Integrability of the planar $N=4$ gauge theory and the Hubbard model

A. Rej, M. Staudacher AEI Golm

D. Serban SPhT Saclay

Overview

- Integrability of the $\mathcal{N}=4$ SYM: the three loop result
- All loop integrability and the BDS ansatz
- The Hubbard model
- Conclusions and perspectives

Integrability in AdS/CFT: sigma models vs. spin chains

String side: non-linear sigma model on the coset space [Metsaev, Tseytlin 98]
$\operatorname{PSL}(2,2 \mid 4) / S O(4,1) \times S O(5) \Rightarrow$ non-local conserved charges
[Bena, Polchinski, Roiban ${ }^{03}$]

- rotating string solutions at large $J \rightarrow$ classical integrable model (Neumann system) [Frolov, Tseytlin, Arutyunov, Russo ${ }^{02-03}$]

$$
\frac{E(\lambda)}{J}=\varepsilon_{0}\left(\frac{\lambda}{J^{2}}\right)+\frac{1}{J} \varepsilon_{1}\left(\frac{\lambda}{J^{2}}\right)+\frac{1}{J^{2}} \varepsilon_{2}\left(\frac{\lambda}{J^{2}}\right)+\ldots
$$

- full solution for the classical sigma model \longleftrightarrow algebraic curve
[Kazakov, Marshakov, Minahan, Zarembo; Kazakov, Zarembo;
Schäfer-Namecki; Kazakov, Beisert, Sakai, 04]
- quantizing the string sigma model [Kazakov et al.; Zarembo, Klose 06]

Integrability in AdS/CFT: sigma models vs. spin chains

perturbative $\quad \mathcal{N}=4$

- so(6) sector at one loop is integrable [Minahan, Zarembo 02]
- $\operatorname{psl}(2,2 \mid 4)$ sector at one loop is integrable [Beisert, Staudacher 03]
- $\mathrm{su}(2 \mid 3)$ sector is integrable up to three loop order [Beisert, Kristjansen, Staudacher; Beisert 03]
e.g. $\operatorname{su}(2)$ sector: $\quad \uparrow \equiv Z=\Phi_{1}+i \Phi_{2}, \quad \downarrow \equiv \Phi=\Phi_{3}+i \Phi_{4}$,

$$
D=L+\lambda \sum_{i=1}^{L} 2\left(1-P_{i, i+1}\right)+\lambda^{2} \sum_{i=1}^{L}\left(8 P_{i, i+1}-2 P_{i, i+2}-6\right)+\ldots
$$

Bethe Ansatz

Integrability in AdS/CFT: sigma models vs. spin chains

comparison of the Bethe Ansatz and string results:

$$
\begin{gathered}
\frac{\Delta-L}{L}=\frac{\lambda}{L^{2}}\left(a_{0}+\frac{a_{1}}{L}+\ldots\right)+\left(\frac{\lambda}{L^{2}}\right)^{2}\left(b_{0}+\frac{b_{1}}{L}+\ldots\right)+\ldots \quad \lambda \ll 1 \\
\frac{E(\lambda)}{J}=\varepsilon_{0}\left(\frac{\lambda}{J^{2}}\right)+\frac{1}{J} \varepsilon_{1}\left(\frac{\lambda}{J^{2}}\right)+\frac{1}{J^{2}} \varepsilon_{2}\left(\frac{\lambda}{J^{2}}\right)+\ldots \quad \lambda / J^{2} \ll 1, \quad J \rightarrow \infty
\end{gathered}
$$

BMN scaling

Bethe Ansatz solution to three loop order [Serban, Staudacher 04]
\longleftrightarrow solution of the classical sigma model [KMMZ 04]

Discrepancy at three loop order ! [Callan et al. 03]

- order of limits?
- non-analytic corrections to strings [Beisert, Tseytlin 05]
- non-perturbative mixing of the sectors [Minahan; Alday, Arutyunov, Frolov 05]

All loop integrability: the BDS conjecture

[Beisert, Dippel, Staudacher 04]

There is a unique spin chain obeying:

- diagrammatic constraint
- integrability up to five loops
$\longrightarrow \quad$ candidate for the dilatation operator
- BMN scaling
all loop Bethe ansatz for L infinite :

$$
\begin{aligned}
& e^{i p_{k} L}=\prod_{j \neq k}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad k=1, \ldots, M \\
& \qquad u(p)=\frac{1}{2} \cot \frac{p}{2} \sqrt{1+8 g^{2} \sin ^{2} \frac{p}{2}} \\
& E(g)=-\frac{M}{g^{2}}+\frac{1}{g^{2}} \sum_{k=1}^{M} \sqrt{1+8 g^{2} \sin ^{2} \frac{p_{k}}{2}} \\
& \Delta=L+g^{2} E(g), \quad g^{2} \equiv \frac{\lambda}{8 \pi^{2}}
\end{aligned}
$$

all loop psl(2,2|4): [Beisert, Staudacher; Beisert 05]

$$
\begin{aligned}
\mathbf{H}_{8}= & +\frac{1479}{8}\{ \}+\left(-\frac{1043}{4}-12 \alpha+4 \beta_{1}\right)\{1\}+\left(-19+8 \alpha-2 \beta_{1}-4 \beta_{2}\right)\{1,3\} \\
& +\left(5+2 \alpha+4 \beta_{2}+4 \beta_{3}\right)\{1,4\}+\frac{1}{8}\{1,5\}+\left(11 \alpha-4 \beta_{1}+2 \beta_{3}\right)(\{1,2\}+\{2,1\}) \\
& -\frac{1}{4}\{1,3,5\}+\left(\frac{251}{4}-5 \alpha+2 \beta_{1}-2 \beta_{3}\right)(\{1,3,2\}+\{2,1,3\}) \\
& +\left(-3-\alpha-2 \beta_{3}\right)(\{1,2,4\}+\{1,3,4\}+\{1,4,3\}+\{2,1,4\}) \\
& -\frac{1}{8}(\{1,2,5\}+\{1,4,5\}+\{1,5,4\}+\{2,1,5\}) \\
& +\left(\frac{41}{4}-6 \alpha+2 \beta_{1}-4 \beta_{3}\right)(\{1,2,3\}+\{3,2,1\})+\left(-\frac{107}{2}+4 \alpha-2 \beta_{1}\right)\{2,1,3,2\} \\
& +\left(\frac{1}{4}+\beta_{2}\right)(\{1,3,2,5\}+\{1,3,5,4\}+\{1,4,3,5\}+\{2,1,3,5\}) \\
& +\left(\frac{183}{4}-6 \alpha+2 \beta_{1}-2 \beta_{2}\right)(\{1,3,2,4\}+\{2,1,4,3\}) \\
& +\left(-\frac{3}{4}-2 \beta_{2}\right)(\{1,2,5,4\}+\{2,1,4,5\})+\left(1+2 \beta_{2}\right)(\{1,2,4,5\}+\{2,1,5,4\}) \\
& +\left(-\frac{51}{2}+\frac{5}{2} \alpha-\beta_{1}+\beta_{2}+3 \beta_{3}\right)(\{1,2,4,3\}+\{1,4,3,2\}+\{2,1,3,4\}+\{3,2,1,4\}) \\
& -\beta_{2}(\{1,2,3,5\}+\{1,3,4,5\}+\{1,5,4,3\}+\{3,2,1,5\}) \\
& +\left(\frac{35}{4}+\alpha+2 \beta_{3}\right)(\{1,2,3,4\}+\{4,3,2,1\}) \\
& +\left(-\frac{7}{8}-\alpha+2 \beta_{3}\right)(\{1,4,3,2,5\}+\{2,1,3,5,4\}) \\
& +\left(\frac{1}{2}+\alpha\right)(\{1,3,2,5,4\}+\{2,1,4,3,5\}) \\
& +\left(\frac{5}{8}+\frac{1}{2} \alpha-\beta_{3}\right)(\{1,3,2,4,3\}+\{2,1,3,2,4\}+\{2,1,4,3,2\}+\{3,2,1,4,3\}) \\
& +\left(\frac{1}{4}-2 \beta_{3}\right)(\{1,2,5,4,3\}+\{3,2,1,4,5\}) \\
& +\left(\frac{1}{4}+\frac{1}{2} \alpha+\beta_{3}\right)(\{1,2,4,3,5\}+\{1,3,2,4,5\}+\{2,1,5,4,3\}+\{3,2,1,5,4\}) \\
& +\left(-\frac{1}{2} \alpha-\beta_{3}\right)(\{1,2,3,5,4\}+\{1,5,4,3,2\}+\{2,1,3,4,5\}+\{4,3,2,1,5\}) \\
& -\frac{7}{8}(\{1,2,3,4,5\}+\{5,4,3,2,1\})
\end{aligned}
$$

$$
\{m, n, p\} \equiv \sum_{i} P_{i+m, i+m+1} P_{i+n, i+n+1} P_{i+p, i+p+1}
$$

BDS ansatz from the Hubbard model at half filling

 [Rej, Serban, Staudacher 05]energy of the AF state [RSS; Zarembo 05] :

$$
E_{\mathrm{AF}}(g)=\frac{4 L}{\sqrt{2} g} \int_{0}^{\infty} \frac{d t}{t} \frac{J_{0}(\sqrt{2} g t) J_{1}(\sqrt{2} g t)}{1+e^{t}}
$$

Lieb, Wu 1968!

1-d Hubbard model: itinerant fermions with onsite repulsion
$H=\frac{1}{\sqrt{2} g} \sum_{i=1}^{L} \sum_{\sigma=\uparrow, \downarrow}\left(e^{i \phi} c_{i, \sigma}^{\dagger} c_{i+1, \sigma}+e^{-i \phi} c_{i+1, \sigma}^{\dagger} c_{i, \sigma}\right)-\frac{1}{g^{2}} \sum_{i=1}^{L} c_{i, \uparrow}^{\dagger} c_{i, \uparrow} c_{i, \downarrow}^{\dagger} c_{i, \downarrow}$,

- solved by (nested) Bethe Ansatz

$$
t=1 \quad \Leftrightarrow \quad U=\sqrt{2} / g
$$

\longrightarrow Heisenberg model at half filling and $g=0$
ground state: ferromagnetic state $\mid \uparrow \uparrow \uparrow \uparrow \ldots \uparrow>$

Hubbard model at half filling

projection to a spin Hamiltonian
("strong coupling" or $g \rightarrow 0$)
[Klein, Seitz 73; Takahashi 77]

- at $g=0$ the onsite part dominates

$$
\text { states: } \quad \mid \uparrow \downarrow \uparrow \uparrow \ldots \uparrow>
$$

- fluctuations

$g^{4} \quad$ (unwanted) four spin term [Takahashi 77] twisted boundary conditions $\quad t_{1 L}=-t_{1 L}^{*}$ for odd chains:
\longleftrightarrow Aharonov-Bohm flux $\quad \Phi=\frac{\pi(L+1)}{2}$

Projection of the Hubbard model on the spin space:

$$
\begin{gathered}
h=\sum_{i=1}^{L}\left(h_{2}+g^{2} h_{4}+g^{4} h_{6}+\ldots\right), \\
h_{2}=\frac{1}{2}\left(1-\overrightarrow{\sigma_{i}} \overrightarrow{\sigma_{i+1}}\right), \\
h_{4}=-\left(1-\overrightarrow{\sigma_{i}} \overrightarrow{\sigma_{i+1}}\right)+\frac{1}{4}\left(1-\vec{\sigma}_{i} \sigma_{i+2}\right), \\
h_{6}=\frac{15}{4}\left(1-\vec{\sigma}_{i} \vec{\sigma}_{i+1}\right)-\frac{3}{2}\left(1-\vec{\sigma}_{i} \vec{\sigma}_{i+2}\right)+\frac{1}{4}\left(1-\vec{\sigma}_{i} \vec{\sigma}_{i+3}\right) \\
\\
-\frac{1}{8}\left(1-\vec{\sigma}_{i} \vec{\sigma}_{i+3}\right)\left(1-\vec{\sigma}_{i+1} \vec{\sigma}_{i+2}\right) \\
+\frac{1}{8}\left(1-\vec{\sigma}_{i} \vec{\sigma}_{i+2}\right)\left(1-\vec{\sigma}_{i+1} \vec{\sigma}_{i+3}\right) .
\end{gathered}
$$

BDS ansatz from Lieb-Wu equations

Lieb-Wu equations (half filling):

$$
\begin{aligned}
& e^{i \tilde{q}_{n} L}=\prod_{j=1}^{M} \frac{u_{j}-\sqrt{2} g \sin \left(\tilde{q}_{n}+\phi\right)-i / 2}{u_{j}-\sqrt{2} g \sin \left(\tilde{q}_{n}+\phi\right)+i / 2}, \quad n=1, \ldots, L \\
& \prod_{n=1}^{L} \frac{u_{k}-\sqrt{2} g \sin \left(\tilde{q}_{n}+\phi\right)+i / 2}{u_{k}-\sqrt{2} g \sin \left(\tilde{q}_{n}+\phi\right)-i / 2}=\prod_{\substack{j=1 \\
j \neq k}}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad k=1, \ldots, M \\
& E=\frac{\sqrt{2}}{g} \sum_{n=1}^{L} \cos \left(\tilde{q}_{n}+\phi\right) \\
& \phi=\frac{\pi(L+1)}{2 L}
\end{aligned}
$$

$g \rightarrow 0 \quad$ Heisenberg Bethe ansatz

L fermions, L large
$\longrightarrow \quad$ integral equations [Lieb, Wu 68]

BDS ansatz from Lieb-Wu equations

Shiba (particle/hole) transformation:

个	\rightarrow	0	$c_{i, \circ}=c_{i, \uparrow}^{\dagger}$
\downarrow	\longleftrightarrow	金	$c_{i, \uparrow}=c_{i, \downarrow}$
$\phi)-\frac{M}{g^{2}}$			ve interac

Dual Lieb-Wu equations

$$
\begin{aligned}
& e^{i q_{n} L}=\prod_{j=1}^{M} \frac{u_{j}-\sqrt{2} g \sin \left(q_{n}-\phi\right)-i / 2}{u_{j}-\sqrt{2} g \sin \left(q_{n}-\phi\right)+i / 2}, \quad n=1, \ldots, 2 M \\
& \prod_{n=1}^{2 M} \frac{u_{k}-\sqrt{2} g \sin \left(q_{n}-\phi\right)+i / 2}{u_{k}-\sqrt{2} g \sin \left(q_{n}-\phi\right)-i / 2}=-\prod_{\substack{j=1 \\
j \neq k}}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad k=1, \ldots, M \\
& E=-\frac{M}{g^{2}}-\frac{\sqrt{2}}{g} \sum_{n=1}^{2 M} \cos \left(q_{n}-\phi\right)
\end{aligned}
$$

BDS ansatz from Lieb-Wu equations

Magnons as bound states of fermions:
Lieb -Wu equations have bound-states solutions (strings) [Takahashi 72]
q-u strings: 2 fermions (q_{1} and q_{2}) and one rapidity u

$$
q_{1}-\phi=\frac{\pi}{2}+\frac{p}{2}+i \beta, \quad q_{2}-\phi=\frac{\pi}{2}+\frac{p}{2}-i \beta
$$

1st LW equation $\quad \rightarrow \quad u \pm i / 2=\sqrt{2} g \cos \left(\frac{p}{2} \mp i \beta\right) \quad L \rightarrow \infty$

$$
\sinh \beta=\frac{1}{2 \sqrt{2} g \sin \frac{p}{2}} \quad u(p)=\frac{1}{2} \cot \frac{p}{2} \sqrt{1+8 g^{2} \sin ^{2} \frac{p}{2}}
$$

$$
E(p)=\frac{1}{g^{2}}\left(\sqrt{1+8 g^{2} \sin ^{2} \frac{p}{2}}-1\right)
$$

M magnons:
1st LW equation:

$$
\longrightarrow \quad e^{i p_{k} L}=\prod_{j \neq k}^{M} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad k=1, \ldots, M
$$

Finite size corrections: $\quad \mathcal{O}\left(e^{-\beta L}\right)$

$$
g \ll 1 \quad \Rightarrow \quad e^{-\beta L} \sim g^{2 L} \quad \text { as expected }
$$

No order-of-limits problem!

- Hubbard model has a space of states much larger than the $\mathrm{su}(2)$ sector of the dilatation operator!

Solutions with real q ? important at finite g

- comparison with the strings solutions around the AF state qualitatively correct [Roiban, Tîrziu, Tseytlin 06]

Conclusions

- Extension of the Hubbard model to psl(2,214)?
- Four loop computation in the gauge theory/ direct derivation from the gauge theory?
- Comparison with the Bethe ansatz solution for the string sigma model? [Kazakov et al. 06] [Zarembo, Klose 06]

