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Lecture 2.

Supergravity and Quantum Numbers

Concepts introduced:

• supergravity as low-energy string theory

• Hodge duality and branes

• conserved quantum numbers

• supersymmetry algebra and central charges

• brane web: S, T and M/IIA duality

• dimensional reduction

• solution-generating

• the basic BPS M-branes and D-branes
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Today is all classical physics. Tomorrow we worry about quantum.

Want to know which BH and black p-branes occur in string theories.

Study low-energy string theory, a.k.a. supergravity (SUGRA).

How is SUGRA Lagrangian derived? Couple in SUGRA fields to string σ-

model and demand conformal invariance. Two-dimensional field theory

β-functions yield conditions on spacetime fields. Reconstruct action.

For simplicity, we discuss only Type IIA and IIB SUGRAs. These possess

N=2 supersymmetry in d = 10, i.e. 32 real supercharges. Type IIB is

chiral: its two Majorana-Weyl 16-component spinors have the same

chirality, while IIA is nonchiral as its two spinors have opposite chirality.

There are two sectors of massless modes of Type-II strings: NS-NS and

R-R. In NS-NS sector we have string metric∗ Gµν, two-form potential

B2 , and scalar dilaton Φ.

∗Not to be confused with Einstein tensor, which we never use here.
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In R-R sector we have n-form potentials Cn, n even for IIB and odd for

IIA. For Type IIA, the independent R-R potentials can be chosen to be

C1 , C3 .

Bosonic part of IIA SUGRA action is:

SA =
1

(2π)7l8s

(∫
d10x

√
−G

{
e−2Φ

gs2

[
RG + 4(∂Φ)2 −

1

2
|dB2 |2

]
−

1

2
|dC1 |2 −

1

2
|dC3 − dB2 ∧ C1 |2

}
−

1

2

∫
dC3 ∧ dC3 ∧B2

)
(1)

We have shifted dilaton field so that it is zero at infinity. We have used

conventions of Polchinski.

Funny cross- and ’Chern-Simons’ terms, such as dC3 ∧ dC3 ∧ B2 , are

required by supersymmetry. In some simple cases there is a consistent

truncation to an action without cross terms, but compatibility with field

equations has to be checked in every case!

What kinds of objects naturally carry charges of NS-NS and R-R gauge

fields (B2 , Cn)?
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Recall d = 4 QED: electrically charged particle couples to A1∫
worldline

dτAµ
dxµ

dτ
=
∫
worldline

Aµdxµ =
∫
worldline

A1 (2)

which has field strength F2 .

Hodge dual field strength ∗F2 gives magnetic coupling to point particles.

By analogy, p-brane in d=10 couples electrically to Cn=p+1 ,∫
worldline

A1 −→
∫
worldvolume

Cp+1 (3)

or magnetically to C7−p:

Dp : Cp+1 ⇒ Fp+2 ⇒ F̃8−p ⇒ C̃7−p (4)

Get 1-branes “F1” and 5-branes “NS5” coupling to NS-NS potential

B2 , and p-branes “Dp” coupling to R-R potentials.

Note: cannot allow both electric and magnetic potentials in same La-

grangian, as it would result in propagating ghosts.
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For Type IIB string theory, R-R 5-form field strength is self-dual, and so

there is no covariant action from which field equations can be derived.

Can define a “pseudo-action” which can be used only if remember to

impose self-duality condition as an equation of motion. See e.g. Myers

hep-th/9910053; Kallosh et al. hep-th/0103233.

Not all aspects of physics of R-R gauge fields can be gleaned from

action / equations of motion given for IIA and IIB above. D-branes

aren’t all cohomology! Subtle effects involve charge quantisation, self-

duality, and K-theory. We will stick to putting branes on flat spaces,

and for us these effects will not be noticeable.

We will however note one aspect of this beautiful story. It is that

a Lorentz-invariant partition function (but not action) can be written

down, for IIA and IIB - with no propagating ghosts! Leading term in par-

tition function is ∼ theta-function, where the sum is done over K-theory

classes... but only half end up contributing (self-duality condition).

See Diaconescu, Moore, Witten.
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Conserved quantum numbers?

Energy: if there is a rest frame available, becomes mass M .

Angular momentum: in D-dim, have skew matrix J [µν] with [1
2
(D−1)]

eigenvalues. These are independent angular momenta, Ji.

Last type of conserved quantity couples to long range R-R (or NS-NS)

gauge field; it is gauge charge Qp.

Low-energy approximation to string theory yielded supergravity actions.

When a p-brane is present, it sources SUGRA fields. Get additional

term in action, encoding collective modes of p-brane:

S = SSUGRA + Sbrane ; (5)

This combined action is well-defined for classical string theory. For

fundamental quantum string theory, a different representation of degrees

of freedom would be necessary.
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Sbrane is an integral over only p+1 dimensions of p-brane worldvolume,
while first term is an integral over d=10 bulk. Varying action w.r.t.
bulk SUGRA fields gives δ-function sources on RHS of SUGRA eqns of
motion. Varying w.r.t. brane fields gives brane equation of motion.

Let us consider mass and angular momenta first. In d=10, p-branes
of codimension smaller than 3 give rise to spacetimes which are not
asymptotically flat; there are not enough space dimensions to allow
fields to have Coulomb tails. We will cover only p < 7 for lack of time.

Mass for an isolated gravitating system can be defined by referring its
spacetime to one which is nonrelativistic and weakly gravitating. This
is always done in Einstein frame,

S =
∫

dDx

(√
−gRg

16πGD
+ Lmatter

)
(6)

where Einstein metric g is given in terms of string metric G as

gµν = e−4Φ/(D−2)Gµν (7)

In string frame IIA action, dilaton field had the “wrong-sign” kinetic
term! Don’t panic: it becomes “right-sign” in Einstein frame.
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Field equation for Einstein metric is in D dimensions

Rµν − 1
2
gµνR = 8πGDT

(m)
µν (8)

where Rµν is Ricci tensor and T
(m)
µν is energy-momentum tensor. Far

away, metric becomes flat. Let us linearise about Minkowski metric ηµν

gµν = ηµν + hµν (9)

i.e. consider only first order terms in deviation h. (To this order, raise

and lower indices with Minkowski metric.)

We also impose condition that system be non-relativistic, so time deriva-

tives can be neglected and T00 � T0i � Tij.

Under coordinate transformations δxµ = ξµ, metric deviation h still

transforms: δhµν = −2∂(µξν). (Partially) fix this symmetry:

∂ν

(
hµν − 1

2
ηµνhλ

λ

)
= 0 (10)

Harmonic gauge condition. Field equation for h becomes
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(
∂i∂i

)
hµν = 16πGD

[
T

(m)
µν −

1

(D − 2)
ηµνT

(m) λ
λ

]
≡ −16πGDT̃µν (11)

This is a Laplace equation, with solution

hµν(x) =
16πGD

(D − 3)ΩD−2

∫
dD−1~y

T̃µν (|~x− ~y|)
|~x− ~y|D−3 (12)

where prefactor comes from Green’s function and Ωn =area(Sn).

Now let us expand this in moments,

hµν(x) =
16πGD

(D − 3)ΩD−2

[
1

rD−3

∫
dD−1yT̃µν(y)

+
xj

rD−1

∫
dD−1yyjT̃µν(y) + · · ·

]
(13)

On other hand, definitions of ADM linear and angular momenta are

Pµ =
∫

dD−1yTµ0 Jµν =
∫

dD−1y
(
yµT ν0 − yνTµ0

)
(14)

(No tildes here.)

Simplest in rest frame; read off mass and angular momenta
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gtt −→ −1 +
16πGD

(D − 2)ΩD−2

M

rD−3
+ · · · ;

gij −→ 1 +
16πGD

(D − 2)(D − 3)ΩD−2

M

rD−3
+ · · · ;

gti −→
16πGD

ΩD−2

xjJji

rD−1
+ · · ·

(15)

What about gauge charges? Need bulk+brane action. For Dp-branes,

Sbrane = −
1

(2π)p`sp+1

∫
Cp+1 + . . . (16)

For a single type of brane, consistent to ignore funny cross-terms

SSUGRA =
−1

2

1

(2π)7`s8

∫
d10x

√
−G

∣∣∣dCp+2

∣∣∣2 + . . . (17)

Hence field equation for potential C is

d ∗
(
dCp+1

)
= (2π)7`s

8 ∗
(
Jp+1

)
(18)

where conserved p + 1-form current J is

Jp+1(x) = −
1

(2π)p`sp+1

∫
dX0 . . . dXpδ10(X − x) (19)
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Physics is easiest to see in static gauge

Xµi(σ) = σµi i = 0 . . . p (20)

Noether charge is integral of current

Qp ∝
∫
S8−p

∗(dC)p+2 (21)

(For NS-type branes, prefactor of e−2Φ/gs2 in integrand.)

In addition to field equation for C, there is Bianchi identity

d
(
[dC]p+2

)
= 0 (22)

Deduce existence of a topological charge,

P7−p ∝
∫
Sp+2

(dC)p+2 (23)

Obey Dirac quantisation condition (see Polchinski for details)

QpP7−p = 2πn n ∈ Z (24)
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Supersymmetry algebra is of central importance to a SUGRA theory.

Anti-commutators involving two supersymmetry generators Q are

{Qα, Qβ} ∼ (CΓµ)αβ Pµ + a
∑
p

(CΓµ1...µp)αβ Z[µ1...µp] (25)

where C is charge conjugation matrix, Γ’s are antisymmetrised products
of gamma matrices, Z are central charges, and Pµ is momentum vector.
If there is a rest frame, then for state carrying particular central charge,

{Qα, Qβ} ∼
(
CΓ0

)
αβ

M + a
(
CΓ1...p

)
αβ

Z[1...p] (26)

Sandwich a physical states |phys〉 around this algebra relation. State
Q|phys〉 has nonnegative norm, and this leads to Bogomolnyi bound

M ≥ a|Z| (27)

This bound can also be derived by analysing supergravity Lagrangian,
via Nester procedure (boundary conditions for bulk fields at infinity im-
portant).

Constant a in Bogomolnyi bound depends on SUGRA theory via gauge
field couplings.
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Special states saturating bound are BPS states.

M = a|Z| not renormalized by quantum corrections (although generically

both M and Z may be renormalised.

Statistical degeneracy of states is also unrenormalised.

SUSY transformations of fields have a spinorial parameter ε. For pre-

served supersymmetries, SUSY relation gives projection condition (again

schematic) (
1 + [sgn(Z)] Γ01···p

)
ε = 0 (28)

d = 11 SUGRA

Matrix
{
Qα, Qβ

}
is real and symmetric, so it has (32 × 33)/2 = 528

components. Belongs to adjoint representation of group Sp(32;R). De-

compose this under d = 11 Lorentz group SO(1,10):

528 → 11⊕ 55⊕ 462 (29)
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11 is momentum, 55 is Z[µν], 462 is 5-index Z[µνλσρ].

Separate out spatial indices i and temporal index 0.

Z[ij] 45 M2-brane
Z[ijklm] 252 M5-brane
Z[0j] 10 HW domain walls (codim. 1)

Z[0ijkl] 210 KK monopole (codim. 4)
Pi 10 M-Wave (moves at c)

Using this and 3 dualities to be introduced, can work out

aF1 ∼ 1 , aDp ∼
1

gs
, aNS5 ∼

1

gs2
(30)

F1 are lightest states at gs � 1; Dp and NS5 are solitonic.

In other regions of parameter space (such as gs � 1), F1 will no longer

be elementary ⇒ p-brane democracy.

Charges Z ∈ R in SUGRA, but Z ∈ Z in string theory.
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Unit conventions on tension: α′ ≡ l2s and

τF1 =
1

2π`s2
τDp =

1

gs(2π)p`sp+1
τNS5 =

1

gs2(2π)5`s6
(31)

In d = 10, Newton constant related to gs, `s by

16πG10 ≡ 2κ2
10 = (2π)7gs

2`s
8 (32)

Planck length in d dimensions, `d, is defined by

16πGd ≡ (2π)d−3`d−2
d (33)

For later convenience, define volume to have implicit 2π’s in it.

If fields indep. of (10−d) coords,
∫

d10x =
[
(2π)10−dV10−d

] ∫
ddx. Hence

Gd =
G10

(2π)10−dV10−d
(34)

Reminder: Bekenstein-Hawking formula must always be computed in
Einstein frame, where kinetic term for graviton is canonically normalized,

Sgrav =
1

16πGd

∫ √
−gRg (35)
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Figuring out constants is only one tiny part of mechanics of dimensional

reduction. Consider simplest example: Kaluza-Klein story for fields in

string frame, for reduction on circle of radius R.

Label d-dim system with no hats and (d−1)-dim system with hats. Split

indices as {xµ} = {xµ̂, z}. Vielbeins decompose as

(
Ea

µ

)
=

(
Êâ

µ̂ eχ̂Âµ̂

0 eχ̂

)
⇒ (Gµν) =

(
Ĝµ̂ν̂ + e2χ̂Âµ̂Âν̂ e2χ̂Âµ̂

Âν̂e2χ̂ e2χ̂

)
(36)

and

Φ = Φ̂ +
1

2
χ̂ ; (37)

which yield

1

16πGd

∫
ddx

√
−Ge−2ΦRG =

1

16πGd−1

∫
dd−1x

√
−Ĝe−2Φ̂

[
RĜ + 4(∂Φ̂)2 − (∂χ̂)2 −

1

2
e2χ̂

∣∣∣dÂ
∣∣∣2] (38)

Reduction on larger tori or Calabi-Yau manifolds leads to big symme-

tries. e.g. E(7,7) for Type II on T6, E(6,6) for Type II on T5.
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BPS objects are interrelated via dualities.

Type IIA ↔ M-theory

11th coordinate x\ is compactified on a circle of radius

R\ = gs`s (39)

SUGRA fields decompose as

ds211 = e−2Φ/3dS2
10 + e4Φ/3

(
dx\ + C1µdxµ

)2
(40)

and

A3 = C3 + B2 ∧ dx\ (41)

Units: `11 = g
1/3
s `s.

We can turn M-theory objects into Type IIA objects by pointing them

in 11th direction (↙) or not (↓).

W M2 M5 KK
↙ ↓ ↙ ↓ ↙ ↓ ↙ ↓

D0 W F1 D2 D4 NS5 D6 KK
(42)
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S-duality of IIB

IIB SUGRA has SL(2,R) symmetry; SL(2,Z) in full string theory. Define

λ ≡ C0 + ie−Φ and H3 ≡
(

dB2

dC2

)
(43)

Under U =

(
a b

c d

)
∈ SL(2, R) , H → U H λ →

aλ + b

cλ + d
(44)

d = 10 Einstein metric and F
(+)
5 are invariant.

Commonly considered Z2 subgroup obtains when C0 = 0.

Z2 flips sign of Φ, and exchanges B2 and C2 . Result:

D1 ↔ F1 D5 ↔ NS5 ; (45)

All others such as W and KK are unaffected, and D3 goes into itself.

Effect of this Z2 on units is

g̃s =
1

gs
, g̃s

1
4 ˜̀s = gs

1
4`s (46)
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T-duality

Operation of T-duality on a circle switches winding and momentum
modes of fundamental strings (F1) and exchanges Type IIA and IIB.

R̃

˜̀s
=

`s

R
,

g̃s√
R̃/ ˜̀s

=
gs√
R/`s

, ˜̀s = `s (47)

T-duality acting ⊥ to Dp gives Dp+1, acting ‖ gives Dp−1. Acting on
isometry direction of KK gives NS5. Everything else is unaffected.

Let z be isometry direction. Then T-duality acts on NS-NS fields as

e2Φ̃ = e2Φ/Gzz G̃zz = 1/Gzz G̃µz = Bµz/Gzz B̃µz = Gµz/Gzz

G̃µν = Gµν − (GµzGνz −BµzBνz) /Gzz

B̃µν = Bµν − (BµzGνz −GµzBνz) /Gzz

(48)
T-duality also acts on R-R fields; see e.g. Myers.

In some configurations, string momentum or winding number may not
be conserved, e.g. winding in KK background. Conserved quantities still
transform as expected under T-duality, though.
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Solution-generating

Consider neutral black hole in d dimensions

dŜ2
d = − (1−K(r)) dt2 + (1−K(r))−1 dr2 + r2dΩ2

d−2 (49)

where

K(r) ≡
(

rH

r

)d−3
(50)

No gauge field(s) or dilaton; solution in string and Einstein frame. Mass

Md =
(d− 2)Ωd−2rH

d−3

16πGd
(51)

Lift procedure: simply tensor this with R (z direction); automatically
satisfies d + 1 dimensional Einstein equations

dS2
d = dz2 − (1−K(r)) dt2 + (1−K(r))−1 dr2 + r2dΩ2

d−2

=
(
−dt2 + dz2

)
+ K(r)dt2 + (1−K(r))−1 dr2 + r2dΩ2

d−2
(52)

Now do a boost on this configuration:(
dt

dz

)
→
(

coshγ sinhγ

sinhγ coshγ

) (
dt

dz

)
(53)
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This boost transformation takes solutions to solutions (check by sub-
stituting into equations of motion). Metric here becomes

dS2 ′
d =

(
−dt2 + dz2

)
+ K(r) (coshγdt + sinhγdz)2

+(1−K(r))−1 dr2 + r2dΩ2
d−2

= −dt2
(
1−K(r) cosh2γ

)
+ dz2

(
1 + K(r) sinh2γ

)
+2dtdz coshγ sinhγK(r) + (1−K(r))−1 dr2 + r2dΩ2

d−2

(54)

Horizon, at Grr → 0, occurs when K(r) = 1 i.e. at r = rH

(not when Gtt = 0)

Now let us KK down again to make new d dimensional black hole. Using
our previous relations

dS2
d = dŜ2

d + e2χ̂
(
dz + Âµdzµ

)2
eΦ = eΦ̂+1

2
χ̂

so, for example,

Ĝtt = Gtt −G2
tz/Gzz = −1 + K cosh2γ −

(K coshγ sinhγ)2

(1 + K sinh2γ)
(55)
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From this we obtain

dŜ2 ′
d =

− (1−K(r))(
1 + K(r) sinh2γ

)dt2 +
1

(1−K(r))
dr2 + r2dΩ2

d−2 (56)

and

Ât =
K(r) coshγ sinhγ(
1 + K(r) sinh2γ

) (57)

and

eΦ̂ = e−
1
2
χ̂ =

(
1 + K(r) sinh2γ

)−1
4 (58)

Conserved quantum numbers of this new spacetime are

M ′ =
Ωd−2rH

d−3

16πGd

[
(d− 2) + (d− 3) sinh2γ

]
Q′ = R

Ωd−2rH
d−3

16πGd

[
1
2
sinh(2γ)

] (59)

To regain original neutral black hole, we simply take limit γ → 0.

Note: boost parameter γ ∈ [0,∞). Continuous only in SUGRA.
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Now consider taking opposite limit γ →∞. To keep stuff finite, rH → 0

such that
1

2
rH

d−3e2γ ≡ k = fixed so K(r) =
k

rd−3
(60)

Lifting and defining light-cone coords dz± ≡ (t± z)/
√

2

dS2
d+1 = −2dz+

[
dz− −

k

rd−3
dz+

]
+
(
dr2 + r2dΩ2

d−2

)
(61)

This is gravitational wave W, which has zero ADM mass in d + 1 di-

mensions.

Taking same γ → ∞ limit for d dimensional black hole gives extremal

black hole, which has zero Hawking temperature. The connection to

the Wave comes via

M2
d+1 = 0 = M2

d −
Q2

R2
(62)

d-dimensional charge is z-component of the d-dimensional momentum.

Wave W is one of purely gravitational BPS objects in string theory.

other is KK monopole.
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Labelling five longitudinal directions y1···5, and four transverse directions

xi, i = 1,2,3, and z; KK metric is

ds2 = −dt2 + dy2
1···5 + H−1(x)

(
dz + Aidxi

)2
+ H(x)dx2

1···3
2∂[iAj](x) = εijk∂kH(x)

(63)

Ai can be found via curl equation, given that H = 1+ k/|x|. Periodicity

of azimuthal angle must be 4π to avoid conical singularities.

Most bulk gauge fields in string theory are sourced by higher-d branes.

Here, discuss objects with translational symmetry in p spatial directions.

Thus, horizon (for zero angular momenta) is topologically Rp×Sq−1,

where q is number of space dimensions transverse to p-brane.

Type IIA string theory in strong coupling limit is eleven-dimensional

supergravity, which has only two fields in its bosonic sector, metric

tensor and three-form gauge potential. We start our discussion of branes

with BPS M-branes.

Since have A3 expect M2 electric, M5 magnetic.
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BPS M-brane and D-brane solutions

BPS M2-brane spacetime has worldvolume symmetry group SO(1,2),

and transverse symmetry group SO(8). Let us define coords parallel

and perpendicular to brane to be (t, x‖)x⊥, respectively. Then, using

these symmetries, spacetime metric depends only on |x⊥| ≡ r, and has

form

ds211 = H
−2/3
2 dx2

‖ + H
1/3
2 dx2

⊥ A012 = H−1
2 (64)

Fact that same function appears in metric and gauge field is a con-

sequence of supersymmetry. Note: metric is automatically in Einstein

frame because there is no string frame in d=11.

Important: supersymmetry alone is not enough to determine H; rather,

SUGRA equations of motion must be used. Find that H2 must be

harmonic; it satisfies a Laplace equation in x⊥. Solution:

H2 = 1 +
r62
r6

where r62 = 32π2N2`611 (65)

`11 = g
1/3
s `s is eleven-dimensional Planck length.
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BPS M5-brane has symmetry group SO(1,5)× SO(5), and metric is

ds211 = H
−1/3
5 dx2

‖ + H
2/3
5 dx2

⊥ (66)

and harmonic function is this time

H5 = 1 +
r32
r3

where r35 = πN5`311 (67)

In this case, gauge field is magnetically coupled, F4 is proportional to
volume element on S4 transverse to the M5-brane.

For M2, origin of coordinates r = 0 is singular and so there must be
a δ-function source there, to wit fundamental M2-brane. This happens
essentially because M2-brane is electrically coupled.

Magnetically coupled BPS M5-brane is ’solitonic’ and nonsingular –
that geometry admits maximal analytic extension without singularities.
However, nonextremal version of M5 does have a singularity and needs
a source.

Near-horizon, M2 spacetime is AdS4×S7 and the M5 is AdS7×S4. Since
M2 and M5 are asymptotically flat, again we have interpolation between
two maximally supersymmetric vacua as in case of Reissner-Nordström
black hole.
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Extremal M2

Si
ng

ul
ar

ity Hori
zo

n Extremal M5

Hori
zo

n

Penroses ↑. Note that isotropic coordinates x⊥ cover only shaded part
of maximally extended spacetime.

Let us now move down to ten dimensions. Symmetry for BPS Dp-branes
is SO(1, p)× SO(9− p). In string frame, solutions are

dS2 = Hp(r)
−1

2

(
−dt2 + dx2

‖

)
+ Hp(r)

+1
2dx2

⊥

eΦ = Hp(r)
1
4
(3−p)

C01···p = gs−1Hp(r)−1

(68)
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Function Hp(r) is harmonic; it satisfies ∂2
⊥Hp(r) = 0,

Hp = 1 +
cpgsNp`s7−p

r7−p
cp ≡ (2

√
π)(5−p)Γ

[
1
2
(7− p)

]
(69)

Note that function Hp would still be harmonic if 1 were missing. Asymp-

totically flat part of geometry would be absent for this solution.

Double horizon of Dp-brane geometry occurs at r = 0 in isotropic co-

ords. In every case except D3-branes, singularity at r = 0 as well.

Hence, for Dp-branes with p 6= 3, singularity is null.

Since singularity and horizons coincide for BPS Dp-branes, may worry

that singularity is not properly hidden behind an event horizon, in which

case it should be classified as naked. We therefore demand that a

timelike or null geodesic coming from infinity should not be able to

bang into singularity in finite affine parameter.

Interestingly, this condition separates out D6-brane from others as being

only one possessing a naked singularity.

28



For D3-brane dilaton is constant, and spacetime turns out to be totally
nonsingular: all curvature invariants are finite everywhere. This allows
a smooth analytic extension inside the horizon, like case of M5-brane.
Near-horizon D3-brane spacetime is AdS5×S5. Penrose diagram for the
D3 is like that of M5.

Causal structures of BPS Dp-branes are summarised in Penroses ↓;
isotropic coordinates x⊥ cover only shaded part of maximally extended
spacetime.

Extremal D3

Hori
zo

n

Extremal
Dp, p=3/

F1 and NS5 spacetimes may be found by using T- and S-duality formulæ
that we gave in last subsection. (Try this!) Ω
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