String Theory: Answering "Why?" Questions About Our Universe.

Amanda Peet,

University of Toronto (Physics & Math), Canadian Institute for Advanced Research.

Matt's String Theory Symposium; Terry Fox Elementary School, Barrie, Ontario; 10-12h, Tuesday, June 8th, 2004.

Q1: What do physicists do, and what tools do we use when we work?

Matt's String Theory Symposium, 08-jul-2004.

What Does a Physicist Look Like?

Physicist stereotype (male, white, loner, able-bodied yet un-sporty, unfashionable, with nerdy glasses, lab coat, plastic pocket protector, facial hair, and a "bad hair day") is *wrong*.

All sorts of humans like physics and do physics! ③

e.g. I am a woman, with a disability & I like hiking and skiing.

What I Look Like

Discerning Patterns

- Physicists want to cover a lot of ground, i.e. find principles that *always* work in *heaps* of different situations.
- We want to explain origin and structure of fundamental matter + forces, from sub-atomic to cosmological scales.

- Smallest distance imaginable: million-billion-billion-billion-billion-th of a centimetre.
- Biggest distance imaginable: ten billion billion billion cm.

Tools of Theoretical Physics Research

Tools of Experimental Physics Research

Particle Accelerators

ring kms across

detector several metres tall

BOOM launch by giant weather balloon

Matt's String Theory Symposium, 08-jul-2004.

What is string theory, and why choose a string over some other thing?

Matt's String Theory Symposium, 08-jul-2004.

String Theory: Basic Idea

- All 'particles' matter and force-carriers (e.g. electron, quark, photon) are really tiny vibrating *superstrings*, or "strings".
- Forces described solely by splitting and joining of strings. Smooth process.
- If assume strings are basic stuff, gravity comes out automatically. (Particle theory can't do that!)
- String is simplest complication needed to solve puzzles.

Similarities and Differences in Particle Zoo

- Two kinds of fundamental matter seen, so far:
 - Leptons: $(e, v_e), (\mu, v_{\mu}), (\tau, v_{\tau})$
 - **Quarks:** (u, d), (c, s), (t, b)
- Four fundamental forces seen, so far:

Force name	Gravi- tational	Electro- magnetic	Weak nuclear	Strong nuclear
Carrier particle?	graviton	photon	W+, W-, Z	gluon
Felt by leptons?	✓	✓ / X	✓	×
Felt by quarks?	✓	✓	✓	✓
Range?	infinite	infinite	sub-nuclear	nuclear
Strength now?	weakest	weak	weaker	strong

Unification

- Fundamental "constants" describing strengths of forces are *not* actually constant, but vary with energy:
 - Strong nuclear gets weaker at higher energy;
 - electromagnetic, weak nuclear, gravity all get stronger.
- Variation effect involves:-
 - relativity: high-speed weirdness,
 - quantum behaviour: tiny-ness weirdness.
- Extrapolating up suggests unification at ultra-high energy, maybe up near 100,000 billion billion billion degrees.
- *Extreme* Physics!
 - Beginning of universe;
 - inside black holes.

(Relativity)

- Einstein is famous. Not many people know why!
- In early 1900s, he published amazing theories of relativity. Basically, relativity is high-speed weirdness.
- Speed of light is fundamental speed limit. Nothing faster!
- When something gets up to a good fraction of the speed of light, ordinary rules no longer apply:
 - velocities don't add simply;
 - pumping in more energy gives diminishing returns, and hit fundamental barrier at speed of light;
 - objects look shrunken in direction of motion;
 - moving clocks look to be running slow.

<u>(Quantum Behaviour)</u>

- Everyday objects have definite properties, e.g. size, speed. Mathematical idealization! Only valid if object is heavy and slow. In real life, *quanta*, not particles.
- Sometimes behave like pointy things, sometimes like wavy things. Tiny-ness weirdness.
- Every quantum has fundamental jitter. Jitter frequency controlled by energy of quantum. Can never turn off quantum jitter even at absolute zero temperature!
- Jitter causes tradeoffs: Heisenberg uncertainty principle. e.g. tradeoff in precision on weight *vs.* timing.
- Can have as many quanta as you like, but each costs huge energy price: *Energy* = (*mass*)×(*lightspeed*)². Just 1 gram converts into explosive energy of ~21,468 tonnes of TNT!

<u>A Theoretical Emergency</u>

- Twin pillars of 20th century experimental physics: quantum and relativistic theory, fundamentally incompatible. Oops!!
- Need new theory that:-
 - predicts sensible physics in extreme regimes, like birth of universe and black holes (no "infinity" answers!);
 - is internally consistent (no mathematical anomalies!);
 - unifies, explains patterns/differences.
- *Unique* theory which may do all this is **SUPERSTRING THEORY**.

Evolution of Universe

• At beginning:

- incredibly hot tiny universe;
- no atoms, protons or neutrons: no binding possible;
- quarks and leptons interchangeable;
- all interactions same, and of same strength.
- Soon afterwards universe inflated very fast, particle creation. Leftover radiation: now stretched out, "CMB".

Q3: Sci-fi *vs.* reality: how well do we know what we think we know?

Matt's String Theory Symposium, 08-jul-2004.

Where Will the Greeks' Quest End?

• If we keep looking deeper and deeper, will there be endless layers of the onion?

- For particle accelerators, more \$ gives better resolution.
- For string acccelerators, it's different! Even theoretically, we already know: more money helps *only up to a point*.
 - At ultra-high energy, string resolution gets bad again!
 - Extra energy just pumps up size of string *probe*.
- Minimum sensible distance ~ "string scale".
- So there may be no need to look for anything deeper.

Matter vs. Forces

How does a physicist tell particles apart?

 By mass and [intrinsic] spin, which are *only* labels invariant under space-time symmetry.

- Two major types of particles:-
 - matter: spin ½ (fermions),
 - interaction-transmitter: spin 0,1,2 (bosons).
- Supersymmetry: theoretical boson-fermion pairing.
 - Logical extension of known symmetries of Nature.
 - Useful for helping explain unsolved puzzles!
- Supersymmetry broken now: no sparticles seen yet.

Super-particles

- Massive hunt underway for super-particles.
- Discoverers would get Nobel Prizes! ③
- Super-particles may be discovered in particle accelerator frontiers, and affect astrophysics & cosmology too.

Particle	Super-partner
leptons, quarks	sleptons, squarks
Higgs	Higgsino
photon, Ws, Z, gluons	photino, Wino, Zino, gluino
graviton	gravitino

Extra Dimensions of Space

• Theories incorporating this idea go back over 80 years, but string theory is new in *requiring* more dimensions.

- Big ant can walk in only *one* direction the circular dimension is just curled up so small it goes unnoticed.
- Tiny ant would think twig surface is *two*-dimensional.
- State-of-the-art experiment says:
 - if we're allowed in, extra dimensions must be $< 10^{-17} cm$
 - if only gravity is allowed in, they must be
 < 0.15mm</p>

Composition of Universe

Survey stuff of universe through gravity effects. CMB, supernovae sense different effects.

What Caused the Big Bang?

- (Children are smart! When an adult says, "God made the universe.", the child asks, "Then who made God?!".)
- String theory gives new options for creating the initial tiny fireball that expanded to eventually create Earth+us.
- Imagine car crash
 (with eyes, ears shut) →
- Brane crash?

Spacetime as Quantum and Dynamical

- Spacetime was thought of as merely the playing field of particles and forces.
- But in string theory, we can smoothly
 - tear the fabric of space, change its topology;
 - change the number of dimensions of space.
- So spacetime as a fundamental idea is probably doomed!
- Big fat space-time must be emergent, *dynamically* how?
- Some of the remaining, intriguing questions:
 - Why does time run forwards?
 - Was there anything before the Big Bang?
 - Should quantum theory be applied to the whole universe?
 - Is our universe a lucky cosmological accident or unique?

The End ...

Matt's String Theory Symposium, 08-jul-2004.

Where to Learn More

Where to Learn More

