Non-Gaussianities in String Inflation

Gary Shiu

University of Wisconsin, Madison

Frontiers in String Theory Workshop Banff, February 13, 2006

Collaborators: X.G. Chen, M.X. Huang, S. Kachru

Introduction

from WMAP

- An almost scale invariant, adiabatic, Gaussian primordial fluctuation predicted by inflation is in good agreement with CMB data.
- A tantalizing upper bound on the energy density during inflation: $V \sim M_{GUT}^4 \sim (10^{16} GeV)^4$ i.e., $H \sim 10^{14} GeV$.

The relevant energy scale is close to the scale where **stringy physics** becomes important.

Inflation as a Probe of Stringy Physics

Inflation as a Probe of Stringy Physics

• Imprints of short distance physics.

[More later in this workshop]

Inflation as a Probe of Stringy Physics

• Imprints of short distance physics.

[More later in this workshop]

• Studies focused mainly on the **power spectrum**: primordial non-Gaussian fluctuations predicted by inflation are typically too small.

A plethora of string inflationary models. Two broad classes:

A plethora of string inflationary models. Two broad classes:

Slow roll inflation (e.g., KKLMMT):

A plethora of string inflationary models. Two broad classes:

Slow roll inflation (e.g., KKLMMT):

Brane inflation

Dvali and Tye

A plethora of string inflationary models. Two broad classes:

Slow roll inflation (e.g., KKLMMT):

Brane inflation

Dvali and Tye

A plethora of string inflationary models. Two broad classes:

Slow roll inflation (e.g., KKLMMT):

Brane inflation

Dvali and Tye

A plethora of string inflationary models. Two broad classes:

Slow roll inflation (e.g., KKLMMT):

Brane inflation

Dvali and Tye

Flux compactification: stabilizes moduli and generates warped throats.

Warped throats:

- Help flatten the potential, though some degree of fine-tuning is still needed : usual η problem.
- Reheating and suppression of gravitational wave production.

Barneby, Burgess, and Cline Kofman and Yi Chialva, GS, and Underwood Frey, Mazumdar, and Myers **DBI Inflation** [Silverstein and Tong]

• **Different regime:** higher derivative terms enforce a casual speed limit.

$$S_{\text{DBI}} = d^4x \sqrt{-g} \left[T\sqrt{1 - \dot{\phi}^2/T} + V(\phi) - T \right]$$

where $T = T_3 h(\phi)^4$ with $T_3 = D3$ tension, $h(\phi)$ is the warping factor.

DBI Inflation [Silverstein and Tong]

• **Different regime:** higher derivative terms enforce a casual speed limit.

$$S_{\text{DBI}} = d^4x \sqrt{-g} \left[T\sqrt{1 - \dot{\phi}^2/T} + V(\phi) - T \right]$$

where $T = T_3 h(\phi)^4$ with $T_3 = D3$ tension, $h(\phi)$ is the warping factor.

• Distinctive signatures:

Alishahiha, Silverstein, and Tong See also: Chen

- Large Non-Gaussianties with a characteristic shape of $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle$:

$$f_{NL} \sim \gamma^2 \qquad \gamma = \frac{1}{\sqrt{1 - \dot{\phi}^2/T}}$$

The numerical coefficient of γ^2 in f_{NL} is 0.32. [Chen, Huang, GS]

- Modified "consistency relation":

$$\frac{P_k^h}{P_k^\zeta} = -\frac{8}{\gamma}n_T$$

• Distinctive signatures:

Alishahiha, Silverstein, and Tong See also: Chen

- Large Non-Gaussianties with a characteristic shape of $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle$:

$$f_{NL} \sim \gamma^2 \qquad \gamma = \frac{1}{\sqrt{1 - \dot{\phi}^2/T}}$$

The numerical coefficient of γ^2 in f_{NL} is 0.32. [Chen, Huang, GS]

- Modified "consistency relation":

$$\frac{P_k^h}{P_k^\zeta} = -\frac{8}{\gamma}n_T$$

• More generally: by varying γ , one can interpolate between slow roll $(\gamma \sim 1)$ to DBI inflation $(\gamma >> 1)$ including intermediate regime $(\gamma \gtrsim 1)$. Inflation in this general setup is robust. Shandera and Tye

Our Results

• General analysis for an arbitrary action of the form:

$$S = \frac{1}{2} \int d^4x \sqrt{-g} [M_{pl}^2 R + 2P(X,\phi)] \qquad X = \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

- Our results are applicable to the **intermediate regime**, as well as in extracting **subleading** (but potentially observable) non-Gaussianities.
- We obtain all known shapes of non-Gaussianities plus more.
- Laboratory for testing the dS/CFT proposal Strominger [Larsen, van der Schaar, Leigh]; [Maldacena]; [Larsen, McNees]; [van der Schaar] [Bousso, Maloney, Strominger] ...

$$\langle f_{\mathbf{k}_1} f_{\mathbf{k}_2} f_{\mathbf{k}_3} \rangle' = \frac{2Re \langle \mathcal{O}_{\mathbf{k}_1} \mathcal{O}_{\mathbf{k}_2} \mathcal{O}_{\mathbf{k}_3} \rangle'}{\prod_i (-2Re \langle \mathcal{O}_{\mathbf{k}_i} \mathcal{O}_{\mathbf{k}_i} \rangle')}$$

Maldacena, astro-ph/0210603

• Consider an action of the form:

$$S = \frac{1}{2} \int d^4x \sqrt{-g} [M_{pl}^2 R + 2P(X,\phi)]$$

whose Gaussian perturbations have been considered by Garriga and Mukhanov.

• Consider an action of the form:

$$S = \frac{1}{2} \int d^4x \sqrt{-g} [M_{pl}^2 R + 2P(X,\phi)]$$

whose Gaussian perturbations have been considered by Garriga and Mukhanov.

• Define the energy E and the sound speed c_s as

$$E = 2XP_{,X} - P$$

$$c_s^2 = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}}$$

• Consider an action of the form:

$$S = \frac{1}{2} \int d^4x \sqrt{-g} [M_{pl}^2 R + 2P(X,\phi)]$$

whose Gaussian perturbations have been considered by Garriga and Mukhanov.

• Define the energy E and the sound speed c_s as

$$E = 2XP_{,X} - P$$

$$c_s^2 = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}}$$

• Friedman equation and the continuity equation

$$3M_{pl}^2H^2 = E$$

$$\dot{E} = -3H(E+P)$$

• Consider an action of the form:

$$S = \frac{1}{2} \int d^4x \sqrt{-g} [M_{pl}^2 R + 2P(X,\phi)]$$

whose Gaussian perturbations have been considered by Garriga and Mukhanov.

• Define the energy E and the sound speed c_s as

$$E = 2XP_{,X} - P$$

$$c_s^2 = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}}$$

• Friedman equation and the continuity equation

$$3M_{pl}^2H^2 = E$$

$$\dot{E} = -3H(E+P)$$

• For a Lagrangian with standard kinetic term: $P(X, \phi) = X - V(\phi)$ and hence $c_s = 1$. For DBI action, $c_s = 1/\gamma$.

• Generalized slow roll parameters:

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{XP_{,X}}{M_{pl}H^2},$$

$$\eta = \frac{\dot{\epsilon}}{\epsilon H},$$

$$s = \frac{\dot{c}s}{c_s H}.$$

• Generalized slow roll parameters:

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{XP_{,X}}{M_{pl}H^2},$$

$$\eta = \frac{\dot{\epsilon}}{\epsilon H},$$

$$s = \frac{\dot{c}_s}{c_s H}.$$

• The non-Gaussianities that we found depend on **5** parameters:

$$c_s^{-2}$$
, ϵ , η , s , and λ/Σ (to be defined).

Potentially observable when these parameters are sufficiently large.

Non-Gaussianities

• Primordial power spectrum:

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle \sim \delta^3 (\mathbf{k}_1 + \mathbf{k}_2) \frac{P_k^{\zeta}}{k_1^3}$$

• Non-Gaussianity contains potentially more info because of its **shape**:

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = (2\pi)^3 \delta^3 (\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$

- Scaling and symmetries imply that $F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$ is a symmetric, homogeneous function of degree -6.
- Primordial non-Gaussianities come from **cubic terms** in the Lagrangian.

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

where inflaton ϕ and metric h_{ij} are dynamical variables, N and N^i are Lagrange multipliers.

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

where inflaton ϕ and metric h_{ij} are dynamical variables, N and Nⁱ are Lagrange multipliers.

• Focus on scalar perturbations. In the **comoving gauge**:

$$\delta \phi = 0 \qquad h_{ij} = a^2 e^{2\zeta} \delta_{ij}$$

with ζ being the gauge invariant scalar perturbation which remains constant outside horizon. Calculations greatly simplified.

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

where inflaton ϕ and metric h_{ij} are dynamical variables, N and Nⁱ are Lagrange multipliers.

• Focus on scalar perturbations. In the **comoving gauge**:

$$\delta \phi = 0 \qquad h_{ij} = a^2 e^{2\zeta} \delta_{ij}$$

with ζ being the gauge invariant scalar perturbation which remains constant outside horizon. Calculations greatly simplified.

• To obtain the cubic terms: we plug the metric ansatz into the Lagragian, and substitute the Lagrangian multipliers N and N^i with the solutions to their equations of motion.

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

where inflaton ϕ and metric h_{ij} are dynamical variables, N and Nⁱ are Lagrange multipliers.

• Focus on scalar perturbations. In the **comoving gauge**:

$$\delta \phi = 0 \qquad h_{ij} = a^2 e^{2\zeta} \delta_{ij}$$

with ζ being the gauge invariant scalar perturbation which remains constant outside horizon. Calculations greatly simplified.

- To obtain the cubic terms: we plug the metric ansatz into the Lagragian, and substitute the Lagrangian multipliers N and N^i with the solutions to their equations of motion.
- To compute the effective action to order $\mathcal{O}(\zeta^3)$, we need only the solutions of N and Nⁱ to order $\mathcal{O}(\zeta)$. Maldacena

- The solution to the equation of motion for scalar perturbation $\zeta(t, \mathbf{k})$ at quadratic order gives the power spectrum.
- The primordial non-Gaussianities are:

$$\langle \zeta(t,\mathbf{k}_1)\zeta(t,\mathbf{k}_2)\zeta(t,\mathbf{k}_3)\rangle = -i\int_{t_0}^t dt' \langle [\zeta(t,\mathbf{k}_1)\zeta(t,\mathbf{k}_2)\zeta(t,\mathbf{k}_3),H_{int}(t')]\rangle ,$$

where $H_{int}(t)$ is the cubic Hamiltonian for the scalar perturbation ζ .

- The solution to the equation of motion for scalar perturbation $\zeta(t, \mathbf{k})$ at quadratic order gives the power spectrum.
- The primordial non-Gaussianities are:

$$\langle \zeta(t,\mathbf{k}_1)\zeta(t,\mathbf{k}_2)\zeta(t,\mathbf{k}_3)\rangle = -i\int_{t_0}^t dt' \langle [\zeta(t,\mathbf{k}_1)\zeta(t,\mathbf{k}_2)\zeta(t,\mathbf{k}_3),H_{int}(t')]\rangle ,$$

where $H_{int}(t)$ is the cubic Hamiltonian for the scalar perturbation ζ .

A lot of pain and sweat . . .

Shape of Non-Gaussianities

$$F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (2\pi)^4 (P_k^{\zeta})^2 \frac{1}{\prod_i k_i^3} \times (\mathcal{A}_\lambda + \mathcal{A}_c + \mathcal{A}_\epsilon + \mathcal{A}_\eta + \mathcal{A}_s)$$

and $K = k_1 + k_2 + k_3$, $\Sigma = XP_{,X} + 2X^2P_{,XX}$, $\lambda = X^2P_{,XX} + \frac{2}{3}X^3P_{,XXX}$.

Experimental Bound

• WMAP ansatz for the primordial non-Gaussianities

$$\zeta(x) = \zeta_g(x) - \frac{3}{5} f_{NL}(\zeta_g(x)^2 - \langle \zeta_g^2(x) \rangle)$$

here $\zeta_g(x)$ is purely Gaussian with vanishing three point functions.

• The size of non-Gaussianities is measured by the parameter f_{NL} in the above ansatz. Current experimental bound is

$$-58 < f_{NL} < 134$$
 at 95% C.L.

Future experiments can eventually reach the sensitivity of $f_{NL} \lesssim 20$ (WMAP) and $f_{NL} \lesssim 5$ (PLANCK).

Experimental Bound

• WMAP ansatz for the primordial non-Gaussianities

$$\zeta(x) = \zeta_g(x) - \frac{3}{5} f_{NL}(\zeta_g(x)^2 - \langle \zeta_g^2(x) \rangle)$$

here $\zeta_g(x)$ is purely Gaussian with vanishing three point functions.

• The size of non-Gaussianities is measured by the parameter f_{NL} in the above ansatz. Current experimental bound is

 $-58 < f_{NL} < 134$ at 95% C.L.

Future experiments can eventually reach the sensitivity of $f_{NL} \lesssim 20$ (WMAP) and $f_{NL} \lesssim 5$ (PLANCK).

• However, the experimental bound depends on the shape of $F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$. Creminelli, Nicolis, Senatore, Tegmark, and Zaldarriaga

- Due to the symmetry and scaling property of $F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$, all info about the shape can be viewed by plotting [Babich, Creminelli, Zaldarriaga] $F(1, k_2, k_3)k_2^2k_3^2$
- For the WMAP ansatz:

$$F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \sim f_{NL} \left(P_k^{\zeta} \right)^2 \frac{k_1^3 + k_2^3 + k_3^3}{k_1^3 k_2^3 k_3^3}$$

Slow Roll Limit

Maldacena Seery and Lidsey

. . .

- Slow roll inflation predicts non-Gaussianties of order $f_{NL} \sim \epsilon \ll 1$, which is too small to be observed.
- The relevant shapes are $F(k_1, k_2, k_3) \sim \frac{1}{\prod_i k_i^3} \mathcal{A}(k_1, k_2, k_3)$ where

$$\mathcal{A}_{\epsilon} = \frac{\epsilon}{c_s^2} \left(-\frac{1}{8} \sum_i k_i^3 + \frac{1}{8} \sum_{i \neq j} k_i k_j^2 + \frac{1}{K} \sum_{i > j} k_i^2 k_j^2 \right) ,$$

$$\mathcal{A}_{\eta} = \frac{\eta}{c_s^2} \left(\frac{1}{8} \sum_i k_i^3 \right) .$$

• The shape of \mathcal{A}_{ϵ} is

Similar shape for \mathcal{A}_{η} .

• The shapes of slow roll inflation look similar to that of the WMAP ansatz: peak at the "squeeze limit".

Consisteny Relation for Non-Gaussianities

Maldacena

• In the "squeeze triangle limit": one momentum mode is much smaller than the other two:

 $k_3 \ll k_1, k_2 \quad \mathbf{k}_1 \sim -\mathbf{k}_2$

Consisteny Relation for Non-Gaussianities

Maldacena

• In the "squeeze triangle limit": one momentum mode is much smaller than the other two:

$k_3 \ll k_1, k_2 \quad \mathbf{k}_1 \sim -\mathbf{k}_2$

• During inflation, the comoving Hubble scale decreases with time. The long wavelength mode k_3 crosses the horizon much earlier than the other two modes k_1, k_2 .

Consisteny Relation for Non-Gaussianities

Maldacena

• In the "squeeze triangle limit": one momentum mode is much smaller than the other two:

$k_3 \ll k_1, k_2 \quad \textbf{k}_1 \sim -\textbf{k}_2$

- During inflation, the comoving Hubble scale decreases with time. The long wavelength mode k_3 crosses the horizon much earlier than the other two modes k_1, k_2 .
- After horizon crossing, the long wavelength mode k_3 acts as background whose effect is to introduce a time variation at which $k_{1,2}$ cross the horizon.

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle \sim \langle \zeta_{\mathbf{k}_3} \zeta_{\mathbf{k}_3} \rangle \frac{d}{d \ln k_1} \langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle \sim (n_s - 1) \frac{1}{k_1^3} \frac{1}{k_3^3}$$

DBI Limit

Alishahiha, Silverstein, and Tong

Chen

• Non-Gaussianities are generically quite large

$$f_{NL} \sim \frac{1}{c_s^2}$$

DBI Limit

Alishahiha, Silverstein, and Tong

Chen

• Non-Gaussianities are generically quite large

$$f_{NL} \sim \frac{1}{c_s^2}$$

• The shape of non-Gaussianities vanishes in the squeeze triangle limit $k_3 \ll k_1, k_2$. This is required by Maldacena's consistency relation:

$$F(k_1, k_2, k_3)k_1^3k_3^3 \sim n_s - 1 \sim \epsilon$$

This contradicts that the non-Gaussianities are large, unless the shape vanishes in the squeeze limit.

• The shape of non-Gaussianities for DBI inflation

- Peak at the equilateral triangle limit.
- $F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$ vanishes in the squeeze limit: higher derivative interactions favor correlations between modes with comparable wavelengths.

More Shapes

• Another shape of potentially large non-Gaussianities:

$$\mathcal{A}_{\lambda} = \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma}\right) \frac{3k_1^2 k_2^2 k_3^2}{2(k_1 + k_2 + k_3)^3}$$

Gruzinov

More Shapes

• Another shape of potentially large non-Gaussianities:

$$\mathcal{A}_{\lambda} = \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma}\right) \frac{3k_1^2 k_2^2 k_3^2}{2(k_1 + k_2 + k_3)^3}$$

Gruzinov

• The Gaussianities are not multiplied by any slow roll parameter, so can be potentially large. The shape also vanishes in the squeeze limit due to the consistency relation of Maldacena.

More Shapes

• Another shape of potentially large non-Gaussianities:

$$\mathcal{A}_{\lambda} = \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma}\right) \frac{3k_1^2 k_2^2 k_3^2}{2(k_1 + k_2 + k_3)^3}$$

Gruzinov

- The Gaussianities are not multiplied by any slow roll parameter, so can be potentially large. The shape also vanishes in the squeeze limit due to the consistency relation of Maldacena.
- For DBI inflation, A_{λ} vanishes but it should be possible to construct realistic models where this shape is large.

• The shape looks similar to the DBI inflation

Relative Sizes

 \bullet For general shapes, f_{NL} is defined in the equilateral triangle limit:

$$\begin{split} f_{NL}^{\lambda} &= -\frac{5}{81} \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma} \right) ,\\ f_{NL}^c &= \frac{35}{108} \left(\frac{1}{c_s^2} - 1 \right) ,\\ f_{NL}^{\epsilon} &= -\frac{55}{36} \frac{\epsilon}{c_s^2} ,\\ f_{NL}^{\eta} &= -\frac{5}{12} \frac{\eta}{c_s^2} ,\\ f_{NL}^s &= \frac{85}{54} \frac{s}{c_s^2} . \end{split}$$

Relative Sizes

• For general shapes, f_{NL} is defined in the equilateral triangle limit:

$$\begin{split} f_{NL}^{\lambda} &= -\frac{5}{81} \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma} \right) ,\\ f_{NL}^c &= \frac{35}{108} \left(\frac{1}{c_s^2} - 1 \right) ,\\ f_{NL}^{\epsilon} &= -\frac{55}{36} \frac{\epsilon}{c_s^2} ,\\ f_{NL}^{\eta} &= -\frac{5}{12} \frac{\eta}{c_s^2} ,\\ f_{NL}^s &= \frac{85}{54} \frac{s}{c_s^2} . \end{split}$$

• If the sound speed is sufficiently small

$$c_s^2 \ll \epsilon, \eta$$

it is possible to observe the slow roll shapes $\mathcal{A}_{\epsilon}, \mathcal{A}_{\eta}$. This can be realized in DBI inflation, consistent with current experimental bound on c_s .

Choice of Vacuum

• There have been some friendly debates on whether the initial state of inflation can deviate from the Bunch-Davies vacuum.

Choice of Vacuum

- There have been some friendly debates on whether the initial state of inflation can deviate from the Bunch-Davies vacuum.
- A different perspective: We investigate whether there are pronounced effects of non-standard vacua to be observed in non-Gaussianities.

Choice of Vacuum

- There have been some friendly debates on whether the initial state of inflation can deviate from the Bunch-Davies vacuum.
- A different perspective: We investigate whether there are pronounced effects of non-standard vacua to be observed in non-Gaussianities.
- The quantum state of inflaton is

$$u_k = u(\tau, \mathbf{k}) = \frac{iH}{\sqrt{4\epsilon c_s k^3}} (C_+ (1 + ikc_s \tau)e^{-ikc_s \tau} + C_- (1 - ikc_s \tau)e^{ikc_s \tau})$$

where C_+ and C_- satisfy the normalization condition $|C_+|^2 - |C_-|^2 = 1$. Bunch-Davies vacuum corresponds to $C_+ = 1$, $C_- = 0$. • Two potentially observable contributions \tilde{A}_{λ} and \tilde{A}_{c} due to deviation from Bunch-Davies vacuum. The size of the non-Gaussianities are:

$$\tilde{f}_{NL}^{\lambda} = -5Re(C_{-})(\frac{1}{c_{s}^{2}} - 1 - \frac{2\lambda}{\Sigma})$$
$$\tilde{f}_{NL}^{c} = \frac{25}{4}Re(C_{-})(\frac{1}{c_{s}^{2}} - 1)$$

• Two potentially observable contributions \tilde{A}_{λ} and \tilde{A}_{c} due to deviation from Bunch-Davies vacuum. The size of the non-Gaussianities are:

$$\tilde{f}_{NL}^{\lambda} = -5Re(C_{-})(\frac{1}{c_{s}^{2}} - 1 - \frac{2\lambda}{\Sigma})$$
$$\tilde{f}_{NL}^{c} = \frac{25}{4}Re(C_{-})(\frac{1}{c_{s}^{2}} - 1)$$

• More importantly, the **shapes** are very **distinctive**:

• These shapes are peaked at the "folded triangle" limit:

$$k_1 = k_2 + k_3$$

for arbitrary k_2 and k_3 .

• A feature not shared by other sources of non-Gaussianities, potentially more pronounced than modulation in power spectrum.

dS/CFT

Strominger

- Unlike AdS/CFT, the dS/CFT proposal suffers from many objections: absence of supersymmetry, no concrete string example, and other conceptual issues.
- Nevertheless, it is useful to recast problems in (approximate) dS space in terms of a dual 3D CFT as the results are sometimes a consequence of the underlying symmetries.
- The two point functions and three point functions of the inflaton f are related to the correlators of the CFT operators by the following

$$\langle f_{\mathbf{k}} f_{-\mathbf{k}} \rangle' = -\frac{1}{2Re\langle \mathcal{O}_{\mathbf{k}} \mathcal{O}_{-\mathbf{k}} \rangle'}$$

$$f_{\mathbf{k}_1} f_{\mathbf{k}_2} f_{\mathbf{k}_3} \rangle' = \frac{2Re\langle \mathcal{O}_{\mathbf{k}_1} \mathcal{O}_{\mathbf{k}_2} \mathcal{O}_{\mathbf{k}_3} \rangle'}{\prod_i (-2Re\langle \mathcal{O}_{\mathbf{k}_i} \mathcal{O}_{\mathbf{k}_i} \rangle')}$$

Maldacena

• In conformal field theory, the two point and three point correlation functions are constrained by conformal symmetry.

$$egin{aligned} &\langle \mathcal{O}(\mathbf{x})\mathcal{O}(\mathbf{y})
angle &\sim \ rac{1}{|\mathbf{x}-\mathbf{y}|^{2\Delta}} \ &\langle \mathcal{O}(\mathbf{x})\mathcal{O}(\mathbf{y})\mathcal{O}(\mathbf{z})
angle &\sim \ rac{1}{|\mathbf{x}-\mathbf{y}|^{\Delta}|\mathbf{x}-\mathbf{z}|^{\Delta}|\mathbf{y}-\mathbf{z}|^{\Delta}} \end{aligned}$$

- For $\Delta \simeq 3$, the two point function on the CFT gives the correct scaling for the powers spectrum. [Larsen, McNees];[van der Schaar]
- We are testing whether conformal symmetries can determine the universal shapes of non-Gaussianities.

Summary

- Observational signatures and non-Gaussianities of general single field inflation.
- Size and Shape of non-Gaussianities depend on 5 parameters:

 $c_s^{-2}, \epsilon, \eta, s, \lambda/\Sigma$

- By varying these parameters, can recover all known shapes and more.
- Deviation from Bunch-Davies vacuum can lead to pronounced signatures in non-Gaussianities.
- Interesting to see whether the dS/CFT proposal can shed light on the universality of the shape of non-Gausianities. This will be very useful especially for multi-field inflation.

Thank You