary initial conditions. In effect, Ristow et al. have built the asymme-

try of the evolution of a two-band initial condition into the dynamical equation. For this

reason, we abandoned the model developed by Ristow et al. [40] as a candidate model of

the axial transport of grains within the radial core. In the next section we describe our

own axial transport experiments starting from a two-band initial condition.
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Figure 4.1: Finite-difference simulation results of equation 4.1 with a concentration de-

pendent diffusion coefficient given in equation 4.7 and a two band initial configuration.

(a) shows the results for a positive sign choice D+ and (b) the results for a negative sign

choice D−. The simulation details are provided in the text, the colour bar indicates the

relative concentration of large grains.
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Figure 4.2: Finite-difference simulation results of equation 4.1 with a concentration de-

pendent diffusion coefficient given in equation 4.7 and a 0.5 spatial unit pulse initial

condition of small grains. (a) shows the results for a positive sign choice D+ and (b)

the results for a negative sign choice D−. Here the colour bar indicates the relative

concentration of large grains. Note the presence of drift in both cases.
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4.2 Experiments on axial transport within the radial

core

The axial migration experiment described above lends itself easily to the bulk visual-

ization technique detailed in chapter 2 and chapter 3, since a two-band initial condition

could be easily set up with our presegregation method. Using opaque small grains and

translucent large grains one can observe the radial core growing from a two-band initial

condition. The axial transport of grains was studied using a two-band initial condition,

with a sharp interface between the band of small and large grains. The small grains

were black hobby sand grains in the size range of 177-212 µm and the large grains were

white table salt grains in the size range of 300-420 µm. The drum used in all experi-

ments described below had an inner diameter of 2.85 cm, and it was rotated at three

different rates within the smoothly streaming regime: 0.36, 0.5 and 0.63 rev/s. The

backlighting bulk visualization technique was used to obtain data. The majority of small

grains comprising the core did not actually mix into the bulk of large grains, instead a

radial core advanced into the large grains beneath the flowing surface layer. The relative

concentration of small grains was determined as described in chapter 2, the fraction of

the radial core occupying the drum was determined at each axial position in the digital

image via edge detection, and the concentration of small grains was expressed as this

fraction divided by the height of the materials in the drum squared. The justification

for this approach is provided in section 2.5.1. This produces a concentration data point

which depends on axial position and time and ignores the structure of the radial core,

but simplifies analysis, so that comparisons to one-dimensional transport equations could

be done more simply. This method has been used extensively by other authors [40, 44]

and we do not break with this convention in the description of work to follow.

Figure 4.3 shows data collected from a run where the drum was rotated at 0.375

rev/s. We fit this data to the solution of the one dimensional diffusion equation, Eqn.
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4.1, with C(x, t) being the relative concentration by volume of the small particles and

D a constant diffusion coefficient. The initial conditions for a two-band configuration

were used, as shown in equation 4.3, and Neumann boundary conditions as described in

equation 4.4, because there is no axial flux of grains due to the presence of end caps.

This equation can be solved analytically for the initial and boundary conditions specified

above, as shown above in equation 4.6.

We fit experimental data such as that shown in figure 4.3a to equation 4.6 with the

sum over k truncated to N using a nonlinear Levenberg-Marquardt fitting scheme, with

the diffusion coefficient D being the fitting parameter. The order N used in the fit

was 50, and this was chosen to reduce the Gibbs phenomenon. The Gibbs phenomenon

occurs when one fits a partial sum of a Fourier series, such as the one described above,

to a jump discontinuity, like the two-band initial condition. Gibbs showed that this

partial sum always overshoots the jump by about 9 %. The width of the overshoot goes

to zero as N → ∞ but the extra height remains at 9 % at the top and bottom of the

discontinuity [81]. We used as high an N value as possible to have a reasonable fit to early

time data where the jump discontinuity is present, and to make computations feasible.

The measurement error used for the fit was the concentration error corresponding to ±

2 pixels from the width of the radial core, and the corresponding error bar was 0.12.

Figure 4.4a shows a space-time diagram of this fit. Examining the experimental data

in figure 4.3, one can observe that the radial core of small grains spreads more quickly into

the volume of large grains, that the growth of the interface is asymmetrical as described

by Ristow and Nakagawa [40], and that any fit to a diffusion equation with a constant

diffusion coefficient will not capture this transport property. Based on the commonly

accepted practice that a typical value of χ2 for a moderately good fit is on the order of

the number of degrees of freedom, we can say the calculations fit the data reasonably

well [58]. Here, the value of χ2 obtained for this fit is 0.0125 and the number of degrees

of freedom are 50,687. However, the residuals of this fit all lie on the evolving interface
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between the sand and salt grains, as opposed to being scattered normally, as shown in

figure 4.4b. When the residuals in a fit are skewed or clustered in a non-normal way

this indicates that the model being fit to does not quite describe the data, though it

may be usable as an approximation within a limited range. Presumably Nakagawa et al.

[44] and Ristow et al. [40] were able to obtain reasonable fits to the diffusion equation

because their data was based on far fewer measurements. Our calculations, based on

denser space-time data, led us to look beyond the diffusion equation with a constant

diffusion coefficient as a model for the system.

Our calculation of concentration profiles used in these fits depends on certain as-

sumptions about the shape of the radial core, namely that the concentration of small

grains in the radial core C(x, t) is proportional to the fraction of the radial core squared,

or h2, as described in chapter 2. Our conclusion that the diffusion equation does not

model these experiments well is robust, however, in that no assumptions are needed to

observe that the radial core of small grains penetrates more quickly into the large grains

resulting in the growth of an asymmetrical interface between the two species of grains.

If the concentration profiles had a different functional form, the majority of the residuals

of the fit to the diffusion equation would still lie on the evolving interface between the

small and large grains.

In order to pursue this further, we experimented with initial conditions involving a

symmetric narrow pulse of small grains, as outlined in the next section. The two-band

initial condition is, in fact, a poor choice to test models of axial transport, because all

of the important variation is concentrated near the interface. Any model of diffusion

is likely to correctly fit the constant concentration values at x = ±∞, especially if the

experiments are not run for a very long time. A single symmetric pulse initial condition

is a better test of models because its evolving profile can be examined for symmetry, as

described in the following section.
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Figure 4.3: Space-time plot of the advancement of the radial core from a two-band

presegregated initial condition. The small black hobby sand grains used were in the size

range of 177-212 µm, and the large white table salt grains had sizes in the range of 300-

420 µm. The drum rotation rate was 0.375 rev/s. Our bulk visualization technique was

used to aquire data, the colourbar shows the relative concentration of grains within the

radial core.
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Figure 4.4: (a) A fit of the data shown in figure 4.3 to the solution of the one-dimensional

diffusion equation, equation 4.6. Details of the fitting method are provided in the text.

(b) A space-time diagram of the residuals of the fit shown in (a).
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4.2.1 Narrow pulse experiments

Having ruled out the most frequently used model in the literature to determine the axial

transport of small grains within the radial core, we needed to employ physical insight to

determine a more appropriate model. Models of the more complex axial segregation phe-

nomenon do not provide any clues; even the most sophisticated of them [38, 39] assumes

that the axial transport of grains is a diffusive process. However, a very important insight

is that the diffusion equation possesses a similarity under scaling: given a symmetric ini-

tial condition such as a delta function, the solution at any later time can be rescaled in

the spatial and time variables to collapse to the initial condition. For normal diffusion

this scaling is given by the transformations x → xt−1/2 and C → Ct1/2. In other words,

concentration values (say the peak concentration) decay with a t−1/2 power law, and the

width of the symmetric pulse evolving from a delta function initial condition grows with

a t1/2 power law [52].

In the words of G. I. Barenblatt, “scaling laws are not merely some particularly simple

cases of more general relations. They are of special and exceptional importance; scaling

never appears by accident. Scaling laws always reveal an important property of the phe-

nomenon under consideration: its self-similarity”[53]. The search for a power law scaling

in concentration profiles of the small grains comprising the radial core seemed to be a

reasonable starting point for additional axial transport experiments; by using a narrow

symmetric pulse of small grains as the initial condition and by measuring the expansion of

the radial core of small grains, we could determine if power-law dependencies are present

in the evolving concentration profile shape, and perform data collapse to definitively de-

termine if this system is governed by diffusion. If no power law scaling is present in the

data we have narrowed the field of potential governing equations considerably, and if a

power law scaling is present which differs from the one due to diffusion, then we have

narrowed the field even further.

The drum used in the experiments described below was 60 cm long with an inner
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diameter of 2.85 cm, rotated within the smoothly streaming regime at 0.31 rev/s or 0.62

rev/s. The larger grains were white table salt and had a size range of 300-420 µm. The

smaller grains were irregularly shaped black hobby sand, with a size range of 177-212

µm. An initial condition consisting of a 1.5 mm pulse of small grains was made using the

presegregation technique described in chapter 2. As described in chapter 2, we used edge

detection of bulk visualized data to determine the fraction of the drum occupied by the

radial core, h, and assume that the concentration of small grains C(x, t) is proportional

to h2.

Figure 4.5a shows a space-time diagram of the expanding radial core of small grains

from a 1.5 mm pulse initial condition. Figure 4.5b shows concentration profiles taken

at different times from this run. By plotting the maximum concentration value against

time on a logarithmic scale we obtained a power law relation between concentration and

time, shown in figure 4.6a with triangle markers. This power law was C ∝ t−β, where

β = 0.38± 0.03. Additionally, by plotting the full width at half-maximum concentration

on the logarithmic scale, we obtained a power law relation between the evolving pulse

width and time. This is also shown in figure 4.6a with circular markers. Here the power

law we measured was width ∝ tα where α = 0.37 ± 0.02. This already suggests that

this transport process is subdiffusive, because α < 1
2
. It should be noted that the peak

concentration decrease power law depends on our assumption that C(x, t) ∝ h2, while

our conclusion that the width of the axial pulse grows as tα where α < 1
2

does not, as

the width of the evolving pulse is measured directly from our data.

This analysis, however, only determines the power-law time dependence of one ar-

bitrarily chosen dimension of a pulse and not the whole pulse shape, assuming that

C(x, t) ∝ h2. For a symmetric initial condition, data collapse can test the scaling of

the entire pulse. Figure 4.6b shows collapsed data corresponding to the concentration

profiles in 4.5b, where the axial length scale was transformed as x → xt−α and the axial

concentration of small grains C(x, t) was transformed as C → Ctα. The pulse width
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increases at the same rate as the pulse amplitude decreases, thus the spreading pro-

cess is self-similar. This implies that the integrated concentration is constant and that

no grains are lost from the core. The collapse parameter determined for this run was

α = 0.37± 0.02. The best data collapse parameter α was determined using a brute-force

search method. A wide range for α was input, and fluctuations about the mean rescaled

C values were determined for each rescaled x value. The best α value was the one with

the least scatter about the mean rescaled C value. The average collapse parameter for

large salt grains and small sand grains with a drum rotation rate of 0.62 rev/s was found

to be 0.37± 0.03, averaged over ten runs. This parameter α was determined for ten runs

using our brute-force search method and averaged to produce the value given in table

4.1. The error is half of the difference of the maximum and minimum α value determined

for these runs. This data, along with the power-laws for evolving pulse width, rule out

diffusion as the mechanism for the axial transport of grains within the radial core, and

shows that a subdiffusive process is responsible for this phenomenon.

In order to determine how generally applicable this result is, we conducted runs where

we systematically varied drum diameter, grain size ratio, grain material, and rotation

rate. The first set of experiments performed checked different grain types and rotation

rates within the smoothly streaming regime using the same sizes of large and small grains

and drum diameter as in the experiments described above. Here we found that the

subdiffusive and self-similar nature of the transport process was preserved. When drum

diameter and grain size ratio were varied, we found that the transport was subdiffusive

but no longer self-similar; these experimental results are discussed in section 4.3.
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Figure 4.5: a) Space-time diagram of the evolution of a 1.5 mm pulse initial condition.

The drum rotation rate was 0.62 rev/s and the drum inner diameter was 2.85 cm. The

small grains are black hobby sand grains with sizes in the range of 177-212 µm and the

large grains are table salt grains with sizes in the range of 300-420 µm. This space-time

diagram is shown is contrast-enhanced, the colour bar indicates the relative concentra-

tion of large salt grains throughout the depth of the drum at each axial position. b)

Concentration profiles of small grains within the radial core taken at different times

corresponding to the space-time diagram shown above.
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Figure 4.6: a) The FWHM (circles) of the evolving pulse shown in figure 4.5 plotted

against time on logarithmic scales. The linear fit shows that the pulse width evolves

with the power law width ∝ t0.38. The maximum concentration profile height is also

plotted against time (triangles) and the linear fit shows that pulse concentration decays

with the power law peak concentration ∝ t−0.37. The dotted line has a slope of 1/2, for

comparison with the power laws we obtained from the data. b) Collapsed concentration

profiles of the radial core pulse corresponding to figure 4.5a. The collapse parameter is

α = 0.37 ± 0.02.
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One would think that rough grains such as sand and salt could have different transport

properties than smooth spherical grains, such as glass and bronze spheres. Also, the

transport properties could also be affected by the drum rotation rate. We repeated the

small pulse experiments using glass spheres in the size range of 300−420 µm and bronze

spheres with sizes in the range 177− 212 µm at the drum rotation rates of 0.31 and 0.62

rev/s. These experiments were also repeated for sand and salt grains with a drum rotation

rate of 0.31 rev/s, all results are shown in table 4.1. These experiments confirmed that

the axial transport within the radial core is a subdiffusive front spreading process. We

conclude that cores of small grains spread axially as tα where α ∼ 1/3 < 1/2, independent

of the grain types we used and drum rotation rate within the smoothly streaming regime

[26].

Large grains Small grains Rotation rate α

300-420 µm 177-212 µm (rev/s)

salt sand 0.31 0.38 ± 0.03

salt sand 0.62 0.37 ± 0.03

glass bronze 0.31 0.31 ± 0.04

glass bronze 0.62 0.29 ± 0.01

glass sand 0.31 0.35 ± 0.03

Table 4.1: Collapse parameters for the self-similar spreading of radial cores in various

grain types and rotation frequencies. The drum diameter for all experiments was 2.85

cm.

4.2.2 One dimensional subdiffusive models

The temporal scaling of pulse width was determined to be less than 1/2, which indicates

that the mixing process is slower than diffusion and hence is subdiffusive. In addition to
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examining the temporal scaling of the pulse, we also measured in detail the functional

shape of the scaling solution, assuming that C(x, t) ∝ h2. Here is it possible to distinguish

between different subdiffusive processes, if our assumptions about the radial core shape

are correct. We have investigated two candidate models for radial core spreading; the

the porous medium equation (PME) and fractional diffusion equation (FDE) .

The porous medium equation,

∂

∂t
C(x, t) = D

∂2

∂x2
(C(x, t)2) (4.9)

is a nonlinear model which describes the spreading of a compact groundwater mound,

and has the property that for a narrow pulse initial condition the width grows as t1/3 and

the scaling solution has a parabolic profile [53]. This parabolic model becomes degenerate

when C(x, t) = 0, so the non-zero portion of the solution, {C(x, t) > 0}, moves with a

finite propagation speed. As a result, the PME is often regarded as a better model of

spreading than the linear diffusion equation which predicts an infinite propagation speed

[52].

The fractional diffusion equation was formulated as an initial value problem by W.

R. Schneider and W. Wyss [54];

∂γ

∂tγ
C(x, t) = D

∂2

∂x2
C(x, t) (4.10)

with initial data

C(x, 0) = f0(x). (4.11)

Here γ = 2α denotes the order of a fractional time derivative [54, 55]. The solution to

the initial value problem is

C(x, t) =

∫

dyGγ
0(|x − y|, t, D)f0(y) (4.12)

where Gγ
0(r, t, D) is the Green’s function for this initial value problem, and can be ex-

pressed in terms of Fox’s H function [54]:

Gγ
0(r, t, D) = (1/γ)(1/

√
π)(1/r)H20

12

[

(2
√

D)−
2

γ r
2

γ t−1
∣

∣

∣

(1,1)

( 1

2
, 1

γ
),(1, 1

γ
)

]

(4.13)
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and the value of this Green’s function for the input values of D, r = |x − y|, t and γ are

given by the series expansion of Fox’s H-function [55],

Hmn
pq

[

z
∣

∣

∣

(a1,A1),(a2,A2),...,(ap,Ap)

(b1,B1),(b2,B2),...,(bq,Bq)

]

=

m
∑

h=1

∞
∑

ν=a

Πm
j=1,j 6=hΓ(bj − Bj(bh + ν)/Bh)

Πq
j=m+1Γ(1 − bj + Bj(bh + ν)/Bh)

(4.14)

×
Πn

j=1Γ(1 − aj + Aj(bh + ν)/Bh)

Πp
j=n+1Γ(aj + Aj(bh + ν)/Bh)

× (−1)νz(bh+ν)/Bh

ν!
.

Solutions of this linear equation have the property that the width of a narrow pulse initial

condition grows as tα, where α ≤ 1/2. If α = 1/2 the solution reduces to normal linear

diffusion. This model is often used to describe processes which occur in spaces where

there are temporal or spatial constraints, such as the flow of tracers through porous

media [56].

We fit radial core concentration data collapsed with α to the series solution of the

FDE, and data collapsed with α = 1/3 to a numerical solution of the PME, as shown

in figure 4.7a and b respectively. For both fits, the initial data was taken from the first

series of averaged images of the radial core spreading, and the fit parameter was the

constant diffusion coefficient D. We found that while both solutions model the collapsed

concentration profiles reasonably well within experimental error, the PME has a smaller

systematic discrepancy since the profiles are better described as parabolic. The FDE

solution has exponential wings and inflection points that are not obvious in the data. We

note, however, that our projection visualization technique may simply be too insensitive

to detect these tails. We also performed fits to ordinary diffusion with α = 1/2 which

were poor, as shown in figure 4.7c. It can be easily seen that the solution to the diffusion

equation does not fit the data when the concentration of small grains approaches zero.

The uncertainty in each concentration data point is 0.12, corresponding to a loss or gain

of one pixel at the top and bottom of the radial core at each axial position. The tails of

the solution to the diffusion equation at those positions miss the collapsed data points

by twice the experimental error. It should also be noted that the collapse of the data

with α = 1/2 has twice as much spread as the collapse when α values are closer to 1/3.
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Figure 4.7: Collapsed concentration profiles of a black sand radial core in salt grains fit to:

a) the fractional diffusion equation (grey line) and b) the porous medium equation (grey

line) and c) the diffusion equation (grey line). The uncertainty in each concentration

data point is 0.12 which corresponds to a loss or gain of one pixel at the top and bottom

of the radial core at each axial position.This corresponds to the size of the error bar

on the dark grey plotting symbol at the upper left corner of each graph. Each of these

graphs are constrained to have the same vertical scale.
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4.3 Drum diameter and grain size experiments

Previous studies by Choo et al. show that arrays of axial bands in the rotating drum

exhibit a reasonably well-defined and quasi-stable emergent wavelength. Figure 5 of

Reference [36] shows that the Fourier spectrum of the space-time diagram of the axial

segregation pattern prior to saturation reveals a strong low-wavelength cutoff and a

sharp peak with a long tail to higher wavelengths. After a longer time of rotation, it has

been reported that either complete segregation occurs [68] or a smaller number of bands

evolve via coarsening effects [22, 29, 37]. From these studies, several obvious questions of

pattern scaling present themselves. First, how does the emergent wavelength of the axial

segregation pattern scale with other simple length scales in the experimental system,

such as the drum diameter? Second, how does the growth rate of the axial band pattern

depend on physical parameters? Although axial segregation has been the subject of

many experimental studies, as discussed in chapter 1, its scaling behaviour has not been

systematically explored. A recent study by Alexander et al. [25] of the existence of

axial banding as a function of the ratio of drum diameter to average grain size suggests

that a scaling approach could be fruitful. In particular, this study finds that there is a

critical drum diameter to average grain size ratio below which axial segregation never

occurs, which implies that there is functional dependence between the growth rate of

axial segregation and drum diameter. This motivated Charles et al. to investigate in a

systematic way the dependence of the axial segregation pattern on drum diameter [27].

These results are described below.

4.3.1 Axial band pattern scaling

Charles, Khan and Morris performed a systematic study of the scaling of axial segregation

patterns as a function of drum diameter [27]. In these experiments, equal volume mixtures

of large black glass spheres 750 µm in diameter and small transparent glass spheres with
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diameters in the range of 297-420 µm were rotated in nine drums with diameters in the

range of 2.85 cm to 11.5 cm at a constant rotation rate of 0.8 rev/s. No segregation was

observed for a drum diameter of 1.9 cm after several hours of rotation, and for a 2.35 cm

diameter drum, segregation was irregular and incomplete for rotation times of less than

2 hours, but long-term segregation was observed after 15 hours of rotation.

Figure 4.8a shows the average wavelength λ plotted against drum diameter D. A

linear fit does not intercept the origin, indicating that the wavelength is not directly

proportional to the drum diameter. Figure 4.8b shows the ratio λ/D versus D for the

same data. For large drum diameters, λ/D tends towards a constant value, equal to the

slope of λ versus D shown in figure 4.8a. Figure 4.9 shows growth rate measurements for

six drum diameters where axial segregation occurred. Our method of determining growth

rates from space-time diagrams of axial segregation patterns is described in Chapter 2.

It was determined from this data that the growth rate of axially segregating bands is an

increasing function of drum diameter [27].

Continuum models of axial segregation [19, 34, 38, 39, 41, 49] do not appear to

account for this observed scaling behaviour. In general the models are scaled so that

all lengths are expressed in units of the drum diameter, and, for constant parameters,

they apparently predict a linear proportionality for the wavelength as a function of drum

diameter. Also, these continuum models do not show an explicit scaling with the mean

particle size, and studies such as this one and Alexander et al. [25] show that the drum

diameter to average grain size should be incorporated into continuum models of axial

segregation.
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Figure 4.8: Axial segregation results showing (a) λ vs. D and (b) λ/D vs. D for

segregation experiments performed with a mixture of small glass spheres with diameters

in the range of 297-420 µm and large black glass spheres 750 µm in diameter rotated at a

constant rate of 0.8 rev/s. No segregation was observed for drums smaller than D = 2.35

cm. From reference [63].
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Figure 4.9: Growth rates for six drums as a function of drum diameter. No segregation,

hence a zero growth rate, is found for drums with a diameter smaller than 2.35 cm. From

reference [63].
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In order to investigate possible connections between the dynamics of grains in the

radially segregated core and scaling relationships between segregation and drum diameter,

the experiments described above were reproduced in mixtures of sand and salt. This

enabled us to use our bulk visualization technique to measure the growth rate of bumps

on the radial core, as well as compare pulse transport data with axial segregation data as

a function of the parameter values. We also investigated growth rate scaling as a function

of grain size ratio by increasing the larger grain size and keeping the smaller grain size

fixed. This research was motivated by a report in the literature that when the ratio of

the large to small grains is below a critical value of 1.2 axial segregation does not occur

[31]. The implication is that the axial band pattern growth also depends on grain size

ratio.

We measured the growth rate of axial bands in the same manner as Charles et. al

and Choo et. al [27, 36] as described in chapter 2. We loaded the drums with a mixture

of 1/3 sand with sizes in the range of 177-212 µm and 2/3 salt with sizes in the range

300-420 µm in drums with inner diameters of 2.85, 4.4 and 5.6 cm. For all experiments

described here the aspect ratio (drum length/drum diameter) was 7, and in all cases

studied and the drum rotation rate was 0.31 rev/s. The backlighting bulk visualization

technique was used to acquire data.

We found that the growth rate of axial bands increases as a function of drum diameter,

and the results are show in table 4.2. We also measured the growth rate as a function

of relative grain size ratio by loading the 2.85 cm diameter drum with mixtures of 1/3

sand with sizes in the range of 177-212 µm and 2/3 salt with sizes in the ranges of

420-500 and 500-600 µm, and measuring the axial segregation pattern with our bulk

visualization technique. These results are also shown in table 4.2. The growth rates

shown in table 4.2 were determined by averaging the growth rate for five runs at each

parameter value. The error in the growth rate was estimated by dividing in half the

difference in the maximum and minimum growth rates measured. From this additional
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Drum diameter Large grain size Growth rate

cm µm 1/s

2.85 300-420 0.0018 ± 0.0004

2.85 420-500 0.0045 ± 0.0002

2.85 500-600 0.0081 ± 0.0002

4.4 300-420 0.008 ± 0.002

5.6 300-420 0.014 ± 0.003

Table 4.2: Growth rates for the formation of axial bands in mixtures with varying large

grain sizes and drum diameters. In all cases the small grain size is 177-212 µm and drum

rotation rate is 0.31 rev/s.

data we also found that the growth rate of axial segregation increases as a function of

grain size ratio in the parameter range studied. The particular values we calculated for

the growth rates in these experiments do depend on our assumptions about the radial

core shape. However, the trend that we observed here, that bumps on the radial core grow

faster as a function of drum diameter and increasing grain size ratio, remains unaffected.

In the next subsection, we discuss the effect of changing drum diameter and grain size

ratio on the axial transport of small pulses.

4.3.2 Additional axial transport experiments

Having determined that the growth rate of axial bands increases as a function of drum

diameter and grain size ratio in mixtures of sand and salt, we examined the axial spread-

ing of small pulses to determine if axial transport properties differ in situations where

axial banding of the radial core is less strongly damped by the motions of the larger

grains. The experiments reported in section 4.2 dealt with the radial spreading of small

pulses whose grain sizes and drum diameter correspond to the case shown in table 4.2
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with the smallest growth rate of axial bands.

Figure 4.10a shows the radial core concentration profile at different times, for a mix-

ture of 177-212 µm sand grains, 300-420 µm salt grains in a 5.6 cm diameter drum.

Plotting the full width half-maximum of the concentration profile against time as well

as the maximum height of the concentration profile against time, we determined their

respective power law dependencies, as shown in figure 4.10b. Note that these power law

dependencies are no longer similar, 1/2 > α > β, thus the pulse evolution is no longer

self-similar, while remaining subdiffusive. Testing the power law dependence of the whole

pulse shape, we performed data collapse of the concentration profile by transforming the

axial length scale as x → xt−α and the axial concentration of small grains C(x, t) as

C → Ctβ where α 6= β. Figure 4.11a shows the collapsed data corresponding to the con-

centration profiles shown in 4.10a; we see that the pulse amplitude decreases more slowly

than the width expands. The concentration decrease power law and loss of self similarity

that we have measured depends on our assumptions about the shape of the radial core,

however the amplitude of the pulse in the vertical direction does decrease more slowly

than the case studied in section 4.2, corresponding to the case of the smallest growth

rate of axial bands. A possible explanation for this is that large grains are intruding into

the radial core, increasing its amplitude. Figure 4.11b shows that the integral of h(x, t)2

for the pulse shown in figure 4.10a increases in time, indicating that our measure of the

radial core volume increases. These experiments were repeated in a 4.4 cm diameter

drum; the results are summarized in Table 4.3. It was found in this case as well that

the pulse evolution is no longer self-similar under our assumptions, and that mixing may

possibly be present in the radial core.

Pulse evolution experiments were also performed varying grain size ratio by keeping

the small sand grain sizes fixed at a range of 177−212 µm and using large salt grain sizes

in the ranges of 420−500 µm and 500-600 µm in a 2.85 cm inner diameter drum. Figure

4.4a shows the power law scaling of the full width half-maximum and peak concentration
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with time of a mixture with 500-600 µm salt grains. It was determined that in this case,

the concentration profile height decreases more rapidly than the width increases, β > α,

while α < 1/2. These values for β depend on our assumptions, but the amplitude of the

pulse does decay more quickly than in the previous cases studied. This could occur if

small grains become relatively scarce at the interface of the radial core with the larger

grains and can no longer be detected by our optical technique. Figure 4.4b, where the

integral of h(x, t)2 is plotted against time, shows that our measure of the volume of the

radial core is decreasing, possibly because small grains are being lost from the radial core.

Table 4.3 shows the width parameter α and the height parameter β for the experiments

described above. The values of the collapse parameters α and β were determined by

averaging over five runs at each parameter value. The error corresponds to half the

difference of the maximum and minimum values obtained. From this, we can see that α

does not depend on drum diameter or relative grain size, but β does. While the values

for β depend on our assumption that concentration depends on h2, our observation that

pulse amplitude decreases as a function of drum diameter and increases as a function

of grain size ratio remains intact. As a result of this observation, we postulate that

mixing is enhanced in the radial core as drum diameter and relative grain size ratio

increases. From table 4.2 we also observe that the growth rate of axial bands increases

as a function of these parameters. From this evidence, we conclude that axial pulse

spreading is a subdiffusive process, however mixing may occur within the radial core.

While we do not have conclusive evidence that mixing is occurring, we believe that this

possibility deserves future study using 3-D bulk imaging techniques.
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Figure 4.10: a) Concentration profiles at various times of a spreading pulse of sand grains

177-212 µm large within salt grains 300− 420 µm large in a drum with diameter 5.6 cm.

b) Power law scaling of the FWHM and peak concentration value . From the linear fits

(grey lines) we find that the width ∝ t0.38 and peak concentration ∝ t−0.23 .
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Figure 4.11: a) Collapsed concentration profiles of the radial core pulse corresponding to

figure 4.10a. The collapse parameter for pulse width is α = 0.39 and for pulse concen-

tration is β = 0.18. b) The integral of h2 for the pulse corresponding to figure 4.10a is

increasing in time, the apparent volume of the radial core is not conserved.
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Drum diameter Large grain size α β

cm µm

2.85 300-420 0.38 ± 0.03 0.38 ± 0.03

2.85 420-500 0.29 ± 0.05 0.48 ± 0.08

2.85 500-600 0.33 ± 0.04 0.57 ± 0.05

4.4 300-420 0.32 ± 0.03 0.25 ± 0.05

5.6 300-420 0.38 ± 0.07 0.19 ± 0.05

Table 4.3: Collapse parameters for the spreading of radial cores for various grain size

ratios and drum diameters. In all cases the small grain size is 177-212 µm and drum

rotation rate is 0.31 rev/s.

4.4 Axial Self-Diffusion of Monodisperse Grains

We also investigated the self-mixing of monodisperse grains. Historical evidence from

Hogg et al. indicates that the mixing of identical grains is a diffusive process [47]. Our

ability to measure the dynamics of the grains in the drum with high speed digital cameras

lends a distinct advantage to repeating these self-diffusion measurements [59] since we

can measure the relative surface concentration of grains to a much higher degree of spatial

and temporal resolution. Unfortunately, our measurement technique does tend to have a

higher degree of systematic error than the method employed by Hogg et al. since counting

is in principle exact and our method does not probe beneath the surface of the flowing

layer. However, our faster method lends itself to repeatability, thus all measurements

were repeated 5 to 10 times. We used surface imaging techniques to acquire data for all

of the non-segregating experiments described below, thus no assumptions were needed

about the shape of the radial core.
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In order to study the self-diffusion of the larger grains alone, a portion of table salt

grains in the size range of 300-420 µm were dyed black with water-based India ink. Also,

glass beads in the same size range were also dyed black with a mixture of black acrylic

paint and Sunlight dish soap. In order to be sure that the grain properties of dyed and

un-dyed grains were identical, their angles of repose were measured in a Hele- Shaw cell,

and found to agree within error.

The black salt grains were loaded into a 1.5 mm small pulse initial condition sur-

rounded by otherwise identical white salt grains. The pulse evolution was observed using

surface visualization techniques as described in section 2. Figure 4.13a shows a space-

time diagram of an evolving small pulse self-diffusion experiment. Data was obtained

by subtracting images of the pulse of dark salt grains from background images of white

table salt flowing in the drum. This was done in order to correct for uneven lighting con-

ditions. Figure 4.13b shows the corresponding concentration profiles of the dyed grains

mixing at selected times. We determined power law dependencies by performing data

collapse as described in section 4.2. Figure 4.14 shows the resulting data collapse for the

concentration profiles shown in figure 4.13b. Table 4.4 shows the collapse parameter α

for self-diffusion averaged over five runs for both salt grains and glass beads in the size

range 300 − 420 µm, and both results are consistent with a subdiffusive mixing process

[26].

In order to compare the functional form of the non-segregating self-diffusion case to

the axial spreading of the radial core, we fit the non-segregating self-diffusion of the large

grains to both the FDE and PME models and found that the FDE gives a qualitatively

better fit because in this case the concentration profiles have tails within experimental

resolution while the parabolic PME solution does not. Examples of these fits to collapsed

concentration profiles of mixing salt grains are shown in figures 4.4a and b.

Since increasing drum diameter and relative grain size ratio had a measurable effect

on the transport of small grains in the radial core, the self-diffusion experiments were
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Figure 4.12: a) Power law scaling of the FWHM and peak concentration value for a pulse

of sand grains with sizes in the range 177-212 µm expanding into salt grains in the size

range 500-600 µm . From the linear fit (grey line) we find that the width ∝ t0.35 and

peak concentration ∝ t−0.49 b) The integral of h2 for the pulse corresponding to (a) is

decreasing in time, the volume of the radial core is not conserved.
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repeated in these cases. For drums with 4.4 and 5.6 cm inner diameters, salt grains in

the size range 300−420 µm were used. For the 2.85 cm diameter drum, the self-diffusion

runs were repeated with salt grains in the size range of 420− 500 µm and 500− 600 µm.

The temporal exponent α for all cases was determined using data collapse on the data

sets. The results are summarized in table 4.4, and it should be noted that the temporal

exponent α for all these cases are consistent within error. From this we conclude that

the mixing of the large grains alone with no small grains present is subdiffusive, with no

significant dependence on drum diameter, grain size, or grain roughness.

Drum diameter Grain size Grain type α

cm µm

2.85 300-420 glass 0.34 ± 0.04

2.85 300-420 salt 0.29 ± 0.01

2.85 420-500 salt 0.29 ± 0.05

2.85 500-600 salt 0.31 ± 0.04

4.4 300-420 salt 0.27 ± 0.05

5.6 300-420 salt 0.30 ± 0.04

Table 4.4: Collapse parameters for the mixing of small pulses of dyed salt grains and

glass spheres with otherwise identical grains. The parameters we varied were grain size

and drum diameter. In all cases the drum rotation rate is 0.31 rev/s.



Chapter 4. Radial Core Dynamics: Models and Experiments 108

To summarize, we performed a systematic survey of the axial transport of grains and

varied grain size ratio, drum diameter, grain type and drum rotation rate. Our finding

was that in all cases studied, we found that the axial transport of grains is subdiffusive

and that the width of an evolving pulse possesses power-law scalings. Some, but not

all, have the additional property of self similar evolution, employing assumptions about

the radial core shape. While these results differ significantly from historic work on this

system, it should be noted that our ability to resolve temporal changes in the system

within seconds, and our ability to repeat the experiments due to the ease in obtaining

measurements, are paramount to determining dynamical properties of this system.
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Figure 4.13: a) A space-time diagram of a mixing pulse of dyed black salt grains sur-

rounded by un-dyed white salt grains in the size range of 300-420 µm. The drum diameter

was 2.85 cm and the drum rotation rate was 0.62 rev/s. b) Concentration profiles of a

mixing pulse of dyed black salt grains surrounded by white salt grains corresponding to

(a).



Chapter 4. Radial Core Dynamics: Models and Experiments 110

Figure 4.14: Collapsed concentration profiles corresponding to figure 4.13a. The collapse

parameter is α = 0.3.



Chapter 4. Radial Core Dynamics: Models and Experiments 111

Figure 4.15: Collapsed concentration profiles of mixing dyed black salt grains fit to: a)

the fractional diffusion equation (grey line) and b) the porous medium equation (grey

line).



Chapter 5

Theoretical Outlook

In this thesis, we report on a number of experimental results which each individually

falsify all of the currently existing PDE models of axial segregation. Recall that the first

model, proposed by Savage [33], was based on the diffusion equation. This model was

further developed by Zik et al., who based their description of the dynamic instability

on that of phase separation in spinodal decomposition [34]. Choo et al.’s discovery of

the traveling wave transient invalidated this model, since a simple diffusion equation

cannot describe oscillatory dynamics [35, 36]. To remedy this deficiency, Aranson et

al. generalized the Zik et al. model as a two field reaction-diffusion system of equations

[38, 39]. This elegant model, which agreed quantitatively with Choo et al.’s experimental

data, was in turn invalidated by the present author’s experiments which showed that the

postulated second field, the dynamic angle of repose, did not evolve as predicted. In

addition, subsequent experiments did not reveal any obvious choice for the second field.

For details, the reader is referred to chapter 3.

Subsequent research pursued for this thesis presented findings that must be accounted

for in any future theoretical model. To begin, the dynamics of axially transported grains

in the smoothly streaming flow regime is subdiffusive, at least in every region of param-

eter space that we have investigated. Hence any future attempt to model this system

112
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must either assume subdiffusive behaviour everywhere or account for its presence in the

particular region we have investigated, if not elsewhere. Furthermore, it was determined

that the growth rate of axial bands increases as a function of drum diameter and grain

size ratio. This indicates that there must be a functional dependence on these quantities

incorporated into or explained by any future model. Next, it is fairly obvious from exper-

iments that axial bands grow from undulations on the radial core. As we have seen from

figure 3.5, we have reason to believe that traveling waves result from a periodic mixing

and unmixing of the radial core, since the traveling waves were shown to result from an

oscillatory radial core instability. These last two findings imply that a description of the

structure and behaviour of the radial core is fundamental for any future theory.

We acknowledge that while the theories of Zik et al. and Aranson et al. were invali-

dated, they were instrumental in guiding experimental research up to and including work

done for this thesis. However, with the body of experimental data accumulated thus

far, it is questionable whether this particular direction, i.e. developing a diffusive model

based on analogy with phase separation in spinodal decomposition, can be pursued fruit-

fully. What are the alternatives? There are as yet no good candidates for a new model

that incorporates all of the experimentally observed features; any future ad-hoc models

that do so will likely be much more complex than the recently invalidated theories, and

hence require a great deal of time to develop. They will still be vulnerable to falsification

in the portion of parameter space that has yet to be explored. For the time being, the

best approach would be to explore three directions in parallel. First, we do need to verify

experimentally that the findings mentioned in the previous paragraph extend to the rest

of parameter space of the rotating drum, and if not, determine where the transitions

are. Second, given the current state of the theory, we can try to implement simulations

of the rotating drum system that agree quantitatively with known experimental results,

thereby adding to our understanding of the phenomenon, as well as hopefully allowing

us to make predictions which can guide future experiments. And third, work on a new
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model should proceed, but it is best to do so starting from first principles, whether those

principles are specific to the rotating drum system or apply to granular media in general.

In the remainder of this chapter we will look at two first-principles theoretical ap-

proaches developed for granular systems other than the rotating drum, and discuss their

applicability to this system. Following that, we will consider simulation methods, and

examine two which have already been directly applied to the rotating drum system.

Any first principles approach, whether by theory or simulation, has to contend with

the following facts: In granular systems ordinary temperature plays no role [69]; in

contrast to gases, the energy scale kBT is at least 1012 times smaller than the potential

energy scale mgd of a grain of mass m raised by one diameter d in the Earth’s gravity g.

Because of this, the usual thermodynamics arguments do not apply. In fact, without the

role of temperature in fluids providing a microscopic velocity scale, the only velocity scale

present in granular media is imposed by the macroscopic flow. Typically, the interactions

between grains are dissipative because of frictional and inelastic collisions, so in each

collision energy is lost. Because of this, approaches based on elastic interactions between

particles or energy conservation methods do not apply.

The two theoretical approaches we discuss below are the hydrodynamics approach

to granular gases as outlined by Goldhirsch, among others [69, 72, 74], and Edwards’

statistical mechanics approach for dense slowly evolving granular systems [76, 77, 78,

79]. It should be noted that these different conceptualizations tend to be applicable

to different experimental regimes. The discrete simulational methods described are a

molecular dynamics simulation which reports diffusive axial transport of grains due to

Taberlet et al. [70] and Yanagita’s implementation of a cellular automaton model of axial

segregation [71].
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5.1 Hydrodynamics of granular gases

Granular gases, previously denoted by the term “rapidly sheared granular flows”, became

an object of investigation among the granular community in the early 1990’s with the

work of Goldhirsch, Walton, Pöschel, and others [69]. The idea is that driven granular

gases can display fluid dynamical properties such as surface wave patterns [5], so one

might expect them to obey hydrodynamic equations [72]. Under gravity, collections of

grains can be fluidized by strong forcing such as vibration or shear. The grains interact

by nearly instantaneous collisions, reminiscent of the classical picture of a molecular gas;

this is why fluidized grains are referred to as a “granular gas”.

Despite the intuitive analogy, granular systems, even ones that are highly fluidized,

differ from molecular gases in notable ways. To begin with, grains are obviously much

bigger than molecules; furthermore, one cannot just assume that granular gases are

macroscopic realizations of classical gases with the same equations of motion on a larger

scale. Also, grain collisions are typically inelastic. This is the result of energy loss upon

grain impacts, so any theory of granular gases would need an energy sink term. And

because thermal temperature plays no role in granular systems, the temperature field

must defined differently, typically in terms of fluctuating velocities of grains.

The starting point for defining the hydrodynamic fields in the theory of granular gases

is the single particle distribution function f(v, r, t)defined at a point r and time t. This

is equal to the number density of particles having a velocity in the interval between v and

v+dv at {r, t}. The number density n, the velocity field V, and the granular temperature

T can be expressed as averages with respect to the single-particle distribution function

f [72], where the number density n is

n(r, t) ≡
∫

dv f(v, r, t)

the velocity field V is

V(r, t) ≡ 1

n(r, t)

∫

dv vf(v, r, t)
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and the granular temperature T is

T (r, t) ≡ 1

n(r, t)

∫

dv (v −V)2f(v, r, t).

The equations of motion for granular fluids follow from continuum mechanics and are

very general [72]. For the case of monodisperse grains with mass normalized to unity,

the equation of mass continuity is

Dn

Dt
+ n

∂Vα

∂rα
= 0

where D
Dt

≡ ∂
∂t

+ V · ∇ is the material derivative, Greek indices denote Cartesian vector

components, and summation is assumed. The momentum density is expressed as

n
DVα

Dt
+

∂Pαβ

∂rβ
= ng

where P is the stress tensor, g is acceleration due to gravity, and granular temperature

is

n
DT

Dt
+ 2

∂Vα

∂rβ
Pαβ + 2

∂Qβ

∂rβ
= −rΓ

where Q is the granular heat flux, and Γ represents the energy sink due to the inelasticity

of collisions.

These equations are derivable from the Boltzmann equation, and describe ensemble-

averaged fields. The hydrodynamic description is complete when constitutive relations

through which P, Q and Γ are expressed in terms of hydrodynamic fields established.

In order to derive constitutive relations from the Boltzmann equation, one needs to find

an approximation for the single-particle distribution function through application of the

Chapman-Enskog expansion [65, 72].

This theory has been succesfully used to model instabilities in small-scale flows, in-

cluding the flow of dilute grains past an obstacle [73] and patterns formed in vibrating

layers of grains [74]. Also, some researchers report that this approach can be used to

model phenomena such as segregation in shaken grains when driven at a high shaking
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amplitude [75]. It should be noted, however, that one might expect this theory to be

more applicable to highly fluidized shaker experiments than to systems with denser flows.

The granular gas theory cannot describe force chains which transmit stress via persistent

contacts in dense granular flows, or account for coexisting solid and fluid states such as

the flow down the front face of a heap of grains [65]. In the rotating drum experiment, for

example, we have a wide range of densities: the flowing granular surface may be highly

fluidized, but next to it are tightly packed regions moving in solid-body rotation with

the drum, and grains constantly make transitions between these regions [20]. It does not

seem likely that a theory based on granular gases can be directly applied to the rotating

drum system.

5.2 A statistical mechanics approach for dense flows

A more directly first-principles approach, and one starting from the opposite end of the

flow spectrum, is Mehta and Edwards’ granular statistical mechanics, which was first

proposed in the late 1980’s [76]. This formalism addresses fundamental issues concerning

dense granular flows by considering granular packings i.e. the circumstances under which

granular materials act more like a solid than a liquid.

Depending on the filling method, a random configuration of spherical grains can be

packed in a range of volume fractions from 0.55-0.64 [69]. Often, when we have grains

in a container force chains caused by static friction keep the grains in a metastable state

between these volume fraction limits, and so prevent the grains from collapsing. Since

thermal energy plays no role in this system, it can only sample other configurations by

external disturbances such as vibration or tapping. This led Edwards and others to

propose that it is possible in principle to develop an analogue of thermodynamics for

jammed states in dense granular packings [76, 77, 78, 79].

In this formalism the energy is neglected because the particles have no interactions
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aside from hard-sphere repulsion [77]. Internal energy is replaced with volume, and a

volume functional takes the place of the hamiltonian and is given by the distribution

of contacts between grains. The temperature is given by the compactivity, ∂V
∂S

of the

material, where the entropy S is the logarithm of the number of ways one can fit a

powder into a volume V . External vibrations change the packing, thus the volume and

compactivity change, allowing the system to explore phase space.

It has been shown experimentally that external vibrations of grains lead to a slow

approach of the packing density to a steady-state value [80]. Depending on the initial

packing and shaking acceleration, the system can move reversibly between steady-state

values of packing density or become irreversibly trapped in a metastable state. The

Edwards theory qualitatively describes these branches of configurational phase space

[78, 79].

While this theory has had some success in describing some granular systems, such

as the tapping experiment above, its applicability to the rotating drum system and

segregation phenomena in general appears as yet to be limited. The statistical mechanics

approach is most suited to systems with slowly evolving and static packings, so it focuses

on structural characteristics as opposed to dynamics, and assumes spatially homogenous

arrays of grains. As such we do not know how it could immediately be brought to bear on

the dynamics of axial transport or radial segregation. In this theory, segregation is due

to the tendency of the system to reduce the configurational entropy, and the dynamics

only serves to rearrange the microstates.

It should be noted that since the statistical mechanics method and the hydrodynamics

method discussed in the last section approach granular materials from opposite directions,

it is very difficult to make a direct comparison with respect to applicability to our system

of interest, the rotating drum. For obvious reasons, experiments designed to test the

theories and predictions made by the theories have been for either highly fluidized or

fairly static systems. Recently, tentative proposals have been made on both sides to
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account for segregation effects in some granular systems, but so far neither theory has

been directly applied to axial or radial segregation in a rotating drum. At this point

there is no clear reason to prefer one of the theories over the other with respect to the

results presented in this thesis, and since both theories are more like general frameworks

than fully worked out models, and it would require a not insignificant amount of time

and effort to apply either of them to the rotating drum or other granular systems in the

dense flow regime. Until these theories have been developed further, therefore, we think

that the best way to proceed is via the simulational approach discussed in the next two

sections.

5.3 Molecular dynamics simulations

Even before the falsification of the Aranson et al. model, simulation was the most popular

approach to theoretical study of the rotating drum system. In general, simulations are

very useful because they allow researchers to efficiently explore the effects of varying many

physical parameters which are not easily accessible to experiment, either separately or

simultaneously. This allows one to fine tune phenomenological pictures and models of

the system being explored even when a fully developed theoretical model is not available.

With respect to the rotating drum, the two most frequently used simulation techniques

are molecular dynamics and cellular automata [1]. Of the two, molecular dynamics is

more explicitly grounded in physics, while cellular automata models generally require

less computational resources and are simpler to implement.

Molecular dynamics or the discrete element method for granular systems is based

on the molecular dynamics method for the study of liquids and gases [15]. There are a

couple of different methods of implementing this approach; the method that is applied

depends on the density and flow regime of the system of interest.

Rigid-particle models are used for low-density rapid flow regimes such as for shaken
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granular fluids [15]. In this method there is no interpenetration or deformation of the

particles during each impact, which is considered to be infinitely brief. The loss of linear

momentum is captured via the coefficient of elastic restitution, while the rotation of the

particles is neglected [1]. The method of simulation is event-driven with every collision

being calculated.

Soft-particle methods are used to model high density slow-flow regimes such as the

rotating drum experiment [30, 66, 70]. In this method friction and elastic restitution

are implemented by having spheres penetrate into each other, with the magnitude of

the interaction depending on the penetration depth [1]. The flow is characterized by

lasting contacts, and particle trajectories are determined by explicitly solving Newton’s

equations of motion for linear and angular momentum for each particle. The forces

acting on each particle are the gravitational force and interparticle collision forces which

are applied normal to or tangent to the line of contact between grains. The accuracy

of this method depends on the choice of contact forces. In contrast to the hard-sphere

method, particle trajectories are updated at each time step [15].

5.3.1 A molecular dynamics simulation of the axial transport

of grains

Recently Taberlet et al. employed a soft-particle molecular dynamics scheme to investi-

gate the axial transport of grains in a rotating drum. This study found that the radial

core of small grains spread diffusively, and that the self-mixing of the monodisperse grains

was a diffusive mixing process [70].

In this study, the normal force between grains in contact was modeled using the

dashpot-spring model and the tangential force with the regularized Coulomb solid fric-

tion law. Particle wall collisions are treated like inter-particle collisions but with the

wall treated as a particle with infinite mass and radius. They report that varying the

coefficient of restitution from 0.4 to 0.9 had little influence on the diffusion process. The
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equations of motion were integrated using the Verlet method with a time step of ∆t
30

where

∆t ⋍ 10−3 s is the duration of a collision. They typically run their simulation for 107

time steps, or a few hundred drum rotations. For grains, small particles with a 5 mm

diameter and large grains with a 10 mm diameter were used. The drum length for their

self-diffusion runs was 300 mm and diameter was 200 mm, with an average filling fraction

of 37 % and a rotation rate of 0.5 rev/s.

Taberlet et al. report that for these simulations both the axial transport of small

grains within the radial core and the self-diffusion of monodisperse grains are simply dif-

fusive processes. They claim that this is in direct disagreement with the results reported

here and in reference [26]. That the self-mixing was diffusive was determined by exam-

ining the mean-squared displacement of individual grains from one run of small grains

and one run of large grains. The authors also note that the ratio of drum diameter to

average grain diameter was 26 for the simulation, while the experimental ratio is closer to

100. In other words, far fewer and larger grains were used in this simulation than in our

experiments, described in this thesis and in reference [26]. To give an idea of scale, if the

particles in the simulation were the same size as those used in the experiments, the drum

would be the size of a thimble, with only about 6 or 7 layers of grains in it. Hence we

do not consider the simulation results to directly disagree with our experimental results,

since they cannot be directly compared.

Molecular dynamics is certainly a promising approach to the study of dense-flow gran-

ular systems. There are, however, things that must be considered before going further.

The validity of the simulation is entirely dependent upon the choice of force laws and

adjustable parameters used, and the values assigned to those parameters. If any relevant

parameter is not included in the implementation, or the parameter value is not physically

justified, then the results of the simulation cannot of course be quantitatively trusted.

This puts a constraint upon implementing idealized models or simplifying assumptions,

or using estimated values for parameters; before doing so one needs to at least validate
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the simulation by direct comparison to experimental results. Unfortunately, simplifying

assumptions, idealizations, and similar expedients are often necessary to make the com-

putations involved feasible. For example, a rough estimate for the number of particles

in a one-third full rotating drum experiment such as described in this thesis is about

700,000. Since each time step requires updating or at least checking every particle, a

realistic molecular dynamics simulation of a real-life experimental setup run for a rea-

sonable length of time would require massive computational resources. While we might

expect that future technological developments will make this possible at some point, for

the time being molecular dynamics simulations of the rotating drum system must work

on rather limited time or spatial scales.

5.4 Yanagita’s cellular automaton model

In 1999 Yanagita proposed a three dimensional cellular automaton model (CAM) in which

particles of two different frictional properties randomly slide down a sloped collection

of grains confined to a rectangular box [71]. His model is based on the assumption

that axial segregation is driven by differences in the dynamic angles of repose of the

two types of grains, so he neglects the motion of particles in the bulk. Compared to

Molecular Dynamics simulations, cellular automata do not require detailed knowledge of

grain interactions, such as tangential and normal forces, therefore computational time

is greatly reduced. Surprisingly, this model apparently reproduces many of the features

of axial band formation, such as radial core formation and axial bands growing from

modulations on the radial core [29, 71]. For this reason, we implemented Yanagita’s

CAM as described in reference [71] to see if the self-mixing of one grain species in this

model was a subdiffusive process, and initial results indicate that this is so.

Yanagita’s CAM uses a three-dimensional simple cubic lattice to model a drum,

(x, y, z) where x is the axial coordinate, y is the depth coordinate and z is the verti-
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cal coordinate. Each site has a discrete field variable σ(x, y, z) whose value is taken from

the set {0, 1, 2} corresponding to empty, particle A, or particle B respectively. Following

Zik et al.’s reasoning [34], Yanagita assumes that segregation is entirely due to the parti-

cle motion on the free surface; thus the updating rules for the CAM only consider sliding

surface particles and not the particles in the bulk. The dynamics of the field variable σ is

comprised of two steps: (1) A surface particle σ(x, y, h(x, y)) is chosen randomly, where

h is the height from the bottom of the drum to the surface at the position (x, y). (2) The

selected particle slides down to a randomly selected site, chosen from neighbouring sites

(x + ∆x, y + ∆y, h(x + ∆x, y + ∆y) + 1), where ∆x and ∆y are random variables with

values taken from the following sets ∆x = −1, 0, 1, ∆y = 0, 1 with uniform probability.

(3) The sliding motion outlined above is accepted if the height difference between the

two positions ∆h = h(x, y) − h(x + ∆x, y + ∆y) is larger than the “effective” friction F

acting on the particle; that is, Yanagita only considers the case where grain types A and

B only differ by frictional properties. The effective friction F is simply the sum of the

local frictions arising from the interaction with adjacent particles, fAA, fAB, and fBB,

which leads to the interaction rule

F =
∑

δx=0,−1

∑

δy=−1,0,1

∑

δz=0,−1

f [σ(x, y, h(x, y))σ(x + δx, y + δy, h(x, y) + δz)]

where f is defined as a local map f : (0, 1, 2, 4) → (0, fAA, fAB, fBB). (4) The procedures

above are applied r times, where the rotational frequency ω is proportional 1/r. Yanagita

then introduces the rotation of the drum: the rectangular lattice is divided into a lower

(L) region and a higher (H) region separated by the vertical plane y = Ny/2. The H

side is slid upward and the L side downward by one cell, and the bottom layer of the L

side is turned over and attached to the H side, which is illustrated in figure 5.1. This

creates a stepwise height difference at y = Ny/2. Particles at this stepwise difference

then slide down, creating a propagating collapse, and after a few rotations the front

face of the mixture is smooth. The steps (1)-(4) described above define one cycle of the
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dynamics. Yanagita used fixed boundary condition, with the friction at positions x = 0

and x = Nx+1 the same as that of the B particles. The particles at y = 1 are constrained

not to move in the y direction.

a)
Higher

Part

Lower

Part

y

x

upward downward

turn over & attach

b)

c)

Figure 5.1: Yanagita’s schematic explanation of the rotation procedure implemented in

his cellular automaton model. In part (a), the region is divided into the lower (L) and

higher (H) sides. In (b), the H side is slid upward and the L side is slid downward by one

cell. In (c), the bottom layer of the L side is turned over and attached to the bottom of

the H side.

Starting with a half and half mixture of particles A and B with random initial con-

ditions, and frictional values fAA = 0.4, fAB = 0.44, and fBB = 1.0, Yanagita obtains

a radial core made up of the higher friction particle B after a small number of drum

rotations. After approximately 50 drum rotations axial bands appear, and after several

hundred rotations axial bands merge and coarsened bands appear. Yanagita also reports

that the time scales of the rotation and axial transport of particles are quite different,

thus band coarsening shows slow dynamics. This CAM was modified by Newey et al.

to model the segregation dynamics of ternary mixtures by incorporating a third particle

type into the rules described above. They found that the automata reproduced experi-

mentally observed band-in-band segregation, and a radial core composed of the highest

friction grains in the center surrounded by the particles with an intermediate friction

value. The coarsening process in the simulation was also consistent with what they had

observed experimentally [29].
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We implemented the rules outlined above, for a grid sized with 150 sites in the axial

direction, 40 sites in the vertical direction and 10 sites wide, with the drum being half

full. We applied the sliding procedures 11000 times, which resulted in approximately

3000 successful slides, per cycle. One drum rotation is considered to be 40 cycles with

the values we used above. We examined the self-mixing of identical grains by setting the

frictional properties to be identical, fAA = fAB = fBB = 0.44, and our initial condition

was a pulse of grain B two grains wide located at the center of the drum, surrounded by

the otherwise identical particle A. This enabled us to track the motion of the B grains

throughout the simulation length, which corresponded to 100 drum revolutions. Figure

5.2a shows a space time diagram of B particles self-mixing with A particles, evolving

from a small pulse initial condition as described above. Figure 5.2b shows the power-

law dependencies of pulse width and height on time, we find that these power laws

are consistent with self-similar subdiffusive self-mixing found experimentally. Figure 5.3

shows concentration profiles for various times from the run shown in figure 5.2 and figure

5.3b shows that those concentration profiles collapse with a parameter α = 0.39.

It should be noted that Yanagita’s model, however simplified and non-cylindrical,

is in rough qualitative agreement with the basic phenomenology of what happens in

a rotating drum i.e. a flowing surface layer and a static bulk rotating with the tube,

as for example given by Hill et al. [20]. Hence we may be able to explain observed

phenomena in the real-life system by working backwards from the rules implemented in

the simulation. In the automaton, particles can only move axially when they are on the

surface, and every particle that comes to rest in the L region must eventually be recycled

into the H region, where it is trapped in the bulk until it again reaches the surface. This

means that the motions of the particles are constrained and thus not Brownian, so one

would expect that analysis of the simulation data would show that axial transport in

the absence of segregation effects was subdiffusive. Given that our own experimental

data showed subdiffusion, and given the real-life rotating drum’s phenomenology, this
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bulk trapping/surface freeing could quite plausibly be the mechanism for the slower than

diffusion axial movement of grains.

The cellular automata approach seems to be quite promising as an avenue of research

into the rotating drum system. It is easy to implement and modify, and in comparison

to molecular dynamics is much less computationally intensive. Hence it is feasible to

validate by comparison to real-life experiments. This is of course necessary since the rules

we chose are somewhat arbitrary; the only criterion is whether the automaton mimics

the real phenomenon successfully in the first place. When a set of rules has been found

that does replicate the phenomenon, it is sometimes possible to work back from these

rules to an actual explanation or mechanism, as outlined in the above paragraph. There

is indeed no guarantee that this can be done or that a plausible explanation generated

in this way is the correct one. We think, however, that this is not a major drawback in

comparison with the advantages of this method, and that for now CAM has the most

potential for further understanding of the rotating drum system.

With regards to the Yanagita model in particular, there are modifications that would

need to be made if one were to pursue this as future research. To begin, one would want

to explicitly include rules that distinguish particles by size, in order to check whether

size segregation and radial core formation occur. Once this has been implemented, the

first test would be to see if mixtures of multiple grain types or sizes, in analogy to the

travelling wave mixtures used in experiments, will result in oscillatory band dynamics.

If this does not turn out to be the case then clearly the Yanagita model would require

further modification. On the other hand, if travelling waves were replicated it would be

very a meaningful result, implying a simple underlying mechanism.

In this chapter we have examined some of the theoretical possibilities which could

guide future experimental work on the rotating drum. We began by evaluating the

diffusion-based theories that were current when the research for this thesis started, and

which were invalidated by the experimental results presented here. Our conclusion was
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that modifying or fixing these theories in order to account for new experimental data was

not likely to be very fruitful. We then looked to a couple of general approaches that have

been put forward to deal with granular systems in different phenomenological regimes,

and discussed their applicability to our own system. While both these approaches, one

a hydrodynamical theory and the other a statistical mechanics based theory, have had

success in dealing with their specific regime of granular flow and may have potential

applications elsewhere, neither currently is in a position to address the rotating drum.

Lastly we considered the possibilities implicit in two simulational approaches, molecular

dynamics and cellular automata models. While both have their drawbacks they both

seem to have more potential then any current theoretical framework. Cellular automata,

for the moment at least, have one undeniable advantage in that for them simulating

real-life systems is not too heavily constrained by issues of computationally feasibility.

Thus in our opinion this seems to be the most promising avenue for theoretical progress

in the near future.
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Figure 5.2: a)Space-time diagram of grain type B self-mixing with otherwise identical

grain type A, evolving from a small pulse initial condition from Yanagita’s cellular au-

tomaton model of the rotating drum [71]. b) The FWHM (circles) of the evolving pulse

shown in (a) plotted against time on logarithmic scales. The linear fit shows that the

pulse width evolves with the power law width ∝ t0.39. The maximum concentration

profile height is also plotted against time (triangles) and the linear fit shows that pulse

concentration decays with the power law peak concentration ∝ t−0.39.
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Figure 5.3: a) Concentration profiles of grain type B self-mixing with grain type A,

corresponding to the space-time diagram shown in figure 5.2a. b) Collapsed concentration

profiles corresponding to (a) with collapse parameter α = 0.39.
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Conclusions

In this thesis, we report on a series of experimental results on the segregation and axial

transport of grains in a rotating drum. These results have strong implications for any

future model of segregation processes in this system. We have provided a consistent

experimental picture of the phenomena, and a conceptual framework for future research.

We began our research into the rotating drum system with an experiment designed

to test the then current theoretical model for axial segregation in a rotating drum. Our

first finding was that the dynamic angle of repose and the surface concentration of grains

are coupled throughout segregation process, including the oscillatory transient. This

implies that the dynamic angle of repose field does not evolve as predicted, invalidating

the theory [38, 39]. As this theory was based on geometrical considerations of surface

flows only, our result probably rules out any reasonable elaboration of such a model.

This negative result led us consider the role of the radial core in axial segregation

and oscillatory transients. It was already known that the particles in a rotating drum

segregated radially prior to axial band formation, forming a radial core made up of the

smaller grains. However, this core was ignored by theory and had only recently become

an object of active experimental research [20, 21, 23]. We confirmed that axial bands are

formed out of bumps on the radial core, and observed that oscillatory band dynamics
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are caused by undulations in the core, a periodic mixing and unmixing which shifted

these bumps. This brought us to the conclusion that radial core instability is the key to

understanding axial segregation.

To resolve this, more insight was needed into how grains move in the bulk. Our next

seies of experiments dealt with the axial transport of grains within the radial core in

the absence axial banding. Here we found that, contrary to previous assumptions, axial

transport is subdiffusive. This applies to both monodisperse and bidisperse mixtures i.e.

both self-mixing and segregation.

We repeated the experiments for several grain types, grain size ratios, rotation rates,

and drum diameters, and in all cases we confirmed that the process remained subdiffusive.

With respect to drum diameter and grain size ratio we also found indirect evidence of

mixing in the radial core. As drum diameter increased, the inferred core volume increased,

which implied that the core was gaining material from outside; as grain size ratio increased

the inferred core volume decreased, which implied that the core was losing material.

In another series of experiments that examined axial segregation, we found that the

growth rate of axial bands increased as a function of drum diameter, and also as a function

of grain size ratio. Combined with the above observations relating drum diameter and

grain size ratio to possible mixing in the radial core, these results indicate that faster

band growth is associated with enhanced mixing in the radial core. We speculate that

many puzzling features of axial segregation, such as the oscillatory transient, may be

related to the dynamics of mixing in the radial core.

During the course of this research, we have developed two new visualization and mea-

surement techniques, which may be of use in future investigations of rotating drum phe-

nomena and similar granular systems. The scanning profilometer device was designed to

simultaneously measure the streaming surface profile and concentration of flowing grains;

this was used to establish our first result. We also devised an optical bulk visualization

technique, which was instrumental in our investigation of radial core dynamics.



Chapter 6. Conclusions 132

From our results, and the work of others, we can outline the following phenomeno-

logical description of axial segregation: First, we know that a radial core made up of the

smaller particles forms very quickly, within five drum rotations. After about 100 drum

revolutions, bumps form on the radial core; these may be due to the presence of mixing.

These bumps then grow into axial bands, at a rate that depends on certain parameters

such as drum diameter and grain size ratio. Since the axial transport is subdiffusive, we

surmise that the bands are not strongly damped by the background axial motion of the

larger grains. Traveling waves may be the result of a periodic mixing and unmixing of

the radial core, but such waves are only observed in certain mixtures.

Partly as a result of the research presented here, there are currently no experimentally

validated continuum models specifically intended to describe the phenomenon of axial

segregation in the rotating drum system. Promising models have been developed for

granular systems that are either highly fluidized or densely packed, but as yet these are

not readily applicable to dense flow regimes such as are found in the rotating drum. In

the absence of a strong theoretical direction given by an explicit continuum model we

must rely on phenomenological descriptions and simulation to guide future work. One

simulation technique that seems to have some potential for our particular system are

cellular automata models. We implemented one such model, due to Yanagita [71], and

found subdiffusive self-mixing of grains consistent with our experimental results.

There is much that can be done to follow up the results presented here. For example,

we found that there is a drum diameter cutoff, below which axial bands do not form for a

given mixture of grains [25, 27]. We have yet to determine whether radial segration still

occurs below this cutoff, and if axial transport of the grains is markedly different within

these very small diameters. As well, we have noted that for some sets of parameters

the apparent radial core volume is conserved, while for others it increases or deseases in

a regular way. It would be worthwhile to conduct a program of experiments to track

the apparent radial core volume conservation line through parameter space, and check if
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parameter values close to this line are also consistently associated with slower growth of

axial bands.

In a more general vein, the parameter space for the rotating drum system is very

large, and we have only explored a narrow region of it. In our experiments, we varied

the rotation rate, grain type, grain size ratio, and drum diameter independently. There

are other parameters that have not been systematically explored. It would be interesting

to determine whether such things as polydispersity, filling fraction, or grain density ratio

had measurable effects on axial transport and axial band formation.

While 2D visualization was essential in our experiments in establishing the dynamics

of the system, it does have definite limitations. In particular, it would be useful to

have an investigation of mixing in the radial core using full, 3D bulk imaging. Our

visualization method could at most give us indirect evidence of this mixing, by way of

the apparent core volume; this could be directly confirmed using non-invasive MRI or

X-Ray techniques, or a freeze-and-slice procedure.

Segregation is complicated, perhaps more complicated than anyone previously appre-

ciated. One thing that became increasingly clear through the course of our research was

that there needs to be a better understanding of how grains move in the bulk, indepen-

dent of any segregation effects. Probably the single most profitable avenue of further

research would be tracking the movement of a single grain in a monodisperse mixture.

If we had a quantitative picture of bulk trapping, the release into the fluidized surface

flow, and the transition between the two, it might be possible to construct a model of

the simplest dynamical behaviour of grains in a drum. There are various ways this could

be done experimentally, for example, using a microwave-tagged particle, determining its

position in real time using triangulation methods [82].

In conclusion, while segregation in a rotating drum continues to resist simple for-

mulation, we now have a clearer understanding of the dynamics of this system. Future

research along these lines would most certainly be worthwhile.
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