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Introduction

c=1 Quantum Gravity

Liouville Theory Matrix Quantum Mechanics

μ: Cosmological const. up-side down 
potential

short string singlet sector = free fermion



Representation of wave function in MQM

Action is invariant under

Conserved charge : 

Wave function transforms as

Usually we consider only singlet sector:
the dynamics reduces to free fermion which 

corresponds to short strings of Liouville theory



Possible representations

Constraint: #Box=#Anti-box

Since we have to construct states from M (adjoint), the 
representation that wave function can take is limited.

Boulatov-Kazakov



Role of non-singlet sector

Vortex configuration (KT phase transition)

insertion of 

2D Black hole (cf. Kazakov, Kostov, 
Kutasov)

Long string with tips (Maldacena)



Maldacena’s long string
hep-th/0503112

Motion of “tip”

= massive particle motion 
with constant force from string tension

What is the corresponding object in matrix model ?

non-singlet sector in MQM?

Virasoro constraint



Correspondence with Liouville
Correspondence between tip of long string and adjoint sector 
of MQM is established by Maldacena (0503112) and 
Fidkowski (0506132) by comparing its scattering phase

With some simplifying assumption on large N limit of  
Calogero equation and with fixed background fermion 

: distribution of singlet sector

Similar to quenched approximation in QCD



Link with finite N is missing

I. For singlet sector, finite N theory is completely known as 
well as large N limit

II. 1/N correction has physical significance such as stringy 
higher loop correction

III. Study of finite N case is also essential to understand the 
back reaction in the presence of vortex

IV. The quantities which we studied

I. exact eigenfunction of Hamiltonian

II. scattering phase



§2 Exact solutions of adjoint sector
We start from one body problem 

(QM with upside down potential)

Canonical quantization Chiral (lightcone) quantization



Relation between two basis
Integral transformation

(analog of generating functional of Hermite polynomial)

Generalization to MQM is much easier in chiral basis.
Expression for canonical basis is obtained  by analog of 
integral transformation



Generalization to MQM

Canonical Chiral

Transformation between two basis



Reduction to eigenvalue dynamics

In canonical basis, the dynamics of eigenvalue is Calogero system

However, the dynamics for chiral basis remains the same !

Origin of the simplicity in the chiral basis is that differentiation 
w.r.t. matrix is first order and does not contain any nontrivial off-
diagonal component

Boulatov-Kazakov



Partition function for upside-up case

We use the partition function (Boulatov-Kazakov) to guess the 
eigenfunctions in the chiral basis



Wave function in chiral basis
Counting of the states is consistent with the basis of solutions

For adjoint, we need to subtract the trace part
For A_2,B_2,C_2, we need to take appropriate    (anti-) 

symmetrization of indices
The wave function for upside-down case is obtained by replacing 

n by (ie-1/2)

Correction



Transformation to canonical basis
The matrix integration in the integral transformation from 
chiral to canonical basis become nontrivial due to the 
integration over angular variables

where (with appropriate symmetry factor again)



Unitary matrix integration

singlet:

adjoint: 

2n point function    <UUUUUUUU>
closed form has not been obtained yet
formal expression is given as gaussian integration over 
triangular matrices

These correlation functions plays the role of transformation 
kernel from chiral basis to canonical basis and essentially 
solves the dynamics of Calogero system

Itzykson-Zuber formula

(Morozov, Bertola-Eynard)

(Eynard 0502041)



Use of generating functional
Does two point function really generate solutions of adjoint 
Calogero? To check it, it is more convenient to recombine the 
wave function

It is equivalent to recombining the kernel:



Derivation of adjoint Calogero
We rewrite adjoint Calogero eq. in terms of

This computation is doable and having been checked

It gives all the exact energy eigenfunctions for adjoint sector.



Scattering Phase

Previous computation does not solve the problem completely.
Inner product between incoming & outgoing wave

= scattering phase
For general representation, it is written as,

For singlet state, the Slater determinant state is diagonal with
respect to inner product



Fermionic representation
In order to give a compact notation for the inner product, it 
is useful to introduce the fermion representation.

It describes the singlet part of the wave function compactly 
and adjoint part is given as “operator” acting on it



Inner product formula for adjoint

The following choice of the wave function simplifies the formula

Inner product for the adjoint wave function becomes,



Mixing in adjoint sector

implies that there is mixing between

To obtain scattering phase of solitons, it is not sufficient to obtain 
eigenfunction of Hamiltonian.
Inner product is off-diagonal because of the degeneration of energy level.
It implies nontrivial interaction between tip and background fermion



Higher conserved charges?

Unfortunately this problem has not been solved. 

Usually, however, there is an infinite number of conserved 
charges in the solvable system.  Calogero system is certainly of 
that type.  Such higher charges may be written as higher order 
differential equations of the adjoint kernel.

It may be better to come back to the angular integration.



§3 Large N limit
Maldacena’s reduced equation

Dropping the kinetic term

Large N variable

e.o.m reduces to

v(m) : potential energy       K[h] : Kinetic energy



Computation with fixed background

If we use the density function of free fermion,

Linear potential : constant force by string tension



Fidkowski’s exact solution

After Fourier transformation,

Fidkowski solved this equation exactly and reproduced 
the scattering phase from Liouville theory exactly

Maldacena



Derivation of scattering phase from finite N result

Use of grand canonical ensemble

After Fourier transformation, it reproduces the scattering 
phase claimed by Maldacena (with some extra terms)



§4 Summary of the status

(spin) 
Calogero 
with finite N

Boulatov-Kazakov

(spin) 
Calogero at 
large N

Maldacena

Integral 
representation 
of solutions

Kostov-M

Integral 
representation 
of solutions

Fidkowski

Dropping 
kinetic term

Unitary matrix integration 
(Morozov, Eynard)

Uniformization

Not complete
△ scattering phase
× solution



Summary and discussion

At finite N, we can obtain the explicit form of the solutions of adjoint 
Calogero equation.

It involves nontrivial integration and interaction between the singlet 
fermion and adjoint part can be seen.

At the same time, we have met a tough problem:
diagonalization of inner product

Techniques of integrable system will be useful
Higher conserved charges
solution generating technique

Taking large N limit has some problems
Higher representation

compact expression of 2n-point function is needed
Maldacena conjectured that it corresponds to multiple tips
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