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Introduction

from WMAP

• An almost scale invariant, adiabatic, Gaussian primordial fluctuation
predicted by inflation is in good agreement with CMB data.

• A tantalizing upper bound on the energy density during inflation:

V ∼ M4
GUT ∼ (1016GeV )4 i.e., H ∼ 1014GeV.

The relevant energy scale is close to the scale where stringy physics
becomes important.
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• Imprints of short distance physics. [More later in this workshop]

• Studies focused mainly on the power spectrum: primordial non-Gaussian

fluctuations predicted by inflation are typically too small.
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A plethora of string inflationary models. Two broad classes:

Slow roll inflation (e.g., KKLMMT):

+ F strings
+ D strings
   radiation

Brane
Our

Brane inflation Dvali and Tye

Flux compactification: stabilizes moduli and generates warped throats.



Warped throats:

D3
D3

• Help flatten the potential, though some degree of fine-tuning is still

needed : usual η problem.

• Reheating and suppression of gravitational wave production.

Barneby, Burgess, and Cline
Kofman and Yi

Chialva, GS, and Underwood

Frey, Mazumdar, and Myers



DBI Inflation [Silverstein and Tong]

• Different regime: higher derivative terms enforce a casual speed limit.

SDBI = d4x
√
−g

[

T
√

1 − φ̇2/T + V (φ) − T

]

where T = T3h(φ)4 with T3 = D3 tension, h(φ) is the warping factor.



DBI Inflation [Silverstein and Tong]

• Different regime: higher derivative terms enforce a casual speed limit.

SDBI = d4x
√
−g

[

T
√

1 − φ̇2/T + V (φ) − T

]

where T = T3h(φ)4 with T3 = D3 tension, h(φ) is the warping factor.



• Distinctive signatures: Alishahiha, Silverstein, and Tong

See also: Chen

– Large Non-Gaussianties with a characteristic shape of 〈ζk1
ζk2

ζk3
〉:

fNL ∼ γ2 γ =
1

√

1 − φ̇2/T

The numerical coefficient of γ2 in fNL is 0.32. [Chen, Huang, GS]

– Modified “consistency relation”:

Ph
k

P
ζ
k

= −8

γ
nT



• Distinctive signatures: Alishahiha, Silverstein, and Tong

See also: Chen

– Large Non-Gaussianties with a characteristic shape of 〈ζk1
ζk2

ζk3
〉:

fNL ∼ γ2 γ =
1

√

1 − φ̇2/T

The numerical coefficient of γ2 in fNL is 0.32. [Chen, Huang, GS]

– Modified “consistency relation”:

Ph
k

P
ζ
k

= −8

γ
nT

• More generally: by varying γ, one can interpolate between slow roll

(γ ∼ 1) to DBI inflation (γ >> 1) including intermediate regime (γ >∼ 1).

Inflation in this general setup is robust. Shandera and Tye



Our Results

• General analysis for an arbitrary action of the form:

S =
1

2

∫

d4x
√
−g[M2

plR + 2P(X, φ)] X =
1

2
gµν∂µφ∂νφ

• Our results are applicable to the intermediate regime, as well as in

extracting subleading (but potentially observable) non-Gaussianities.

• We obtain all known shapes of non-Gaussianities plus more.

• Laboratory for testing the dS/CFT proposal Strominger

[Larsen, van der Schaar, Leigh]; [Maldacena]; [Larsen, McNees]; [van der Schaar]

[Bousso, Maloney, Strominger] . . .

〈fk1
fk2

fk3
〉′ =

2Re〈Ok1
Ok2

Ok3
〉′

∏

i(−2Re〈Oki
Oki

〉′)

Maldacena, astro-ph/0210603
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• Consider an action of the form:

S =
1

2

∫

d4x
√
−g[M2

plR + 2P(X, φ)]

whose Gaussian perturbations have been considered by Garriga and Mukhanov.

• Define the energy E and the sound speed cs as

E = 2XP,X − P

c2s =
P,X

P,X + 2XP,XX

• Friedman equation and the continuity equation

3M2
plH

2 = E

Ė = −3H(E + P)

• For a Lagrangian with standard kinetic term: P(X, φ) = X − V (φ) and

hence cs = 1. For DBI action, cs = 1/γ.



• Generalized slow roll parameters:

ε = − Ḣ

H2
=

XP,X

MplH
2
,

η =
ε̇

εH
,

s =
ċs

csH
.



• Generalized slow roll parameters:

ε = − Ḣ

H2
=

XP,X

MplH
2
,

η =
ε̇

εH
,

s =
ċs

csH
.

• The non-Gaussianities that we found depend on 5 parameters:

c−2
s , ε, η, s, and λ/Σ (to be defined).

Potentially observable when these parameters are sufficiently large.



Non-Gaussianities

• Primordial power spectrum:

〈ζk1
ζk2

〉 ∼ δ3(k1 + k2)
P

ζ
k

k3
1

• Non-Gaussianity contains potentially more info because of its shape:

〈ζk1
ζk2

ζk3
〉 = (2π)3δ3(k1 + k2 + k3)F(k1,k2,k3)

• Scaling and symmetries imply that F(k1,k2,k3) is a symmetric, homo-

geneous function of degree −6.

• Primordial non-Gaussianities come from cubic terms in the Lagrangian.



• It is useful to work in the ADM metric formalism:

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + Njdt)

where inflaton φ and metric hij are dynamical variables, N and N i are

Lagrange multipliers.



• It is useful to work in the ADM metric formalism:

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + Njdt)

where inflaton φ and metric hij are dynamical variables, N and N i are

Lagrange multipliers.

• Focus on scalar perturbations. In the comoving gauge:

δφ = 0 hij = a2e2ζδij

with ζ being the gauge invariant scalar perturbation which remains

constant outside horizon. Calculations greatly simplified.



• It is useful to work in the ADM metric formalism:

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + Njdt)

where inflaton φ and metric hij are dynamical variables, N and N i are

Lagrange multipliers.

• Focus on scalar perturbations. In the comoving gauge:

δφ = 0 hij = a2e2ζδij

with ζ being the gauge invariant scalar perturbation which remains

constant outside horizon. Calculations greatly simplified.

• To obtain the cubic terms: we plug the metric ansatz into the La-

gragian, and substitute the Lagrangian multipliers N and N i with the

solutions to their equations of motion.



• It is useful to work in the ADM metric formalism:

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + Njdt)

where inflaton φ and metric hij are dynamical variables, N and N i are

Lagrange multipliers.

• Focus on scalar perturbations. In the comoving gauge:

δφ = 0 hij = a2e2ζδij

with ζ being the gauge invariant scalar perturbation which remains

constant outside horizon. Calculations greatly simplified.

• To obtain the cubic terms: we plug the metric ansatz into the La-

gragian, and substitute the Lagrangian multipliers N and N i with the

solutions to their equations of motion.

• To compute the effective action to order O(ζ3), we need only the

solutions of N and N i to order O(ζ). Maldacena



• The solution to the equation of motion for scalar perturbation ζ(t,k)

at quadratic order gives the power spectrum.

• The primordial non-Gaussianities are:

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = −i
∫ t

t0
dt′〈[ζ(t,k1)ζ(t,k2)ζ(t,k3), Hint(t

′)]〉 ,

where Hint(t) is the cubic Hamiltonian for the scalar perturbation ζ.



• The solution to the equation of motion for scalar perturbation ζ(t,k)

at quadratic order gives the power spectrum.

• The primordial non-Gaussianities are:

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = −i
∫ t

t0
dt′〈[ζ(t,k1)ζ(t,k2)ζ(t,k3), Hint(t

′)]〉 ,

where Hint(t) is the cubic Hamiltonian for the scalar perturbation ζ.

A lot of pain and sweat . . .



Shape of Non-Gaussianities

F(k1,k2,k3) = (2π)4(P
ζ
k )2

1
∏

i k3
i

× (Aλ + Ac + Aε + Aη + As)

where Aλ =

(

1

c2s
− 1 − 2λ

Σ

)

3k2
1k2

2k2
3

2K3
,

Ac =

(

1

c2s
− 1

)



− 1

K

∑

i>j

k2
i k2

j +
1

2K2

∑

i6=j

k2
i k3

j +
1

8

∑

i

k3
i



 ,

Aε =
ε

c2s



−1

8

∑

i

k3
i +

1

8

∑

i6=j

kik
2
j +

1

K

∑

i>j

k2
i k2

j



 ,

Aη =
η

c2s

(

1

8

∑

i

k3
i

)

,

As =
s

c2s



−1

4

∑

i

k3
i − 1

K

∑

i>j

k2
i k2

j +
1

2K2

∑

i6=j

k2
i k3

j



 .

and K = k1 + k2 + k3, Σ = XP,X + 2X2P,XX, λ = X2P,XX + 2
3X3P,XXX.



Experimental Bound

• WMAP ansatz for the primordial non-Gaussianities

ζ(x) = ζg(x) −
3

5
fNL(ζg(x)

2 − 〈ζ2
g (x)〉

here ζg(x) is purely Gaussian with vanishing three point functions.

• The size of non-Gaussianities is measured by the parameter fNL in the

above ansatz. Current experimental bound is

−58 < fNL < 134 at 95% C.L.

Future experiments can eventually reach the sensitivity of fNL <∼ 20

(WMAP) and fNL <∼ 5 (PLANCK).
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ζ(x) = ζg(x) −
3

5
fNL(ζg(x)

2 − 〈ζ2
g (x)〉

here ζg(x) is purely Gaussian with vanishing three point functions.

• The size of non-Gaussianities is measured by the parameter fNL in the

above ansatz. Current experimental bound is

−58 < fNL < 134 at 95% C.L.

Future experiments can eventually reach the sensitivity of fNL <∼ 20

(WMAP) and fNL <∼ 5 (PLANCK).

• However, the experimental bound depends on the shape of F(k1,k2,k3).

Creminelli, Nicolis, Senatore, Tegmark, and Zaldarriaga



• Due to the symmetry and scaling property of F(k1,k2,k3), all info

about the shape can be viewed by plotting [Babich, Creminelli, Zaldarriaga]

F(1, k2, k3)k
2
2k2

3

• For the WMAP ansatz:

F(k1,k2,k3) ∼ fNL

(

P
ζ
k

)2 k3
1 + k3

2 + k3
3

k3
1k3

2k3
3
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Slow Roll Limit

Maldacena
Seery and Lidsey

. . .

• Slow roll inflation predicts non-Gaussianties of order fNL ∼ ε � 1, which

is too small to be observed.

• The relevant shapes are F(k1, k2, k3) ∼ 1
∏

i k3
i
A(k1, k2, k3) where

Aε =
ε

c2s
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• The shape of Aε is
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Similar shape for Aη.

• The shapes of slow roll inflation look similar to that of the WMAP

ansatz: peak at the ”squeeze limit”.
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Maldacena

• In the ”squeeze triangle limit”: one momentum mode is much smaller

than the other two:

k3 � k1, k2 k1 ∼ −k2

• During inflation, the comoving Hubble scale decreases with time. The

long wavelength mode k3 crosses the horizon much earlier than the

other two modes k1, k2.

• After horizon crossing, the long wavelength mode k3 acts as background

whose effect is to introduce a time variation at which k1,2 cross the

horizon.

〈ζk1
ζk2

ζk3
〉 ∼ 〈ζk3

ζ-k3
〉 d

d ln k1
〈ζk1

ζk2
〉 ∼ (ns − 1)

1

k3
1

1

k3
3
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Alishahiha, Silverstein, and Tong

Chen

• Non-Gaussianities are generically quite large

fNL ∼ 1

c2s

• The shape of non-Gaussianities vanishes in the squeeze triangle limit

k3 � k1, k2. This is required by Maldacena’s consistency relation:

F(k1, k2, k3)k
3
1k3

3 ∼ ns − 1 ∼ ε

This contradicts that the non-Gaussianities are large, unless the shape

vanishes in the squeeze limit.



• The shape of non-Gaussianities for DBI inflation
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• Peak at the equilateral triangle limit.

• F(k1,k2,k3) vanishes in the squeeze limit: higher derivative interactions

favor correlations between modes with comparable wavelengths.
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• Another shape of potentially large non-Gaussianities:

Aλ =

(

1

c2s
− 1 − 2λ

Σ

)

3k2
1k2

2k2
3

2(k1 + k2 + k3)
3

Gruzinov

• The Gaussianities are not multiplied by any slow roll parameter, so can

be potentially large. The shape also vanishes in the squeeze limit due

to the consistency relation of Maldacena.

• For DBI inflation, Aλ vanishes but it should be possible to construct

realistic models where this shape is large.



• The shape looks similar to the DBI inflation
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Relative Sizes

• For general shapes, fNL is defined in the equilateral triangle limit:

fλ
NL = − 5

81

(

1

c2s
− 1 − 2λ

Σ

)

,

fc
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35

108

(

1

c2s
− 1

)

,

fε
NL = −55
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ε

c2s
,

f
η
NL = − 5

12

η

c2s
,

fs
NL =

85

54

s

c2s
.
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• For general shapes, fNL is defined in the equilateral triangle limit:
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• If the sound speed is sufficiently small

c2s � ε, η

it is possible to observe the slow roll shapes Aε,Aη. This can be realized

in DBI inflation, consistent with current experimental bound on cs.
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Choice of Vacuum

• There have been some friendly debates on whether the initial state of

inflation can deviate from the Bunch-Davies vacuum.

• A different perspective: We investigate whether there are pronounced

effects of non-standard vacua to be observed in non-Gaussianities.

• The quantum state of inflaton is

uk = u(τ,k) =
iH

√

4εcsk3
(C+(1 + ikcsτ)e

−ikcsτ + C−(1 − ikcsτ)e
ikcsτ)

where C+ and C− satisfy the normalization condition |C+|2−|C−|2 = 1.

Bunch-Davies vacuum corresponds to C+ = 1, C− = 0.



• Two potentially observable contributions Ãλ and Ãc due to deviation

from Bunch-Davies vacuum. The size of the non-Gaussianities are:

f̃λ
NL = −5Re(C−)(

1

c2s
− 1 − 2λ

Σ
)

f̃c
NL =

25

4
Re(C−)(

1

c2s
− 1)



• Two potentially observable contributions Ãλ and Ãc due to deviation

from Bunch-Davies vacuum. The size of the non-Gaussianities are:

f̃λ
NL = −5Re(C−)(

1

c2s
− 1 − 2λ

Σ
)

f̃c
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4
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1

c2s
− 1)

• More importantly, the shapes are very distinctive:
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• These shapes are peaked at the ”folded triangle” limit:

k1 = k2 + k3

for arbitrary k2 and k3.

• A feature not shared by other sources of non-Gaussianities, potentially

more pronounced than modulation in power spectrum.



dS/CFT

Strominger

• Unlike AdS/CFT, the dS/CFT proposal suffers from many objections:

absence of supersymmetry, no concrete string example, and other con-

ceptual issues.

• Nevertheless, it is useful to recast problems in (approximate) dS space

in terms of a dual 3D CFT as the results are sometimes a consequence

of the underlying symmetries.

• The two point functions and three point functions of the inflaton f are

related to the correlators of the CFT operators by the following

〈fkf−k〉′ = − 1

2Re〈OkO−k〉′

〈fk1
fk2

fk3
〉′ =

2Re〈Ok1
Ok2

Ok3
〉′

∏

i(−2Re〈Oki
Oki

〉′)
Maldacena



• In conformal field theory, the two point and three point correlation

functions are constrained by conformal symmetry.

〈O(x)O(y)〉 ∼ 1

|x− y|2∆

〈O(x)O(y)O(z)〉 ∼ 1

|x− y|∆|x− z|∆|y− z|∆

• For ∆ ' 3, the two point function on the CFT gives the correct scaling

for the powers spectrum. [Larsen, McNees];[van der Schaar]

• We are testing whether conformal symmetries can determine the uni-

versal shapes of non-Gaussianities.



Summary

• Observational signatures and non-Gaussianities of general single field

inflation.

• Size and Shape of non-Gaussianities depend on 5 parameters:

c−2
s , ε, η, s, λ/Σ

• By varying these parameters, can recover all known shapes and more.

• Deviation from Bunch-Davies vacuum can lead to pronounced signa-

tures in non-Gaussianities.

• Interesting to see whether the dS/CFT proposal can shed light on the

universality of the shape of non-Gausianities. This will be very useful

especially for multi-field inflation.



Thank You


