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C.E.A.-Saclay
F-91191 Gif-sur-Yvette, France

and
cKavli Institute for Theoretical Physics, University of California

Santa Barbara, CA 93106 USA

Adam.Rej@aei.mpg.de, serban@spht.saclay.cea.fr, matthias@aei.mpg.de

Abstract

Recently it was established that a certain integrable long-range spin chain describes the
dilatation operator of N = 4 gauge theory in the su(2) sector to at least three-loop order,
while exhibiting BMN scaling to all orders in perturbation theory. Here we identify this
spin chain as an approximation to an integrable short-ranged model of strongly correlated
electrons: The Hubbard model.



Integrability in AdS/CFT:  sigma models vs. spin chains   

- full solution for the classical sigma model                algebraic curve      
[Kazakov, Marshakov, Minahan, Zarembo; Kazakov, Zarembo; 

Schäfer-Namecki; Kazakov, Beisert, Sakai,  04] 

Integrability:

Gauge theory at 1 loop order : the dilatation operator

in the planar limit in the SO(6) sector → integrable

spin chain [Minahan, Zarembo02]
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– diagonalized by Bethe ansatz techniques

– extended to a PSL(2, 2|4) integrable spin chain

[Beisert,Staudacher03]

su(2) sector:
!

" ≡ Z = Φ1 + iΦ2 ,
"

# ≡ Φ = Φ3 + iΦ4 ,

D(λ) − L = λ
∑

j

(1 − Pj,j+1)

String side: non-linear sigma model on the coset space

PSL(2, 2|4)/SO(4, 1) × SO(5) ⇒ non-local conserved charges

[Bena, Polchinski,Roiban03]

– rotating string solutions at large J → classical integrable model

(Neumann system) [Frolov, Tseytlin, Arutyunov, Russo02−03]

3E(λ)

J
= ε0

(

λ
J2

)

+
1
J

ε1

(

λ
J2

)

+
1
J2

ε2

(

λ
J2

)

+ . . .

4

[Metsaev, Tseytlin 98]

- quantizing the string sigma model [Kazakov et al.; Zarembo, Klose 06] 



AdS/CFT correspondence

N = 4 SYM theory ↔ IIB strings on AdS5 × S5

5

S 5

AdS

gs = g2
YM , R4 = 4πgsNα′2

planar (’t Hooft) limit: N → ∞, λ = g2
YMN = const.

Tests: - BPS states

- BMN (plane wave) limit

- integrability

1

• so(6) sector at one loop is integrable [Minahan, Zarembo 02]

• psl(2,2|4) sector at one loop is integrable [Beisert, Staudacher 03]

• su(2|3) sector is integrable up to three loop order [Beisert, Kristjansen, 
Staudacher; Beisert 03]

perturbative

Opérateur de dilatation et chaînes de spin

  e.g.  su(2) sector: 

Opérateur de dilatation                       Hamiltonien de spin 

H = L + λ

L∑

i=1

2(1 − Pi,i+1) + λ
2

L∑

i=1

(8Pi,i+1 − 2Pi,i+2 − 6) + . . .

2

Integrability at 1 loop order

• dilatation operator in the planar limit in the SO(6) sector →
integrable spin chain [Minahan, Zarembo02]

– extended to a PSL(2, 2|4) integrable spin chain [Beisert,Staudacher03]

– diagonalized by Bethe ansatz techniques

– Yangian symmetry [Dolan, Nappi, Witten03−04]

su(2) sector:!" ≡ Z = Φ1 + iΦ2 ,
"# ≡ Φ = Φ3 + iΦ4 ,

D(λ) − L = λ
∑

j

(1 − Pj,j+1)
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intégrable!

Opérateur de dilatation et chaînes de spin

  e.g.  su(2) sector: 

Opérateur de dilatation                       Hamiltonien de spin 

H = L + λ

L∑

i=1

2(1 − Pi,i+1) + λ
2

L∑

i=1

(8Pi,i+1 − 2Pi,i+2 − 6) + . . .

2

Integrability at 1 loop order

• dilatation operator in the planar limit in the SO(6) sector →
integrable spin chain [Minahan, Zarembo02]

– extended to a PSL(2, 2|4) integrable spin chain [Beisert,Staudacher03]

– diagonalized by Bethe ansatz techniques

– Yangian symmetry [Dolan, Nappi, Witten03−04]

su(2) sector:!" ≡ Z = Φ1 + iΦ2 ,
"# ≡ Φ = Φ3 + iΦ4 ,

D(λ) − L = λ
∑

j

(1 − Pj,j+1)
I

I I

I1

2
3 4

IL

. . .

.. .
4

Integrability at 1 loop order

• dilatation operator in the planar limit in the SO(6) sector →
integrable spin chain [Minahan, Zarembo02]

– extended to a PSL(2, 2|4) integrable spin chain [Beisert,Staudacher03]

– diagonalized by Bethe ansatz techniques

– Yangian symmetry [Dolan, Nappi, Witten03−04]

su(2) sector:!" ≡ Z = Φ1 + iΦ2 ,
"# ≡ Φ = Φ3 + iΦ4 ,

D(λ) − L = λ
∑

j

(1 − Pj,j+1)
I

I I

I1

2
3 4

IL

. . .

.. .
4

intégrable!

D = L + λ

L∑

i=1

2(1 − Pi,i+1) + λ
2

L∑

i=1

(8Pi,i+1 − 2Pi,i+2 − 6) + . . .
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Bethe Ansatz

Integrability in AdS/CFT:  sigma models vs. spin chains   



Integrability:  sigma models vs. spin chains   
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comparison of the Bethe Ansatz and string results:      

BMN scaling

•    order of limits?
•    non-analytic corrections to strings [Beisert, Tseytlin 05]

•    non-perturbative mixing of the sectors [Minahan; Alday, Arutyunov, Frolov 05]

Discrepancy at three loop order ! [Callan et al. 03]
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Bethe Ansatz solution to three loop order [Serban, Staudacher 04]
solution of the classical sigma model  [KMMZ 04]

Integrability in AdS/CFT:  sigma models vs. spin chains   



All loop integrability: the BDS conjecture
                                           [Beisert, Dippel, Staudacher 04]

   

There is a unique spin chain obeying:
-  diagrammatic constraint 
-  integrability up to five loops
-  BMN scaling       

candidate  for the dilatation operator

all loop Bethe ansatz for  L  infinite :
D = L + λ

L
∑

i=1

2(1 − Pi,i+1) + λ2

L
∑

i=1

(8Pi,i+1 − 2Pi,i+2 − 6) + . . .

eipkL =
M
∏

j !=k

uk − uj + i

uk − uj − i
, k = 1, . . . , M , (0.1)

where the rapidities uk = u(pk) are related to the momenta pk

through the expression

u(p) =
1

2
cot

p

2

√

1 + 8g2 sin2 p

2
, (0.2)

and the energy should be given by
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∆ = L + g2E(g) , g2
≡

λ

8π2
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all loop psl(2,2|4):   [Beisert, Staudacher; Beisert 05]



H0 = {}− {1},

H2 = −2{} + 3{1} − 1
2

(

{1, 2} + {2, 1}
)

,

H4 = 15
2 {}− 13{1} + 1

2{1, 3}
+ 3

(

{1, 2} + {2, 1}
)

− 1
2

(

{1, 2, 3} + {3, 2, 1}
)

.

H6 = −35{} +
(

67 + 4α
)

{1} +
(

−21
4 − 2α

)

{1, 3} − 1
4{1, 4}

+
(

−151
8 − 4α

)(

{1, 2} + {2, 1}
)

+ 2α
(

{1, 3, 2} + {2, 1, 3}
)

+ 1
4

(

{1, 2, 4} + {1, 3, 4} + {1, 4, 3} + {2, 1, 4}
)

+
(

6 + 2α
)(

{1, 2, 3} + {3, 2, 1}
)

+
(

−3
4 − 2α

)

{2, 1, 3, 2} +
(

9
8 + 2α

)(

{1, 3, 2, 4} + {2, 1, 4, 3}
)

+
(

−1
2 − α

)(

{1, 2, 4, 3} + {1, 4, 3, 2} + {2, 1, 3, 4} + {3, 2, 1, 4}
)

− 5
8

(

{1, 2, 3, 4} + {4, 3, 2, 1}
)

,

H8 = +1479
8 {} +

(

−1043
4 − 12α + 4β1

)

{1} +
(

−19 + 8α − 2β1 − 4β2
)

{1, 3}
+

(

5 + 2α + 4β2 + 4β3
)

{1, 4} + 1
8{1, 5} +

(

11α − 4β1 + 2β3
)(

{1, 2} + {2, 1}
)

− 1
4{1, 3, 5} +

(

251
4 − 5α + 2β1 − 2β3

)(

{1, 3, 2} + {2, 1, 3}
)

+
(

−3 − α − 2β3
)(

{1, 2, 4} + {1, 3, 4} + {1, 4, 3} + {2, 1, 4}
)

− 1
8

(

{1, 2, 5} + {1, 4, 5} + {1, 5, 4} + {2, 1, 5}
)

+
(

41
4 − 6α + 2β1 − 4β3

)(

{1, 2, 3} + {3, 2, 1}
)

+
(

−107
2 + 4α − 2β1

)

{2, 1, 3, 2}
+

(

1
4 + β2

)(

{1, 3, 2, 5} + {1, 3, 5, 4} + {1, 4, 3, 5} + {2, 1, 3, 5}
)

+
(

183
4 − 6α + 2β1 − 2β2

)(

{1, 3, 2, 4} + {2, 1, 4, 3}
)

+
(

−3
4 − 2β2

)(

{1, 2, 5, 4} + {2, 1, 4, 5}
)

+
(

1 + 2β2
)(

{1, 2, 4, 5} + {2, 1, 5, 4}
)

+
(

−51
2 + 5

2α − β1 + β2 + 3β3
)(

{1, 2, 4, 3} + {1, 4, 3, 2} + {2, 1, 3, 4} + {3, 2, 1, 4}
)

− β2
(

{1, 2, 3, 5} + {1, 3, 4, 5} + {1, 5, 4, 3} + {3, 2, 1, 5}
)

+
(

35
4 + α + 2β3

)(

{1, 2, 3, 4} + {4, 3, 2, 1}
)

+
(

−7
8 − α + 2β3

)(

{1, 4, 3, 2, 5} + {2, 1, 3, 5, 4}
)

+
(

1
2 + α

)(

{1, 3, 2, 5, 4} + {2, 1, 4, 3, 5}
)

+
(

5
8 + 1

2α − β3
)(

{1, 3, 2, 4, 3} + {2, 1, 3, 2, 4} + {2, 1, 4, 3, 2} + {3, 2, 1, 4, 3}
)

+
(

1
4 − 2β3

)(

{1, 2, 5, 4, 3} + {3, 2, 1, 4, 5}
)

+
(

1
4 + 1

2α + β3
)(

{1, 2, 4, 3, 5} + {1, 3, 2, 4, 5} + {2, 1, 5, 4, 3} + {3, 2, 1, 5, 4}
)

+
(

−1
2α − β3

)(

{1, 2, 3, 5, 4} + {1, 5, 4, 3, 2} + {2, 1, 3, 4, 5} + {4, 3, 2, 1, 5}
)

− 7
8

(

{1, 2, 3, 4, 5} + {5, 4, 3, 2, 1}
)

Table 1: The spin chain Hamiltonian up to five-loops, O(g8). The constants α,β1,2,3 do not
influence the spectrum.
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L → ∞
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1 + 8g2 sin2 p

2
, (0.9)

E(p) =
1

g2

(
√

1 + 8g2 sin2 p

2
− 1

)

. (0.10)

O(e−βL)

g $ 1 ⇒ e−βL ∼ g2L

g/L > 1/8

{m, n, p} ≡
∑

i

Pi+m,i+m+1Pi+n,i+n+1Pi+p,i+p+1

4-1



BDS ansatz from the Hubbard model at half filling 
                                           [Rej, Serban, Staudacher 05]

   

energy of the  AF state [RSS; Zarembo 05] : 

∆ = L + g2E(g) , g2
≡

λ

8π2

EAF(g) =
4L
√

2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)

3

Lieb, Wu 1968!  

1-d Hubbard model: itinerant fermions with onsite repulsion 

The operators c†i,σ and ci,σ are canonical Fermi operators satisfying the anticommutation
relations

{ci,σ, cj,τ} = {c†i,σ, c
†
j,τ} = 0 , (12)

{ci,σ, c
†
j,τ} = δij δστ .

We see that the Hamiltonian consists of two terms, a kinetic nearest-neighbor hopping
term with strength t, and an ultralocal interaction potential with coupling constant U .
Depending on the sign of U , it leads to on-site attraction or repulsion if two electrons
occupy the same site.

Comparing the BDS result (10) with the result of Lieb and Wu for the ground state
energy of the half-filled band, where the number of electrons equals the number of lattice
sites, i.e. N0 = L, we see that the two energies coincide exactly under the identification

t = − 1√
2 g

U =

√
2

g
. (13)

This leads us to the conjecture that the BDS long-range spin chain, where, by construc-
tion, g is assumed to be small, is nothing but the strong coupling limit of the Hubbard
model under the identification (13). In the following we will show that this is indeed the
case, even away from the antiferromagnetic ground state. In fact, we shall demonstrate
that it is exactly true at finite L up to O(g2L) where the BDS long-range chain looses its
meaning. This will, however, require the resolution of certain subtleties concerning the
boundary conditions of the Hamiltonian (11). As it stands, it will only properly diago-
nalize the BDS chain if the length L is odd. It the length is even, we have to subject the
fermions to an Aharonov-Bohm type magnetic flux φ. The Hamiltonian in the presence
of this flux remains integrable and reads

H =
1√
2 g

L
∑

i=1

∑

σ=↑,↓

(

eiφσ c†i,σci+1,σ + e−iφσ c†i+1,σci,σ

)

− 1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,↓ci,↓ , (14)

H =
1√
2 g

L
∑

i=1

∑

σ=↑,↓

(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ

)

− 1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,↓ci,↓ , (15)

where the twist is given by1

φσ = φ , σ =↑, ↓ , (16)

φ = 0 for L = odd and φ =
π

2L
for L = even.

An alternative way to introduce the Aharonov-Bohm flux is to perform a suitable gauge
transformation and to thereby concentrate the magnetic potential on a single link, say

1For odd L the twist φσ could alternatively be chosen as any integer multiple of π

L
, while for even L

any odd-integer multiple of π

2L
is possible. A compact notation which does not distinguish the cases L

odd or even is φ = π(L+1)
2L

.
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∆ = L + g2E(g) , g2 ≡
λ

8π2

EAF(g) =
4L
√

2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)

H =
1

√
2 g

L
∑

i=1

∑

σ=↑,dn

(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ

)

−
1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,dnci,dn ,

(0.5)

t = 1 ⇔ U =
√

2/g

3

- solved by (nested) Bethe Ansatz

             Heisenberg model at half filling and 

∆ = L + g2E(g) , g2 ≡
λ

8π2

EAF(g) =
4L
√

2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)

H =
1

√
2 g

L
∑

i=1

∑

σ=↑,dn

(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ

)

−
1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,dnci,dn ,

(0.5)

t = 1 ⇔ U =
√

2/g

g = 0

g2

3

ground state: ferromagnetic state  

1/g2

t1L = − t∗1L

Φ =
π(L + 1)

2

φ =
π(L + 1)

2L

| ↑↑↑↑ ... ↑>

q1 − φ =
π

2
+

p

2
+ i β , q2 − φ =

π

2
+

p

2
− i β (0.6)

u ± i/2 =
√

2 g cos
(p

2
∓ iβ

)

(0.7)

sinhβ =
1

2
√

2 g sin p
2

(0.8)

4



Hubbard model at half filling 
   

projection to a spin Hamiltonian
(“strong coupling’’ or                )  
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√
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(0.4)

H =
1

√
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∑

i=1
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σ=↑,dn
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eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ
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1

g2

L
∑

i=1
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1/g2
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[Klein, Seitz 73; Takahashi 77]  

• at             the onsite part dominates

• fluctuations 

∆ = L + g2E(g) , g2 ≡
λ

8π2

EAF(g) =
4L
√

2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)

H =
1

√
2 g

L
∑

i=1

∑

σ=↑,dn

(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ

)

−
1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,dnci,dn ,

(0.5)

t = 1 ⇔ U =
√

2/g

g = 0

g2

3

∆ = L + g2E(g) , g2 ≡
λ

8π2

EAF(g) =
4L
√

2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)

H =
1

√
2 g

L
∑

i=1

∑

σ=↑,dn

(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ

)

−
1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,dnci,dn ,

(0.5)

t = 1 ⇔ U =
√

2/g

g = 0

g2

3

1/g2

| ↑↓↑↑ ... ↑>

4

states:

∆ = L + g2E(g) , g2 ≡
λ

8π2

EAF(g) =
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2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)
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∑
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∑
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(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ
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†
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(unwanted) four spin term    [Takahashi 77]  
twisted boundary conditions

for odd chains:   
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t1L = − t∗1L

| ↑↓↑↑ ... ↑>

4

spin permutation  

Aharonov-Bohm flux   

1/g2

t1L = − t∗1L
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2

| ↑↓↑↑ ... ↑>
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where . . . means arrow-reversed diagrams.
We have confirmed all diagram evaluations performed in [17], except for the contri-

bution of the diagrams of type f in equation (C3) of the mentioned paper, where there
is an overall factor of 16 missing. We believe this to be a typographical error. There is
however also an additional contribution from the mentioned four diagrams which were
not included in their computations. Explicit calculation shows, that the missing terms
yield

−
(

1

U

)6

Ut(16A1 − 4A2 + 2B3 − 2B1 − 2B2) , (27)

where

As =
∑L

i=1(1 − Pi,i+s) , B1 =
∑L

i=1(1 − Pi,i+1Pi+2,i+3) ,

B2 =
∑L

i=1(1 − Pi,i+2Pi+1,i+3) , B3 =
∑L

i=1(1 − Pi,i+3Pi+1,i+2) ,

and P is a spin permutation operator. Correcting the result of Klein and Seitz we find

h =

[

− 2

(

1

U

)2

+ 8

(

1

U

)4

− 56

(

1

U

)6]

tUA1 +

[

− 2

(

1

U

)4

+ 16

(

1

U

)6]

tUA2 +

4

(

1

U

)6

tU(B2 − B3) .

(28)

Upon putting U =
√

2
g , t = − 1√

2g
and after some simple algebra one rewrites (27) in the

form

h =
L

∑

i=1

(h2 + g2h4 + g4h6 + ...) , (29)

with

h2 =
1

2
(1 − !σi !σi+1) ,

h4 = −(1 − !σi !σi+1) +
1

4
(1 − !σi !σi+2) ,

h6 =
15

4
(1 − !σi!σi+1) −

3

2
(1 − !σi!σi+2) +

1

4
(1 − !σi!σi+3)

−1

8
(1 − !σi!σi+3)(1 − !σi+1!σi+2)

+
1

8
(1 − !σi!σi+2)(1 − !σi+1!σi+3) . (30)

This is indeed the correct planar three-loop dilatation operator in the su(2) sector of
N = 4 gauge theory [3]. It is fascinating to see its emergence from an important and
well-studied integrable model of condensed matter theory.
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Projection of the Hubbard model on the spin space:

dilatation operator in the su(2) sector!



BDS ansatz from Lieb-Wu equations 
   

3 Lieb-Wu Equations

The Hamiltonian (11) was shown to be integrable and diagonalized by coordinate Bethe
ansatz in [15]. For a pedagogical treatment see [16]. This required finding the dispersion
relation of the elementary excitations ↑ and ↓ and working out their two-body S-matrix.
It is indeed a matrix since there are two types of excitations, hence their ordering matters.
The scattering of two up- or two down-spins is absent, as identical fermions behave like
free particles. The scattering of different types of fermions is non-trivial due to their
on-site interaction. After working out the S-matrix one needs to diagonalize the multi-
particle system by a nested Bethe ansatz. The result of this procedure, generalized to
the case with magnetic flux, yields the Lieb-Wu equations:

eiq̃nL =
M
∏

j=1

uj −
√

2g sin(q̃n + φ) − i/2

uj −
√

2g sin(q̃n + φ) + i/2
, n = 1, . . . , L (31)

L
∏

n=1

uk −
√

2g sin(q̃n + φ) + i/2

uk −
√

2g sin(q̃n + φ) − i/2
=

M
∏

j=1
j !=k

uk − uj + i

uk − uj − i
, k = 1, . . . , M (32)

where the twist is given4 in (15) and the energy is

E =

√
2

g

L
∑

n=1

cos(q̃n + φ) . (33)

Here we have already specialized to the half-filled case with N0 = L fermions and M ≤
L/2 down-spin fermions (there are thus L − M up-spin fermions in the system).

This form of the Hubbard model’s Bethe equations if very convenient for demonstrat-
ing rather quickly that the g → 0 limit yields the spectrum of the Heisenberg magnet.
In fact, the Lieb-Wu equations decouple at leading order and become

eiq̃nL =
M
∏

j=1

uj − i/2

uj + i/2

(

1 + O(g)
)

, n = 1, . . . , L (34)

(

uk + i/2

uk − i/2

)L

=
M
∏

j=1
j !=k

uk − uj + i

uk − uj − i
, k = 1, . . . , M (35)

Eqs. (34) are already identical to the ones of the Heisenberg magnet (see e.g. [1],[14]).
The r.h.s. of (33) is, to leading order O(g0), the eigenvalue of the shift operator of the
chain (again, [1],[14]). In gauge theory we project onto cyclic states, so we may take the
eigenvalue to be one, and solve immediately for the L momenta q̃n to leading order:

eiq̃nL = 1 =⇒ q̃n =
2π

L
(n − 1) + O(g), n = 1, . . . , L . (36)

4The Lieb-Wu equations for arbitrary twist are given in appendix C.
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L fermions,  L large  integral equations [Lieb, Wu 68]

∆ = L + g2E(g) , g2 ≡
λ

8π2

EAF(g) =
4L
√

2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)

H =
1

√
2 g

L
∑

i=1

∑

σ=↑,dn

(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ

)

−
1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,dnci,dn ,

(0.5)

t = 1 ⇔ U =
√

2/g

g → 0

1/g2

3

Heisenberg Bethe ansatz 



BDS ansatz from Lieb-Wu equations 
   

Shiba (particle/hole) transformation:  

the one connecting the L’th and the first site. It is then clear that considering a non-zero
flux amounts to considering twisted boundary conditions for the fermions.

The vacuum of the Hamiltonian (11) is the empty lattice of length L. Here the
elementary excitations are up (↑) and down (↓) spins. Two electrons per site (#) are
considered a bound state of elementary excitations. These constituents of the bound
states are repulsive (as g > 0). For our purposes it is perhaps more natural to consider
the BPS vacuum:

|ZL〉 = | ↑↑ . . . ↑↑〉 = c†1↑c
†
2↑ . . . c†L−1↑c

†
L↑ |0〉 (17)

We may then perform a particle-hole transformation on the up-spin electrons.

◦ ⇐⇒ ↑ (18)

↓ ⇐⇒ # (19)

Now single up-spins (↑) are considered to be empty sites, while the elementary excitations
are holes (◦) and two electrons states (#). In the condensed matter literature, such a
transformation is often called a Shiba transformation and it is known to reverse the sign
of the interaction. The standard Shiba transformation contains an alternating sign in the
definition of the new creation/annihilation operators, designed to recover the hopping
term, at least in the periodic case. The price to pay is that for odd lengths the sign of the
hole hopping term will change on the link connecting the last (L’th) and the first site.
In other words, the particle/hole transformation introduces an extra flux of π L seen by
holes. Since we prefer to distribute this twist uniformly along the chain, we remove the
signs in the definition of the hole operators2 and put

ci,◦ = c†i,↑ , c†i,◦ = ci,↑ , (20)

ci,$ = ci,↓ , c†i,$ = c†i,↓ . (21)

Under the particle/hole transformation, the charge changes sign and the corresponding
hopping terms get complex conjugated. An extra minus sign comes from the reordering
of the hole operators. Therefore we may write the Hamiltonian in its dual form

H =
1√
2g

L
∑

i=1

∑

σ=◦,$

(

eiφσ c†i,σci+1,σ + e−iφσ c†i+1,σci,σ

)

− 1

g2

L
∑

i=1

(1 − c†i,◦ci,◦)c
†
i,$ci,$ . (22)

where φ$ = φ↓, while φ◦ = π − φ↑. φ↑ = φ↓ = φ, multiple of 2π/L, Comparing the
two expressions (14) and (21) we conclude that under the duality transformation, the
Hamiltonian (14) transforms as

H(g; φ, φ) → −H(−g; π − φ, φ) − M

g2
(23)

As predicted, the sign of the interaction changes upon dualization. The effect is that
holes ◦ and states with two electrons per site # attract each other and form bound states
↓, the magnons.

2This amounts to a gauge transformation.

5

attractive interaction 

Dual Lieb-Wu equations  

i.e. when L → ∞. The reason is the large number of momenta q̃n one has to deal with.
In (21) we have written a dual form of the Hamiltonian (14). Accordingly, we may write
down the corresponding set of dual Lieb-Wu equations:

eiqnL =
M
∏

j=1

uj −
√

2g sin(qn − φ) − i/2

uj −
√

2g sin(qn − φ) + i/2
, n = 1, . . . , 2M (38)

2M
∏

n=1

uk −
√

2g sin(qn − φ) + i/2

uk −
√

2g sin(qn − φ) − i/2
= −

M
∏

j=1
j !=k

uk − uj + i

uk − uj − i
, k = 1, . . . , M (39)

where the energy is now given by

E = −M

g2
−

√
2

g

2M
∑

n=1

cos(qn − φ) . (40)

Again, we have specialized to the case of half-filling. A particular feature of the dual
Hamiltonian (21) is that the twist is different for the two components. We are therefore
led to use the Lieb-Wu equations for generic twist which are written down in Appendix
C. This explains the minus sign in the right hand of (38), ei(φ!−φ◦) = ei(2φ−π)L = −1.
Note that φ → −φ is a symmetry of the equations (but not of the solutions), as we may
change u → −u and q → −q. Note also that therefore the set of L + 2M momenta
(q̃n,−qn) corresponds to the L + 2M solutions of the first Lieb-Wu equation (30).

4 Magnons from Fermions

In chapter 2 we proved, to three-loop order, that the Hamiltonian of the BDS long-
range spin chain emerges at weak coupling g from the twisted Hubbard Hamiltonian as
an effective theory. Pushing this proof to higher orders would be possible but rather
tedious. Note, however, that the BDS Hamiltonian is, at any rate, only known to five-
loop order [7]. What we are really interested in is whether the Bethe ansatz (1),(2),(3),
which was conjectured in [7], may be derived from the Bethe equations of the Hubbard
model, i.e. from the Lieb-Wu equations of the previous chapter. We will now show that
this is indeed the case. The derivation will first focus on a single magnon (section 4.1),
where it will be shown that the magnons ↓ of the long-range spin chain are bound states
of holes ◦ and double-occupations ', as is already suggested by the perturbative picture
of chapter 2. It will culminate in 4.3, where we demonstrate that the bound states alias
magnons indeed scatter according to the r.h.s. of (1). An alternative proof may be found
in appendix E.

Unlike the BDS long-range spin chain, the twisted Hubbard model is well-defined
away from weak coupling, and actually for arbitrary values of g. An important question
is whether the twisted Hubbard model allows to explain the vexing discrepancies between
gauge and string theory [22, 6]. Unfortunately this does not seem the be the case. We
have carefully studied the spectrum of two magnons in section 4.2, and find that their
is no order of limits problem as the coupling g and the length L tend to infinity while
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2M fermions, M magnons  

the one connecting the L’th and the first site. It is then clear that considering a non-zero
flux amounts to considering twisted boundary conditions for the fermions.

The vacuum of the Hamiltonian (11) is the empty lattice of length L. Here the
elementary excitations are up (↑) and down (↓) spins. Two electrons per site (#) are
considered a bound state of elementary excitations. These constituents of the bound
states are repulsive (as g > 0). For our purposes it is perhaps more natural to consider
the BPS vacuum:

|ZL〉 = | ↑↑ . . . ↑↑〉 = c†1↑c
†
2↑ . . . c†L−1↑c

†
L↑ |0〉 (17)

We may then perform a particle-hole transformation on the up-spin electrons.

◦ ⇐⇒ ↑ (18)

↓ ⇐⇒ # (19)

Now single up-spins (↑) are considered to be empty sites, while the elementary excitations
are holes (◦) and two electrons states (#). In the condensed matter literature, such a
transformation is often called a Shiba transformation and it is known to reverse the sign
of the interaction. The standard Shiba transformation contains an alternating sign in the
definition of the new creation/annihilation operators, designed to recover the hopping
term, at least in the periodic case. The price to pay is that for odd lengths the sign of the
hole hopping term will change on the link connecting the last (L’th) and the first site.
In other words, the particle/hole transformation introduces an extra flux of π L seen by
holes. Since we prefer to distribute this twist uniformly along the chain, we remove the
signs in the definition of the hole operators2 and put

ci,◦ = c†i,↑ , c†i,◦ = ci,↑ , (20)

ci,$ = ci,↓ , c†i,$ = c†i,↓ . (21)

Under the particle/hole transformation, the charge changes sign and the corresponding
hopping terms get complex conjugated. An extra minus sign comes from the reordering
of the hole operators. Therefore we may write the Hamiltonian in its dual form

H =
1√
2g

L
∑

i=1

∑

σ=◦,$

(

eiφσ c†i,σci+1,σ + e−iφσ c†i+1,σci,σ

)

− 1

g2

L
∑

i=1

(1 − c†i,◦ci,◦)c
†
i,$ci,$ . (22)

where φ$ = φ↓, while φ◦ = π − φ↑. φ↑ = φ↓ = φ, multiple of 2π/L, Comparing the
two expressions (15) and (22) we conclude that under the duality transformation, the
Hamiltonian (15) transforms as

H(g; φ, φ) → −H(−g; π − φ, φ) − M

g2
(23)

As predicted, the sign of the interaction changes upon dualization. The effect is that
holes ◦ and states with two electrons per site # attract each other and form bound states
↓, the magnons.

2This amounts to a gauge transformation.
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Magnons as bound states of fermions: 
Lieb -Wu equations have bound-states solutions (strings)  [Takahashi 72]

1/g2

t1L = − t∗1L

Φ =
π(L + 1)

2

φ =
π(L + 1)

2L

| ↑↓↑↑ ... ↑>

q1 − φ =
π

2
+

p

2
+ i β , q2 − φ =

π

2
+

p

2
− i β (0.6)

4

q-u strings: 2 fermions (      and      ) and one rapidity u

1/g2

t1L = − t∗1L

Φ =
π(L + 1)

2

φ =
π(L + 1)

2L

| ↑↓↑↑ ... ↑>

q1 − φ =
π

2
+

p

2
+ i β , q2 − φ =

π

2
+

p

2
− i β (0.6)

u ± i/2 =
√

2 g cos
(p

2
∓ iβ

)

(0.7)

sinhβ =
1

2
√

2 g sin p
2

(0.8)

4
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L → ∞
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1st LW equation L → ∞
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M magnons:

1st LW equation: 

D = L + λ
L

∑

i=1

2(1 − Pi,i+1) + λ2

L
∑

i=1

(8Pi,i+1 − 2Pi,i+2 − 6) + . . .

eipkL =
M
∏

j !=k

uk − uj + i

uk − uj − i
, k = 1, . . . , M , (0.1)

where the rapidities uk = u(pk) are related to the momenta

pk through the expression

u(p) =
1

2
cot

p

2

√

1 + 8g2 sin2 p

2
, (0.2)

and the energy should be given by

E(g) = −
M

g2
+

1

g2

M
∑

k=1

√

1 + 8g2 sin2 pk

2
. (0.3)

2

BDS equation 



Finite size corrections: 

L → ∞
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2
, (0.9)
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O(e−βL)
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L → ∞

u(p) =
1

2
cot
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2
, (0.9)

E(p) =
1

g2

(
√

1 + 8g2 sin2 p

2
− 1

)

. (0.10)

O(e−βL)

g $ 1 ⇒ e−βL ∼ g2L

4-1

No order-of-limits problem!

as expected 

-  comparison with the strings solutions around the AF state qualitatively 
correct [Roiban, Tîrziu, Tseytlin 06]

- Hubbard model has a space of states much larger than the 
su(2) sector of the dilatation operator!

Solutions with real q ? important at finite

∆ = L + g2E(g) , g2 ≡
λ

8π2

EAF(g) =
4L√
2g

∫ ∞

0

dt

t

J0(
√

2gt) J1(
√

2gt)

1 + et
(0.4)

H =
1√
2 g

L
∑

i=1

∑

σ=↑,↓

(

eiφ c†i,σci+1,σ + e−iφ c†i+1,σci,σ

)

−
1

g2

L
∑

i=1

c†i,↑ci,↑c
†
i,↓ci,↓ ,

(0.5)

t = 1 ⇔ U =
√

2/g

g = 0

g4

3



• Extension of the Hubbard model to psl(2,2|4)?

• Four loop computation in the gauge theory/ direct derivation from the 
gauge theory?

•  Comparison with the Bethe ansatz solution for the string sigma model?   
[Kazakov et al. 06] [Zarembo, Klose 06]

Conclusions 
   


