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0 Short Review of some Mathematics, Nomenclature and Notation

Vectors are often naïvely thought of as quantities defined at each point in three-dimensional space and endowed

with a magnitude and a direction, whereas a quantity with magnitude but without direction is called a scalar.

Whilst necessary, the mere possession of these two attributes is by no means sufficient for a quantity to qualify as

a vector. And a quantity described by a single number is not necessarily a scalar!

For the moment, let us note that neither magnitude nor direction depend on the choice of coordinate system.

This is obvious in the well-known geometric representation of vectors using arrows. When we use algebraic

expressions, wesometimes need a notation that makes no explicit reference to coordinate systems. After all,

vectors enter in many fundamental equations in physics, and these should not change just because we transform

from, say, Cartesian to spherical coordinates, or because the coordinate system has been rotated or translated. We

need a more sophisticated characterisation of vectors.

0.1 Vector Spaces

Definition 0.1. A vector space V is a (possibly infinite) set of objects that is closed under addition

and multiplication by a scalar:, ie. for which any two elements (vectors) u and v satisfy:

(a+ b)(u+ v) = (au + av + bu + bv) ∈ V

∀ a, b elements of some field; in what follows, we restrict these to be real. Also, (ab)u = a (bu).
This operation is both commutative and associative.

Definition 0.2. If W is a subspace of V , ie. W ⊆ V , and if any w ∈ W can be written as a linear

combination:

w =
∑

α

wα eα (0.1)

of a set {eα ∈ W}, then that set is said to span, or to be a set of generators of, W .

If, furthermore, this set is linearly independent, in the sense that demanding that w = 0 forces all

coefficients wα in eq. (0.1) to vanish, then it is a basis of W . The number n of vectors in the largest

linearly independent set defines the dimension of W , and we often write Wn. Conversely, the number

of elements of every basis of Wn is dimension n of Wn, and the sum in eq. (0.1) then runs from 1 to

n.

The set {eα} of basis vectors is said to be orthonormal if eα · eβ = 1 if α = β and 0 otherwise. The

operation represented by the dot will be defined below.

The (real) coefficients wα in eq. (0.2) are called the components of the vector w in this basis. This

one-to-one correspondence between Wn and R
n can be represented by a n× 1 matrix:

w 7−→











w1

w2

...

wn











In eq. (0.1), the left-hand side is explicitly basis-independent; we shall call this notation index-free, or geo-

metric. The right-hand side, in so-called index notation, makes explicit reference to a basis even though, taken

as a whole, it must still be basis-independent because of the equality.. Both notations have advantages and disad-

vantages. Fluency in both is highly recommended.

Warning! w and its components are different beasts and should never be confused. Also, always remember

that the index on eα identifies the basis vector, not a component of the vector. 5
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Example 0.1. Rn, the set of all ordered n-tuples of real numbers is one of the most important vector

spaces.

One popular basis of R3 is the Cartesian (rectangular, or standard) basis. Its three vectors are fixed

and attached to a point arbitrarily chosen as the origin (0, 0, 0).

e1 ≡ x̂ ≡ i = (1, 0, 0)T

e2 ≡ ŷ ≡ j = (0, 1, 0)T) (0.2)

e3 ≡ ẑ ≡ k = (0, 0, 1)T)

where the label T denotes the transpose.

0.1.1 Einstein’s notation for summed indices

Now is an appropriate time to introduce the Einstein summation convention: any index which occurs twice in a

product term must be summed over. Thus, uµvµ = uνv
ν ≡ ∑µ u

µvµ = u1v1 + u2v2 + u3v3. Such an index is

often called a dummy index and any letter can be used for it so long as that letter is not used for any other index

in the same product term!! Therefore, a dummy index appears twice and only twice in any product term.

Remaining indices, which appear only once, are called free indices. Example: in aαbνcαuβv
β , α and β are

dummy indices with summation implied, and ν is a free index.

I am sure you have noticed that I have written some component indices as subscripts instead of superscripts.

What is the relationship between uα and uα? Well, in a Euclidean space with Cartesian coordinates, ie. one in

which the distance between infinitesimally close points can be written dl2 = dx2 + dy2 + dz2 + . . ., we have

uα = uα! In the four-dimensional spacetime introduced in a proper relativistic treatment of electromagnetism,

this is no longer true, as we shall see later, and uα and uα will represent different types of components of the same

vector u.

0.1.2 Operations on 3-dim vectors in index and index-free notations

From the orthonormal property of the basis vectors, it can be shown that in Cartesian coordinates (and only in

these coordinates!), the following operations on 3-dim vectors are defined:

Index-free Index components Properties

Addition: w = u + v wi = ui + vi commutative, distributive

Scalar product: u · v = uv cos γ = uivi commutative, distributive

Vector product: w = u× v = (uv sin γ)n̂ wi = ǫijku
jvk distributive

tensor product u⊗ v ui vj commutative, distributive

where ui = ui, the components of the vector u, only in a Euclidean space with a Cartesian basis. This means

that any index expression that contains components with subscripts will look more complicated in curvilinear

bases if we insists on expressing it in terms of vector components (ui) only! The relation between components

with superscripts and those with subscripts will be discussed near the end of the course. The symbol ǫijk is defined

in the following subsection. Also, γ is the angle between u and v, and n̂ is a unit vector perpendicular to the

plane defined by u and v, and whose direction is given conventionally by the right-hand rule. The magnitude (or

norm) of a vector is simply u = (uiui)
1/2; like γ, it is independent of the coordinate system in which the vector

components are expressed. Now, everything that pertains to three dimensional space in this course will assume

that it is Euclidean (no curvature, unlike for instance on a sphere), but often we will wish to work in a curvilinear

basis, so some care will have to be exercised.

6



Lecture Notes on Graduate Electrodynamics 2020

Note that the vector product is neither commutative nor associative. In fact, it is antisymmetric. Also, there is

no simple expression for the tensor product in terms of magnitude and angle.

0.1.3 Meet your friend, the Levi-Civita symbol

The above expression for the vector product is much more compact than the one which uses a determinant. In three

dimensions the Levi-Civita symbol, ǫijk, is defined as a 27-component object which obeys the following rules:

ǫijk =− ǫjik = −ǫikj
= ǫkij = ǫjki

The first line means that ǫ is zero whenever any two of its indices are the same. Now, set ǫ123 = 1 by

convention. Then the other non-vanishing components can only be 1 or −1. We say that the Levi-Civita symbol

is totally antisymmetric in its indices. Because of this all-important property, it has only six non-zero components,

and only one independent component

Using the above rules, it is easy to work out the Cartesian vector product. For instance, suppose you want

wy = w2. Set i = 2. Then the only values for j and k that give non-vanishing ǫ components are 1 and 3. Set

j = 1; then k must be 3, again to have ǫ non zero. This gives the first term in the sum. Now, set j = 3; then

k = 1, giving the second and only other term in the sum. Thus, w2 = w2 = ǫ231u
3v1 + ǫ213u

1v3 = u3v1 − u1v3.

In the same way, w1 = u2v3 − u3v2, and w3 = u1v2 − u2v1, and we have regained the familiar expression for

the components of the vector product. The third kind of product between two vectors, the tensor product, is most

easily written in component form. Indeed, u⊗ v can be represented by a 3 × 3 matrix whose elements are given

by uivj . An antisymmetric version of this product, called the exterior product u ∧ v, is easily constructed; it has

components uivj − ujvi in any basis. In a Cartesian basis, these look like the components of the vector product,

except that they belong to an object with two indices (rank 2), not just one! The components of the 3-dim exterior

product and those of the vector product are said to be dual to each other, and are connected via the Levi-Civita

symbol: (u× v)i = (u× v)i =
1
2ǫijk(u

jvk − ukvj) in a Cartesian basis.

What is also nice about this coordinate notation for the scalar and vector products is that it allows relations

involving them to be proved without sweat. Thus:

u · (v ×w) = ǫijku
ivjwk

= wkǫkiju
ivj (cyclic permutation of indices on ǫ)

= w · (u× v).

Et voilà! For comparison, you should try the method that works out all components explicitly.

It will happen that two ǫ’s are multiplied, with one index summed over. No panic! Use the following (unproven)

rule:

ǫijkǫ
lnk = δi

lδj
n − δi

nδj
l. (0.3)

The index (here k) that gets summed over must appear in the same position on both ǫ’s (which position does not

matter, because to go from one to the other, the permutation rules are applied twice, once to each ǫ). Note how each

free index on the left-hand side also appears in each of the two terms on the right-hand side. This rule applies

to indices taken as algebraic symbols, not to particular values that they can take, as is obvious from the above

computation of the components of the vector product!

0.2 Review of Differential Calculus in Three Dimensions

In physics, as in many other pursuits, we are chiefly interested in how things change in space or time. In one

dimension, the change of a (scalar) function, f(x), when its argument changes by dx, is df = (df/dx)dx, where

7
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df/dx is the slope of f at x. Ask a similar question in three dimensions, namely, what is the change df(x)(u) of

a function f(x) in the direction of a vector, u, under an infinitesimal change of its argument in a Cartesian basis?

The answer is straightforward:

df(x)(u) = ui∂if (0.4)

where ∂if ≡ ∂f/∂xi, the partial derivatives of f(x) in index notation, can be viewed as the Cartesian components

of an object called the gradient of f , whose vector version is usually denoted by ∇f . Only in a Cartesian basis

are the components of this gradient also ∂if , that is:

∇f = x̂ ∂xf + ŷ ∂yf + ẑ ∂zf (0.5)

In index-free notation, we can write the directional change of the function ∇f · u. If u is a vector in the plane

tangent at some point to a curve over which f remains constant, then the gradient must be perpendicular to that

plane. Also, the change in the function is maximum in the direction of ∇f .

If ∇f can be viewed as vector, what then is ∇? It is a vector operator, the gradient operator, which can be

treated as a vector with the understanding that it acts on f .

Besides acting on scalar fields, the gradient operator can also act on vectors. Thus, ∇ can act on:

• a scalar f to yield a vector: ∇f , with components ∂if (gradient of f );

• a vector u to yield a scalar: ∇ · u, or ∂iu
i (divergence of u);

• a vector to yield a vector: ∇× u, with components ǫijk∂juk (curl of u).

Once again, the expressions written in index notation are only valid in a Cartesian basis!

The front cover of Jackson contains useful product rules for ∇. EXERCISE: if you wish to sharpen your

index-manipulation skills, you can try proving some or all those product rules using index notation.

Applying ∇ yet again to the gradient, divergence, and curl yields:

1. the Laplacian of ∇ · (∇f) ≡ ∇2f , or ∂j∂
jf in index notation and in a Cartesian basis,

2. ∇× (∇f) ≡ 0,

3. ∇(∇ · u),

4. ∇ · (∇× u) ≡ 0,

5. ∇× (∇× u) ≡ ∇(∇ · u)−∇2u.

(2), (4), and (5) are identities, in the sense that they provide no information whatsoever about f and u, respectively,

since they are always satisfied. Identity (5) just gives two equivalent ways of writing the same thing, and is best

viewed as a definition of ∇2u.

The only really useful quantity involving second-order spatial derivatives is the Laplacian (1).

0.3 Review of Integral Calculus

Three important theorems govern integrals of gradients, divergences, and curls:

1. Gradient theorem:

∫

line

b

a

(∇f) · dl = f(b)− f(a);

8



Lecture Notes on Graduate Electrodynamics 2020

2. Curl theorem (Stokes):

∫

surface

(∇× u) · da =

∮

line

u · dl;

3. Divergence theorem (Green, Gauss):

∫

volume

∇ · ud3x =

∮

surface

u · da.

By convention the surface element da is a vector normal to the surface and points outward when the surface

is closed; in the curl theorem, it points in the direction of the thumb when the other fingers of your right hand curl

around the direction of circulation in the line integral.

Some of the integrals in the curl and divergence theorems have names:
∮

line

u · dl is called the circulation of u

around a closed path, whereas
∫

surface

u · da is called the flux of u through a surface.

Notice that in each of the theorems, the left-hand side is, loosely speaking, the integral of the derivative of an

object over a (one-, two-, or three-dimensional) region, whereas the right-hand side is the integral of the object

over the boundary of the same region. The three theorems are just particular forms of a fundamental theorem

in differential geometry. As a consequence, when a region (line interval, 2-dimensional surface) is embedded in

a higher-dimensional space, as is the case in the gradient and curl theorems, the integrals on the left are equal to

integrals over any region which has the same boundary! Furthermore, when these regions are closed, the right-hand

side vanishes.

Since
∮

∇f · dl = 0, it follows that any vector field u which is the gradient of some scalar field must have

zero circulation around any closed path:
∮

u · dl = 0. We say that u is conservative. The converse also holds: if
∮

u · dl = 0 for any closed path in a region, Stoke’s theorem demands that ∇× u = 0 at all points in the region,

and u must be the gradient of some scalar function (I omit the proof since it is rather fussy). The most useful

statement that emerges from the discussion in this paragraph is that if ∇× u = 0 over a simply-connected region

(no doughnuts or surfaces with holes!), u is conservative and there exists a scalar field f such that u = ∇f .

Green’s Identities (section J1.8)

By putting u = f∇g, where f and g are scalar fields, in the divergence theorem, we can use the seventh

product rule inside Jackson’s front cover to show Green’s first identity:
∫

volume

[f ∇2g + (∇f) · (∇g)] d3x ≡
∮

surface

f
∂g

∂n
da (0.6)

where ∂/∂n is the derivative in the direction normal and outward to the surface enclosing the volume. Next, we

can write the first identity with f and g interchanged, subtract, and prove Green’s second identity, sometimes

(including by Jackson) confusingly called Green’s theorem:
∫

volume

(f ∇2g − g∇2f) d3x ≡
∮

surface

(

f
∂g

∂n
− g

∂f

∂n

)

da (0.7)

Green’s identities will be very useful when we review boundary-value problems and introduce Green function

methods.

0.4 Vectors in Curvilinear Coordinates

Other than Cartesian bases, the two most useful types of coordinate system are spherical and cylindrical.

In a spherical system, the components of a position vector are one distance and two angles, (r, θ, φ), illustrated

in fig. J3.1. The transformations from spherical to Cartesian position coordinates are:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (0.8)

9
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Beware: mathematicians often use φ as the polar angle and θ for the azimuthal angle in spherical coordinates!

This is certainly the case in the symbolic manipulation software Maple when it knows that it is working in those

coordinates.

As for the inverse transformations, the most useful ones relate the unit vectors:

r̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ

θ̂ = x̂ cos θ cos φ + ŷ cos θ sin φ − ẑ sin θ (0.9)

φ̂ = −x̂ sin φ + ŷ cos φ

How are the spherical and Cartesian components of a vector u related? We can always write:

u = ux x̂+ uy ŷ + uz ẑ

= ur r̂+ uθ θ̂ + uφ φ̂

Insert the above expressions for the spherical unit vectors in ur = r̂ · u = ux r̂ · x + uy r̂ · y + uz r̂ · z,

uθ = θ̂ ·u, and uφ = φ̂ ·u, where u is given in terms of ux, uy and uz, and work out the scalar products to obtain

the transformation law:




ur
uθ
uφ



 =





sin θ cos φ sin θ sin φ cos θ
cos θ cos φ cos θ sin φ − sin θ
− sin φ cos φ 0









ux
uy
uz



 (0.10)

The inverse transformation can be computed either by inverting the matrix or by working out ux = x·û, uy = ŷ·u,

and uz = ẑ · u, with u given this time in terms of ur, uθ and uφ. If u were dependent on the coordinates, ie.

if it were a vector field, the coordinates themselves would also have to be transformed. EXERCISE: transform

u(x, y, z) = (−2,−1, 3), where (x, y, z) = (2,−1, 0), to a spherical basis.

It is not hard to see that the infinitesimal displacement vector is given in spherical coordinates by:

dl = dr r̂ + (r dθ)θ̂ + (r sin θ dφ)φ̂ (0.11)

and that the volume element is just the product of the infinitesimal displacements in the three orthogonal directions:

d3x = r2 sin θ dr dθ dφ. There is no general expression for the surface element, da, as this depends on its

orientation in space.

Once we know the form of dl in spherical coordinates (or any other system for that matter) it is easy to find

the components of the gradient of a scalar field f . Just write:

df = (∂rf)dr + (∂θf)dθ + (∂φf)dφ (chain rule)

= ∇f · dl (coordinate-free form)

Working out the last line after inserting the above expression for dl gives:

(∇f)r = ∂rf, (∇f)θ =
1

r
∂θf, (∇f)φ =

1

r sin θ
∂φf (0.12)

from which one reads off the components of the gradient operator ∇.

One might think that the divergence and the curl of a vector can now be easily found. Not quite! Unlike in

a Cartesian basis, the unit vectors of a spherical basis are not fixed at the origin; rather, they are attached to the

particular point where our vector is defined. As soon as we move away from this point, the set of basis vectors

changes its orientation unless the motion is in the radial direction. So we expect that, unlike in a Cartesian basis,

the spherical unit vectors will have non-zero spatial derivatives. These can be calculated easily from the above

expressions relating (r̂, θ̂, φ̂) to (x,y, z). In tabular form, we get:

10
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r̂ θ̂ φ̂

∂r 0 0 0

∂θ θ̂ −r̂ 0

∂φ φ̂ sin θ φ̂ cos θ −r̂ sin θ − θ̂ cos θ

Now it is a straightforward—if somewhat tedious—exercise to calculate the divergence† of a vector u in

spherical coordinates. Expand:

∇ · u =

(

r̂∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ

)

·
(

r̂ur + θ̂ uθ + φ̂uφ

)

using the product rule for derivatives and the table above. You can then put the five terms you will get in the elegant

form:

∇ · u =
1

r2
∂r(r

2ur) +
1

r sin θ
[∂θ(sin θ uθ) + ∂φuφ] (0.13)

An even more tedious calculation yields the expression for ∇× u given inside the back cover of Jackson.

A word of caution: although one uses a Cartesian basis to derive it, the identity ∇×(∇×u) ≡ ∇(∇·u)−∇2u

does hold in any coordinate system. But it is of limited interest in any basis other than Cartesian, because of the

term ∇2u. Although ∇2u = (∇2ux)x̂+(∇2uy)ŷ+(∇2uz)ẑ, it is not equal to (∇2ur)r̂+(∇2uθ)θ̂+(∇2uφ)φ̂,

because the derivatives of the unit vectors are non-zero. In fact, ∇2u is best evaluated from the identity.

Clearly, divergences and curls of vetors are much more complicated in spherical (and cylindrical) bases than

in Cartesian ones. Why then bother with non-Cartesian bases? Because in some important situations, those with a

symmetry, these awful expressions collapse down to very simple ones. In spherical coordinates, for instance, any

vector without angular dependence, and therefore spherically symmetric, will have a one-term divergence and zero

curl, just by inspection of the relevant expressions.

Consider the vector field r̂/r2, which plays a very important rôle in electromagnetism. Its divergence in

spherical coordinates is very simple to calculate: it vanishes everywhere except at r = 0, where r̂/r2 diverges. By

contrast, more work is needed to find the same result in a Cartesian basis, with r2 = x2 + y2 + z2. The problem

at r = 0 is not an artefact of the spherical coordinates since r̂/r2 diverges in any basis. How do we know what the

divergence is at the origin then? Well, if we integrate it over a sphere of radius R centered at the origin and use the

divergence theorem to convert the volume integral to the flux of r̂/r2 through the spherical surface, we get 4π for

this flux, no matter how small we choose R!. This non-zero result can therefore only come from the origin since

we know that the divergence vanishes everywhere else. But how should we write the divergence at the origin?

0.5 Dirac delta-“function”

A very useful object in physics (and invented by P.A.M. Dirac, a physicist trained as an engineer) is the Dirac

delta-function, δ(x), which is zero everywhere on the x-axis, except at x = 0 where it is infinite. Clearly. this

is not a function in the ordinary sense; to a mathematician, it belongs to a class of objects called distributions. In

spite of its strange behaviour, it can be represented in terms of perfectly mundane objects. In one dimension:

δ(x) = lim
g→∞

1

π

sin gx

x
=

1

2π

∫ ∞

−∞
eikx dk

†For those who know such things, it is much simpler first to identify the non-zero components gij of the metric tensor for spherical

coordinates which are the coefficients of the dr2, dθ2 and dφ2 terms in the norm of the line element given by eq. (0.11), computing
√
g,

where g = r4 sin2 θ is the determinant of the diagonal gij matrix, and using the very general formula for the divergence of a vector u in

any space and any basis: ∂i(
√
gui)/

√
g.

11
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from which it is obvious that the δ-function has units of inverse x.

The integral of the delta-function over its whole range is well defined:
∫∞
−∞ δ(x) dx = 1. Since f(x)δ(x− a)

is for all practical purposes f(a)δ(x − a), it follows that:

f(a) =

∫ ∞

−∞
f(x)δ(x − a) dx (0.14)

for any “well-behaved” function f(x). Thus, the delta-function can be used to pick out a particular value of a

function.

Another useful property:

δ(ax) =
1

|a| δ(x) (0.15)

These properties are readily extended to the 3-dimensional delta-function, δ(x) = δ(x)δ(y)δ(z). Indeed, we

have:

f(x0) =

∫

all space

f(x)δ(x − x0)d
3x

See p. 26 in Jackson for other useful properties of the δ-function, in particular, the important representation:

δ(x − x′) =
1

2π

∫ ∞

−∞
eik(x−x′) dk (0.16)

The result of problem 1.2 is also important in spherical or cylindrical coordinates!

Now we know our divergence of the previous section: ∇ · (x/x3) = 4πδ(x). This vanishes ∀x 6= 0 and has a

volume integral over all space equal to 4π, consistent with the flux calculated above. More generally:

∇ ·
(

x− x′

|x− x′|3
)

= 4π δ(x− x′) (0.17)

where the differentiation is with respect to x, x′ being fixed. Now since ∇(1/R) = −(x − x′)/R3, where

R = |x− x′|, we immediately find a result that will prove very useful:

∇2

(

1

|x− x′|

)

= −4π δ(x − x′) (0.18)

0.5.1 Helmholtz theorem

The Helmholtz theorem asserts that a vector function F(x) that vanishes at infinity faster than 1/|x − x′| is

uniquely determined over space if its divergence and curl are known. In that case:

F = ∇u + ∇×w (0.19)

where

u(x) = − 1

4π

∫

∇′ · F(x′)

|x− x′| d3x′ w(x) =
1

4π

∫

∇′ × F(x′)

|x− x′| d3x′

and it is understood that the integration must extend over all space.

Also, vector fields whose curl vanishes everywhere in a simply-connected space can be written as the gradient

of some scalar field, the latter being determined only up to a constant. Similarly, vector fields whose divergence

vanishes everywhere in a simply-connected space (r̂/r2 is not one of them!) can be written as the curl of some

vector, the latter being determined only up to the gradient of a scalar.
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0.6 Expansion of Functions in a Complete Set of Orthonormal Functions (section J2.8)

We will be interested in classes of functions with two important properties. First, they are separable, that is,

written as products of functions, each depending on only one coordinate, in some coordinate system. Secondly,

these functions—call them f(ξ), where ξ is some coordinate—can be expanded over sets of functions Un(ξ) which

are (see also pp. 67-69 in Jackson):

1. complete: f(ξ) =
∞
∑

n=1

cnUn(ξ) ∀f(ξ), which means that the Un(ξ) must satisfy:

∞
∑

n=1

U∗
n(ξ

′)Un(ξ) = δ(ξ′ − ξ) (0.20)

2. orthonormal over some interval (a, b):

∫ b

a
U∗
m(ξ)Un(ξ) dξ = δmn (0.21)

which allows to find the expansion coefficients:

cn =

∫ b

a
U∗
n(ξ) f(ξ) dξ (0.22)

When the interval (a, b) is infinite, (−∞,∞), some complete and orthonormal sets may become continuous. A

well-known example is the discrete set over the interval (−a/2, a/2):

Un(ξ) =
1√
a

eiknξ (kn =
2πn

a
, n integer)

defining the Fourier series expansion:

f(ξ) =
1√
a

∞
∑

n=−∞

cn eiknξ

cn =
1√
a

∫ a/2

−a/2
f(ξ′) e−iknξ′ dξ′ (0.23)

When a → ∞, the sum over modes becomes an integral over k, and the Fourier series goes over to a Fourier

integral:

f(ξ) =
1√
2π

∫ ∞

−∞
A(k) eikξ dk

A(k) =
1√
2π

∫ ∞

−∞
f(ξ) e−ikξ dξ (0.24)

with:

1

2π

∫ ∞

−∞
ei(k−k′)ξ dξ = δ(k − k′) (orthonormality)

1

2π

∫ ∞

−∞
eik(ξ−ξ′) dk = δ(ξ − ξ′) (completeness) (0.25)
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0.7 Solution of the Laplace Equation in Rectangular Coordinates (sections J2.9–2.11)

Perhaps the most useful method of solving the Laplace equation, ∇2Φ = 0, is to express its solutions as expansions

over sets of orthonormal functions (see section 0.6 above, or section J2.8). To solve the equation, we must decide

first on our coordinate basis. It is an arbitrary choice, but a non-trivial one as it can make the difference between

success and failure. It should be guided by the shape of the closed surface over which the boundary conditions

(B.C.) are given. We shall consider flat and spherical surfaces in turn.

With flat boundaries, especially if they are mutually perpendicular, it makes eminent sense to use a rectangular

basis oriented along the surfaces. This allows the B.C. to be written in their simplest form.

We seek separable solutions of the form Φ(x, y, z) = X(x)Y (y)Z(z). To find out if and under which

conditions this ansatz works, substitute this form for Φ into ∇2Φ = ∂2xΦ+ ∂2yΦ+ ∂2zΦ and divide by Φ to obtain:

1

X
d2xX(x) +

1

Y
d2yY (y) +

1

Z
d2zZ(z) = 0

Each additive term depends on only one coordinate. Since the coordinates can take arbitrary values inside the

volume considered, the equation can be satisfied only if each term is constant, giving the three ordinary differential

equations:

d2xX(x) = α2X(x), d2yY (y) = β2Y (y), d2zZ(z) = γ2Z(z) (α2 + β2 + γ2 = 0)

with (not completely general!) solutions:

X(x) = A eαx +B e−αx

Y (y) = C eβy +D e−βy (0.26)

Z(z) = F e
√

α2+β2 z +G e−
√

α2+β2 z

where α2 and β2 are constants, and the constants A, B, etc., must be determined from the B.C. If this can be

done with some linear superposition of each of X, Y , and Z , then the product of these superpositions will be the

solution.

Example 0.2. A two-dimensional example

Many boundary-value problems can be reduced to two-dimensional problems, where the potential

does not change along (say) the z direction, being entirely determined in terms of x and y. Then

Φ(x, y) = X(x)Y (y), and α2 = −β2. Unlike Jackson in section J2.10, however, I make no educated

guess about the sign of α2, in order to show you how it comes out in the wash.

In this example Φ(0, y) = 0 and Φ(a, y) = 0. The first condition forces B = −A, so that

Φ(x, y) = A(C eβy + D e−βy)(eαx − e−αx). The second condition demands that e2aα = 1, which

cannot be satisfied if α is real and non-zero. But it is satisfied if α = i k, with k = nπ/a (n an

integer). Absorbing the overall constant A into C and D, recalling that β2 = −α2 = −k2 > 0, and

implementing Φ(x,∞) → 0, we have the solution:

Φn(x, y) = e−kny sin knx (kn = nπ/a, n > 0)

At this point we realise that it is impossible to fit the other B.C., Φ(x, 0) = V , with just this solution

for arbitrary values of x. The only way to save the situation is to construct a more general solution,

making use of the linearity of the Laplace equation and the fact that any positive integer n gives a

solution to write:

Φ(x, y) =

∞
∑

n=1

An e−kny sin knx

14
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The B.C. now takes the form V =
∑∞

n=1An sin knx, an expansion over the complete orthonormal

set {sin knx}. From this, we determine the (Fourier) coefficients An = (2/a)
∫ a
0 V sin knxdx. There

comes:

Φ(x, y) =
4V

π

∑

n odd

1

n
e−nπy/a sin(nπx/a) =

2V

π
tan−1

(

sin(πx/a)

sinh(πy/a)

)

(0.27)

where the last equality is derived on pp. 74-75 in Jackson.

Example 0.3. Three-dimensional extension

In section J2.9, Jackson looks at the case of a hollow rectangular box with dimensions (a, b, c) in

the (x,y,z) directions, with all sides at zero potential, except for the side z = c. Going back to the

3-dimensional solution of eq. (0.26), we can move more quickly by noting that α2 and β2 may be

chosen to be negative and dropping overall constants in each of the three functions.

Then the vanishing of the potential at x = 0 and y = 0 forces both X and Y to be sines, while

the conditions at x = a and y = b demand that αn = nπ/a, and βn = nπ/b, so that γnm =
π (n2/a2 +m2/b2)1/2 and the condition at z = 0 is satisfied if Z is a sinh. Then:

Φ(x, y, z) =

∞
∑

n,m=1

Anm sin(nπx/a) sin(nπy/b) sinh(γnmz) (0.28)

with the Fourier coefficients Anm determined by imposing Φ(x, y, c) = V (x, y).

0.8 Laplace and Helmholtz Equations in Spherical Coordinates (sections J3.1, J3.2, J3.5, J9.6)

The Laplacian operator is ubiquitous in physics. To study it, we first separate it into two convenient parts by

introducing the self-adjoint vector operators −i∇ and L = −ix × ∇, or Li = −iǫijkx
j∂k, where ǫijk is the

completely antisymmetric Levi-Civita symbol, and summation over repeated indices is implied. With the identity:

ǫijkǫ
imn = δj

mδk
n − δj

nδk
m, the scalar product of L with itself is, in Cartesian coordinates:

L · L = −ǫijkǫimn xj∂k xm∂n = −xj
(

∂j + xj∂
k∂k − 3∂, − xk∂

k∂j
)

= −xjxj ∂
k∂k + xj ∂j + xj∂jx

k∂k

Extracting the Laplacian and reverting to coordinate-free notation, there comes with xjxj = r2:

∇2 = −L2

r2
+

1

r

[

∂r + ∂r(r ∂r)
]

(0.29)

The distance r to the origin can be expressed in any coordinates we wish, yet this expression wants to single out

the direction along x = r n̂ from the other two. Also, it would be nice if L only involved derivatives in directions

perpendicular to n̂. This is most easily realised in a spherical coordinate system, since its radial coordinate natu-

rally correpsonds to the direction along x; the other two coordinates are angular. By transforming the Cartesian

components of L to spherical coordinates (r, θ, φ), we obtain:

Lx = − i (y∂z − z∂y) = − i (− sinφ∂θ − cot θ cosφ∂φ)

Ly = − i (z∂x − x∂z) = − i (cosφ∂θ − cot θ sinφ∂φ)

Lz = − i (x∂y − y∂x) = − i ∂φ

The derivatives with respect to r have cancelled out, leaving only angular coordinates! We also find that:

L2 = L2
x + L2

y + L2
z = −

[

1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2φ

]

(0.30)
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It is also useful to have the spherical components of L. Obviously, Lr = 0 since r · L. Using the transformations:

θ̂ = i cos θ cosφ+ j cos θ sinφ− k sin θ, and φ̂ = −i sinφ+ j cosφ, there comes:

L = − i

(

φ̂ ∂θ − θ̂
1

sin θ
∂φ

)

(0.31)

Also, eq. (0.29) makes it obvious that the commutator [∇2, L2] := ∇2L2 − L2∇2 = 0, so that [∇2, L] = 0.

We establish five vector identities involving L and ∇2. With r the radial coordinate in a spherical system:

r · (∇×V) = (ǫijkx
i∂j)V k = (r×∇) ·V = iL ·V (0.32)

∇2(r ·V) = ∂i∂
i(xjV

j) = ∂i(δ
i
jV

j + xj∂
i V j) = ∂iV

i + ∂iV
i + xj∂i∂

iV j = 2∇ ·V + r ·∇2V (0.33)

∇ · (r×V) = ǫijk∂
i(xjV k) = ǫijk(δ

ijV k + xj∂iV k) = − r · (∇×V) = −iL ·V (0.34)

Taking V −→ ∇×V, this last identity reads: L ·∇×V = i∇ ·
[

r× (∇×V)]. Using an identity in Jackson’s

front left cover, we have, with ∇× r = 0: r× (∇×V) = ∇(r ·V)− (r ·∇)V− (V ·∇)r. Then there comes:

L ·∇×V = i
[

∇2(r ·V)− ∂i(x
j∂j)V

i) − ∇ ·V
]

= i
[

∇2(r ·V)− 2∇ ·V− (r ·∇)∇ ·V
]

(0.35)

Our last identity involves i∇×L=∇×(r×∇) or, in index notation:ǫijkǫ
lmk∂j(xl∂m) = (δi

lδj
m−δimδj l)∂j(xl∂m).

Expanding yields: ∂m(xi∂m)− ∂l(xl∂i) = xi∂
m∂m − 2∂i − (xl∂

l)∂i = xi∂
m∂m − ∂i − ∂i(xl∂

l). When acting

on a scalar function f , this gives in coordinate-free notation:

i∇× L f = r∇2f − ∇(f + r∂rf) (0.36)

0.8.1 Eigenvalues of L2 and Lz

Now one readily shows that the following important commutation relations hold:

[Lx, Ly] = iLz, [Ly, Lz] = iLx, [Lz, Lx] = iLy, [L2, L] = 0 (0.37)

The first three can be written in the compact form: L × L = iL. The importance of these relations cannot be

overstated. It says that L belongs to the class of self-adjoint operators J whose Cartesian components satisfy the

canonical commutation relations:

[Ji, Jj ] = i ǫijk Jk, (0.38)

Just from these properties, it is possible to derive the eigenvalues λ of J2, such that J2g = λ g, and the

eigenvalues m of Jz , such that Jzf = mf , where λ and m are real numbers since the operators are self-adjoint.

Introduce the ladder operators J± = Jx ± iJy. with coomutation relations [J2, J±] = 0. [Jz , J±] = ± J±,

and [J+, J−] = 2Jz .

Jz(J±f) ≡ [Jz , J±] f + J±Jzf = (m ± 1) (J±f)

Now f is also an eigenfunction of J2, and JzJ
2f = J2Jzf = mJ2f , so that J2f is an eigenfunction of Jz with

the same eigenvalue. Since the eigenvalues of Jz are non-degenerate, J2f is a multiple of f : J2f = λf . Also:

J2(J±f) = J±(J
2f) = λ (J±f)

These results tell us what J± do for a living: they raise (J+) or lower (J−) the eigenvalues of Jz by 1, whence their

name. In other words, if f is an eigenfunction of Jz with eigenvalue m, so is J±f , but with eigenvalue (m ± 1).
We also have found that all the eigenfunctions of Jz reachable with the ladder operators are eigenfunctions of J2

as well, with the same eigenvalue λ.
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We can also use the definition of J± to show the identity:

J2 = J± J∓ + J2
z ∓ Jz (0.39)

For a given value of λ, we expect that m should have a maximum value, mmax ≡ j, as well as a minimum

value, mmin ≡ j′. Now act with J2 on the eigenfunction of Jz with the maximum value of m, which we call fj .
Then J+fj = 0 and, from the identity (0.39), we find:

J2fj = J2
z fj + Jzfj = j(j + 1) fj = λfj

Similarly, act with J2 on the eigenfunction of Jz with the minimum value of m, fj′, keeping in mind that fj′ is

also an eigenfunction of J2 with the same eigenvalue, λ, as fj:

J2fj′ = (j′)2fj′ − j′fj′ = j′(j′ − 1) fj′ = λfj′

Comparing yields λ = j(j+1) = j′(j′−1), and thus j′ = −j. It follows that m goes from −j to j in N integer

steps, ie, j = −j +N , so j = N/2.

We conclude that:

• The eigenvalues of J2 are j(j + 1), where j is a positive integer or a half-integer.

• For a given value of j, m can take 2j + 1 values, from −j to j.

With the help of eq. (0.39), we can now exhibit the full action of J− on a normalised eigenfunction fjm of J2

and Jz . Let J−fjm = c− fj,m−1. Then, using the rules for taking adjoints, and with (f, g) the inner product of f
and g:

(fjm, J+J− fjm) = (J−fjm, J− fjm) = (c−fj,m−1, c−fj,m−1) = |c−|2 (fj,m−1, fj,m−1) = |c−|2

But since J± J∓ = J2 − J2
z ± Jz , we also have that:

(flm, J+J− fjm) = (fjm, (J
2 − J2

z + Jz) fjm) = j(j + 1) − m2 + m

Comparing yields c− up to an unimportant exponential phase factor which we put equal to 1. We find the coefficient

in J+fjm = c+ fj,m+1 in a strictly analogous way. The results for both ladder operators are:

J±fjm =
√

j(j + 1) − m(m ± 1) fj,m±1 (0.40)

0.8.2 Eigenfunctions of L2 and Lz

To find the common eigenfunctions for J and J2 operators, we must know what they look like. Here, we will be

interested in the L operator whose form we do know and which makes up the angular part of the Laplacian in

spherical coordinates.

The eigenfunctions of Lz are readily obtained by solving the differential equation:

Lzf(θ, φ) = −i ∂φf(θ, φ) = mf(θ, φ)

With a separation ansatz: f(θ, φ) = F (θ)G(φ), the solution for G is: G(φ) = eimφ. Require that G (and f ) be

single-valued, that is, G(φ+ 2π) = G(φ) leads to:

eim(φ+2π) = eimφ =⇒ e2imπ = cos 2mπ + i sin 2mπ = 1
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which constrains m to be any integer. Therefore, l := mmax must also be an integer. Thus, we find that the

particular form L = −ix×∇ rules out the possibility of half-integer values of j allowed for a self-adjoint J that

satisfies the canonical commutation relations (0.38).

The θ dependence of the eigenfunctions must be derived from the eigenvalue equation for L2. Call f(θ, φ) =
Y m
l (θ, φ) = F (θ)G(φ); these must satisfy:

−
[

1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2φ

]

Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ)

Inserting Y m
l (θ, φ) = F (θ)eimφ into this equation leaves:

−
[

1

sin θ
dθ (sin θ dθ) − m2

sin2 θ

]

F (θ) = l(l + 1)F (θ) (0.41)

Instead of solving this equation by brute force, we use a clever technique involving the ladder operators L±:

L± = ± eiφ
(

∂θ ± i cot θ ∂φ
)

Now, when m = l, we have:

L+Y
l
l = eiφ

(

∂θ + i cot θ ∂φ
)

Y l
l (θ, φ) = 0

Inserting Y l
l = F (θ)eilφ, this reduces to the much simpler

dθF (θ) − l cot θ F (θ) = 0

whose solution is F (θ) = (sin θ)l. Therefore, Y l
l = (sin θ)leilφ. Applying L− the requisite number of times

generates the other Y m
l (0 < m < l): Y m

l ∝ Ll−m
− Y l

l . When normalised, these are the spherical harmonics:

Y m
l (θ, φ) =

(−1)m

2ll!

√

2l + 1

4π

(l −m)!

(l +m)!
(1− x2)m/2

[

dl+m
x (x2 − 1)l

]

eimφ x = cos θ (0.42)

Spherical harmonics are tabulated on p. 109 of Jackson for l ≤ 3. They obey:

Y ∗
l,−m(θ, φ) = (−1)mYlm(θ, φ) (0.43)

They satisfy other useful relations which can be found in several references (Arfken’s Mathematical Methods for

Physicists and Handbook of Mathematical Functions by Abramowitz and Stegun are two popular ones). They

occur in the solution to many problems in physics: in quantum mechanics for instance, when the potential in the

Schrödinger equation is spherically-symmetric, the angular dependence of the wave functions is always given by

spherical harmonics. And we shall see later how useful they are in electrostatics.

The spherical harmonics form a complete set of orthonormal functions, in the sense that any function g(θ, φ)
can be written as:

g(θ, φ) =

∞
∑

l=0

l
∑

m=−l

AlmYlm(θ, φ)

where

Alm =

∮

f(θ, φ)Y ∗
lm(θ, φ) dΩ

with dΩ = sin θ dθ dφ, and where we have used the orthonormality condition:

∫ π

0
sin θ dθ

∫ 2π

0
Y ∗
l′m′(θ, φ)Ylm(θ, φ) dφ = δl′lδm′m
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The spherical harmonics satisfy the completeness relation:

∞
∑

l=0

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ) = δ(x− x′)δ(φ − φ′) (x = cos θ) (0.44)

In axisymmetric situations, with the the z-axis chosen along the axis of symmetry, there is no φ dependence,

which means that m − 0. Then the spherical harmonics collapse to the Legendre polynomials of order l, given

by the Rodrigues formula:

Pl(x) =
1

2ll!
dlx(x

2 − 1)l (−1 ≤ x ≤ 1) (0.45)

They satisfy the Legendre equation, which is simply eq. (0.41) with m = 0. They are given on p. 97 of Jackson

for l ≤ 4. They satisfy a number of relations, some of which are given on p. J100.

One word of caution here: this treatment presupposes no restriction on either θ or φ! See section 3.4 in Jackson

for modifications needed when θ is restricted to a range smaller than π in a solution independent of φ.

0.8.3 General Separable Solution of the Laplace and Helmholtz Equations

Suppose we are presented with the equation
[

∇2 + γ(x)
]

Ψ(x) = 0. Work in spherical coordinates, and make the

separation ansatz: Ψ(x) = R(r)F (θ, φ). Using the form for ∇2 derived earlier, eq. (0.29), we write:

∇2Ψ + γ(x)Ψ = − L2Ψ

r2
+

1

r

[

∂rΨ + ∂r(r ∂rΨ)
]

+ γ(x)Ψ

= −R(r)
L2F (θ, φ)

r2
+
F (θ, φ)

r

[

drR(r) + dr(r drR(r))
]

+ γ(x)R(r)F (θ, φ)

Dividing the second line by R(r)F (θ, φ) and multiplying by r2, we see that the equation is separable provided

γ(x) = γ(r):

L2F (θ, φ) = λF (θ, φ) drR(r) + dr(r drR(r)) + r γ(r)R(r) = λ
R(r)

r

The first equation is the eigenvalue equation for L2, whose eigenvalues are λ = l(l + 1) (l ≥ 0 ∈ Z) with the

spherical harmonics Y m
l (θ, φ) as eigenfunctions.

The radial equation can thus be written:
1

r2
dr
(

r2 drRl(r)
)

+

(

γ(r) − l(l + 1)

r2

)

Rl(r) = 0

When γ(r) = 0, this is the radial part of the Laplace equation which becomes, after the change of variable

r = ex, d2xR+dxR−l(l+1)R = 0. Inserting a solution of the form epx turns the equation into p2+p−l(l+1) = 0,

that is, p = l or p = −(l + 1), which leads to R = Aelx + Be−(l+1)x = Arl +Br−(l+1). Therefore, the general

solution to the Laplace equation in spherical coordinates is:

Ψ(r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

(

Alm r
l +

Blm

rl+1

)

Y m
l (θ, φ) (0.46)

If Ψ is specified over a surface of constant r = a, the coefficients Alm andBlm can be found. Very often, one looks

for solutions inside and outside the sphere, Ψr<a and Ψr>a. For r ≤ a, Br<a
lm = 0 so as to prevent a divergence at

r = 0, and:

Ar<a
lm =

1

al

∮

Ψ(a, θ, φ)Y ∗
lm(θ, φ) dΩ (0.47)
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For r ≥ a, and assuming that Ψ → 0 at infinity, Ar>a
lm = 0 to avoid a divergence as r → ∞, and:

Br>a
lm = al+1

∮

Ψ(a, θ, φ)Y ∗
lm(θ, φ) dΩ (0.48)

If either one of these two solutions is known, we can use the matching condition Ψr<a(a, θ, φ) = Ψr>a(a, θ, φ)
to relate the coefficients: Br>a

lm = a2l+1Ar<a
lm .

Clearly, if this solution is to be regular, and if it holds everywhere, it must vanish. In other words, if the Laplace

equation is valid everywhere, it has no non-vanishing regular solution. For a non-trivial solution, there must be a

region of space where there exists an inhomogeneous term acting as a source.

Note, however, that the general solution holds at any point where there is no source. The effect of sources is

encoded in the coefficients Alm and Blm.

When γ(r) = k2 > 0, we get the radial part of the Helmholtz equation in spherical coordinates:

d2rRl(r) +
2

r
drRl(r) +

(

k2 − l(l + 1)

r2

)

Rl(r) = 0

The substitutions Rl = ul/
√
r and x = kr readily transform it into:

d2xul(x) +
1

x
dxul(x) +

(

1 − (l + 1/2)2

x2

)

ul(x) = 0

which is a form of the Bessel equation. The solutions are the spherical Bessel functions of the first and second

(Neumann) kind, usually written as (see also Jackson’s Classical Electrodynamics, section 9.6):

jl(x) =

√

π

2x
Jl+1/2(x) = (−x)l

(

1

x

d

dx

)l(sinx

x

)

∼







xl x≪ (1, l)

1

x
sin(x− lπ/2) x≫ l

(0.49)

nl(x) =

√

π

2x
Nl+1/2(x) = − (−x)l

(

1

x

d

dx

)l
(cos x

x

)

∼















− 1

xl+1
x≪ (1, l)

−1

x
cos(x− lπ/2) x≫ l

(0.50)

Here are a few spherical Bessel and Neumann functions as plotted on Maple, with ρ = x:

The nl diverge at the origin and thus are excluded from any solution regular at the origin.

(Spherical) Bessel functions of the third kind, aka Hankel functions of the first and second kind, sometimes

come in handy: h
(1,2)
l (x) = jl(x) ± inl(x). One can express the general solution of the Helmholtz equation in

terms of the jl and nl, or in terms of the h
(1,2)
l .
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0.9 The Convective Derivative

It can happen that we wish to know how some quantity f(x, t) varies with time if x is a position x0 that moves at

velocity u = dtx. Then f(x0(t), t) becomes a function of t only, and we can take its ordinary (or convective/total)

derivative:

dtf(x0(t), t) = ∂tf +
[

dtx0 ·∇
]

f

= ∂tf + (u ·∇) f (0.51)

Using identities on the left of the inside front cover of Jackson, we see that if f is a scalar, (u ·∇) f = ∇ · (u f).
But if f is a vector,

dtf(x0(t), t) = ∂tf + u∇ · f − ∇× (u× f) (0.52)
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1 Review of Electrostatics

The first 11 sections (you can omit 1.12 and 1.13) of this chapter in Jackson should only be revision; little is done

there that you shouldn’t have seen before (presumably...). Therefore, I will assign it for you to read carefully, and

will only go over the salient points here.

1.1 Electrostatic Field (sections J1.1–J1.4)

The Coulomb electric field, whose source is a point-charge q, located at position x′ with respect to an arbitrarily

chosen origin, is given by:

E(x) = ke q
x− x′

|x− x′|3 (1.1)

where x − x′ is the distance vector from the source at x′ to the observation (or field) point x, In SI units, the

Coulomb constant ke = 1/4πǫ0 = 8.99 × 109 N · m2/C2; in CGS units it is simply equal to 1. In the first seven

chapters of these notes, whenever I deviate from writing the general ke, I will adopt SI units as is done in the first

ten chapters of Jackson.

The electric field obeys the principle of superposition. When the source is a collection of N point-charges qi
sitting at their respective positions xi, their electric fied at x is:

E(x) = ke

N
∑

i=1

qi
x− x′

i

|x− x′
i|3

This is easily extended to continuous source charge distributions. We only give the expression for a distribution

extending over a volume:

E(x) = ke

∫

volume

ρ(x′)
x− x′

|x− x′|3 d
3x′ (1.2)

where ρ is the charge density in the distribution. Note that only Cartesian components can be used in the integral,

because only then are the unit vectors in x− x′ constant with respect to integration, so that they can be pulled out

of the integral. The remaining three integrals can then be evaluated in any coordinate basis you wish.

If a charge Q is placed at the observation point x, it experiences a force F = QE due to the electric field,

whatever the source of the field may be.

Note also that you can always write a discrete distribution of N point-charges at positions xi as:

ρ(x) =

N
∑

i=1

qi δ(x− xi)

The Coulomb field, as well as any electric field, satisfies Gauss’ law in differential form:

∇ ·E = 4πke ρ (= ρ/ǫ0 in SI units) (1.3)

or, via the divergence theorem, in the equivalent integral form:

∮

surface

E · da = 4πke qin (1.4)

where qin =
∫

ρ(x′) d3x′ is the total net charge enclosed by the surface.

The field of any static charge distribution can be written as a superposition of Coulomb fields. We call such

fields electrostatic.
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1.2 Scalar Potential (sections J1.5–J1.7)

Because it is a central field, the Coulomb field has vanishing curl. Therefore, by the superposition principle, all

electrostatic fields satisfy ∇ × E = 0 everywhere. This is equivalent to saying that
∮

E · dl = 0 for any closed

integration path.

Because ∇ × E = 0 for any electrostatic field E, there exists associated with this vector field a scalar field

Φ(x) such that E = −∇Φ. From the fundamental theorem for gradients (section 0.3):

∫ b

a
E · dl = −

∫ b

a
(∇Φ) · dl = Φ(a) − Φ(b) (1.5)

Therefore, the electrostatic potential at any point P is Φ(P ) = −
∫ P
O E · dl, where O is an arbitrary reference

point, usually chosen where we want the potential to vanish.

The Coulomb potential of a point-charge q is Φ(x) = keq/|x− x′|.
The potential Φ, like the field E, obeys the superposition principle. Then the potential of a localised charge

distribution ρ is:

Φ(x) = ke

∫

ρ(x′)

|x− x′| d
3x′ (1.6)

where the reference point is taken at infinity, hence the restriction to localised distributions.

Combining E = −∇Φ with Gauss’ law yields the Poisson equation:

∇2Φ = − 4πke ρ (1.7)

In vacuum, this becomes the Laplace equation, ∇2Φ = 0.

1.3 Matching Conditions on Electrostatic E and Φ

Let n̂ be a unit vector normal to the boundary of some volume, directed from the “in” region to the “ out” region.

The electrostatic-field component tangent to any surface is continuous across the surface:

(Eout −Ein)× n̂ = 0 (1.8)

For conductors, on the other hand, the normal component is discontinuous when there is a local surface charge

density σ:

(Eout − Ein) · n̂ = = 4πke σ (1.9)

and the local field due to σ has magnitude 2πkeσ, so that the total field has to jump by 4πkeσ across the surface.

The potential is continuous across the boundary of a conductor, but its gradient in the direction normal to the

surface inherits the discontinuity in E:

∂nΦout − ∂nΦin = − 4πke σ (1.10)

where the normal derivative , ∂nΦ = (∇Φ) · n̂, is evaluated at the surface.

For non-conductors, we will have to be a bit careful (see chapter 4 in Jackson) with the normal components.
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1.4 Boundary-Value Problem with Green Functions; Uniqueness of a Solution (sections J1.9–

J1.10)

In realistic electrostatic problems, we rarely know the whole charge distribution that produces the potential ob-

served at a point. What we most often do know (and often can control) is the potential over specific surfaces

such as conductors. These surfaces can enclose regions with or without charge inside. The proper approach then

involves solving the Poisson or Laplace equation, subject to boundary conditions (B.C.).

There are two very important questions that must be answered:

• What kind of information do we need to supply in order to obtain a solution to the Poisson equation?

• If we find a solution, is it unique?

1.4.1 Uniqueness of the solution

It is convenient to address the first question before the second: is a solution of the Poisson equation that satisfies

boundary conditions (B.C.) on a closed surface unique?

Suppose there exist two solutions, Φ1 and Φ2, of Poisson’s equation that satisfy the same B.C., on a closed

surface. Define Φ3 ≡ Φ2 − Φ1. From Green’s first identity (eq. 0.6) with f = g = Φ3, we have:
∫

volume

[Φ3∇2Φ3 + (∇Φ3)
2] d3x′ ≡

∮

surface

Φ3 ∂n′Φ3 da
′

The surface integral is zero because either Φ3 = 0 (because we have specified the potential) or ∂nΦ3 = 0 on

the surface (because we have specified the normal derivative). Also, ∇2Φ3 = 0 inside the volume. Therefore,
∫

(∇Φ3)
2d3x = 0, which can only be true if ∇Φ3 = 0 inside the volume, so that Φ3 is a constant there. Then,

if Φ3 = 0 on the surface, it vanishes everywhere inside, whereas Φ3 can be a non-zero constant inside if ∂nΦ is

specified on the surface.

We conclude that Φ1 = Φ2 inside (up to a possible irrelevant additive constant), and that the electrostatic

field is uniquely determined. The importance of this result cannot be exaggerated. It means that any function that

satisfies Poisson’s equation and the B.C. is the solution, no matter how it was found! It also means that if Φ is

specified on the surface, its normal derivative is also determined and cannot be specified arbitrarily; if it is ∂nΦ
that is specified, then we lose almost all control over Φ which is determined up to a constant.

1.4.2 Solution of boundary-value problems with Green functions (J1.8–10)

To answer the first question, we introduce functions G(x,x′), called Green functions.

A Green function G for a linear differential operator L is defined as a solution of the equation LG(x,x′) =
−4πδ(x − x′), where x and x′ are two points in the manifold on which the functions are defined. Thus, in

3-dimensional space, the Green function for the Laplacian satisfies:

∇2G(x,x′) = − 4πδ(x − x′) (1.11)

Now take f = Φ (Φ is the potential) and g = G in Green’s second identity (eq. (0.7)):
∫

volume

(

Φ∇2G−G∇2Φ
)

d3x′ ≡
∮

surface

(

Φ ∂n′G − G∂n′Φ
)

da′

After using the Poisson equation in the second volume integral we obtain:
∫

V
− 4π

[

Φ(x′)δ(x − x′) + keρ(x
′)G(x,x′)

]

d3x′ =

∮

S

(

Φ ∂n′G − G∂n′Φ
)

da′
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If x lies outside the arbitrary volume, the first volume integral is zero. If x lies inside the volume, we can extend

the first volume integral to cover all space without changing anything, and integrate. Rearranging then yields:

Φ(x) = ke

∫

V
ρ(x′)G(x,x′) d3x′ +

1

4π

∮

S

(

G∂n′Φ − Φ ∂n′G
)

da′ (1.12)

where ρ is the charge density and S is the surface boundary of volume V . The normal derivatives are to be

evaluated on S before integrating.

You may think that we have answered the first question: specifying ρ over a volume and Φ and its normal

derivative as B.C. over the surface enclosing the volume gives the potential everywhere via the above equation.

There is a subtle and important point here, however: as we have seen above, Φ and ∂nΦ are not independent on

the surface. So we are not free to specify them both arbitrarily as such values will in general be inconsistent. We

may only specify one or the other! In that sense, our expression for Φ should not be considered a solution yet, but

just an integral equation. After all, the surface integrals come from an identity.

Specifying Φ on the surface gives Dirichlet B.C., whereas specifying ∂nΦ gives Neumann B.C. In the case

of conducting surfaces, the latter are equivalent to specifying the surface charge density σ = −ǫ0∂nΦ.

How do we get a solution for Φ then? In principle, this is simple. To a particular solution of the defining

equation (1.11), we can add any function F (x,x′) that satisfies the Laplace equation: ∇2F (x,x′) = 0 , to obtain

the most general Green function for the Laplacian. “All” we have to do is find a F that eliminates one of the two

surface integrals.

For instance, uppose we wish to specify Φ freely on the surface S (Dirichlet problem). Then we should have

GD(x,x
′) = 0 ∀x ∈ S. The solution for Φ would then be:

Φ(x) = ke

∫

V
ρ(x′)GD(x,x

′)d3x′ − 1

4π

∮

S
Φ(x′)∂n′GD(x,x

′) da′ (1.13)

This means that inside a charge-free region, the potential is determined once its values on the boundary of the

region are specified.

Note also that if the volume is all space, the surface integral at infinity vanishes if Φ(x) → 0 at least as

fast as 1/|x − x′| (since da ∼ R2). In that case we can take F = 0 and, comparing eq. (1.11) and (0.18),

GD(x,x
′) = 1/|x− x′| because this already satisfies GD = 0 at infinity, and we end up with our earlier Coulomb

expression: Φ(x) = ke
∫

d3x′ρ(x′)/|x − x′|.
Similar considerations apply with Neumann B.C., ie. when ∂nΦ is known on the boundary. Then, if the volume

is bounded by two surfaces, one closed and finite and the other at infinity (see Jackson p. 39), we have:

Φ(x) = ke

∫

V
ρ(x′)GN(x,x

′) d3x′ +
1

4π

∮

S
GN(x,x

′)∂n′Φ(x′) da′ (1.14)

So our first question has now been answered: supply the charge density inside a volume, together with Dirichlet

or Neumann B.C. on the boundary of the volume; then Φ inside the volume can be found.

Incidentally, a useful property of Dirichlet Green functions for the Laplacian (or any other differential operator)

follows directly by taking f = G(x,x′′) and g = G(x′,x′′) in Green’s second identity, eq. (0.7):
∫

volume

[

G(x,x′′)∇2G(x′,x′′)−G(x′,x′′)∇2G(x,x′′)
]

d3x′′ =

∮

surface

[

G(x,x′′) ∂nG(x
′,x′′)−G(x′,x′′) ∂nG(x,x

′′)
]

da′′

The right-hand side vanishes because G = 0 for Dirichlet B.C. on the boundary surface. Since the volume is

arbitrary, implementing the defining equation (1.11) for Green functions yields, :

GD(x
′,x) = GD(x,x

′) (1.15)

This symmetry of Dirichlet Green functions in their two arguments corresponds to the interchangeability of source

point x′ and observation point x. It provides a good check on candidate Green functions for a Dirichlet problem.
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1.5 Electrostatic Energy (section J1.11)

1.5.1 Potential (interaction) energy

If a point-charge q is sitting at position x where there exists an electrostatic potential Φ(x), work had to be done to

bring it there from infinity. This work is W = qΦ(x), and is done by an external agent against the force associated

with the potential acting on the charge q.

We know that the potential produced at a point xj (where there is no charge) by a collection of j − 1 discrete

point-charges is:

Φ(xj) = ke

j−1
∑

i 6=j

qi

|xi − xj |

Then, to bring one extra charge, qj , to xj from infinity requires an energy qjΦ(xj). By virtue of being located at

xj in the potential of the other j−1 charges, qj now has a potential energy equal to the work done by the external

agent to bring it there, namely qjΦ(xj). So the total work needed to build a configuration of N charges, each at

point xj, is:

W =

N
∑

j=1

N
∑

i<j

ke qj

qi
|xj − xi|

=
1

2

N
∑

j=1

N
∑

i=1

i6=j

ke
qjqi

|xi − xj |

=
1

2

N
∑

j=1

qj Φ(xj) (1.16)

where Φ(xj) is the potential at xj from all charges other than the charge sitting there.

By the same token, W is the potential energy of the distribution — in other words, the energy required to

assemble it from charges initially located at infinity.

For a continuous volume distribution, this generalises to:

W =
ke
2

∫∫

V

ρ(x) ρ(x′)

|x− x′| d3xd3x′ =
1

2

∫

ρ(x)Φ(x) d3x (1.17)

except that there is a subtle but very important difference with the potential energy of a discrete distribution. In

eq. (1.16), the potential at the points where the charges are sitting does not contribute, whereas in eq. (1.17) the

integral receives contributions from the potential at all points in the volume. The latter, but not the former, includes

the “self-energy” of the charge distribution.
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1.5.2 Energy density in an electric field

In terms of the field, we have, in SI units:

W =
1

2

∫

ρ(x)Φ(x) d3x (1.18)

=
ǫ0
2

∫

(∇ ·E)Φ(x) d3x

=
ǫ0
2

(∫

∇ · (EΦ)d3x −
∫

E ·∇Φd3x

)

=
ǫ0
2





∮

S→∞

(EΦ) · da +

∫

E2 d3x





=

∫

ǫ0
2
E2 d3x (1.19)

Note that even if if the initial volume integral in effect includes only the region where ρ 6= 0, starting on the third

line, it must extend over all space so as to capture all the energy! In this form, W can be interpreted as the energy

stored in the field, with ǫ0E
2/2 the local energy density. Note that this is always positive, and that, therefore, the

energy given by eq. (1.17) must also be positive, something which is not obvious there. As mentioned above, the

apparent discrepancy with the energy of a discrete distribution, which can be negative, stems from the fact that the

latter cannot include the self-energy of the charges. See also the example involving two point-charges on p. 42 in

Jackson.

Because the electrostatic energy density is quadratic in the field, it does not obey the superposition principle;

only the field does. To find the total energy density from more than one field contribution, you must first add the

fields before using ǫ0E
2/2.

Finally, we define the capacitance of a conductor as the amount of charge per unit potential that sits on it, when

all other conductors are maintained at zero potential. If this latter condition is not met, the relationship between

charge and potential, while still linear, is more complicated:

Qi =
N
∑

j=1

CijVj

where Vj is the potential on the jth conductor, and the Cij (i 6= j) are called induction coefficients.
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2 Boundary-Value Problem in Electrostatics

2.1 Method of Images and Associated Green Functions (sections J2.1, J2.6)

One very famous method for finding solutions of the Laplace equation replaces conducting surfaces (or equipo-

tentials) by “virtual” charge distributions that, together with actual charges also present, generate a potential that

satisfies the specified Dirichlet B.C.

This so-called method of images can be viewed as a clever use of the uniqueness theorem for electrostatic

potentials. But there are no hard and fast rules for finding image charges and their location, except that they should

always be placed outside the region where one wants the potential, otherwise they would change the problem. It is

mostly a matter of guessing, so the method only works for simple enough distributions, such as a point-charge in

the example below and in Jackson. If one can find the appropriate image charges and where they are located, then

quantities other than the potential can also be calculated with little difficulty:

• the charge density induced on the conducting surface, via σ = −∂Φ/∂n/4πke;

• the force between the actual charge distribution and the conducting surface, which is simply the force be-

tween the real and image charges;

• the energy of the original and induced charge configuration, which can be taken to be the energy of the real

plus image configuration so long as the energy of the fields outside the region of interest is not included!

The simplest image problems involve a point-charge q in the presence of various conducting objects. Ob-

viously, the point-charge redistributes charge on the conductor so that its surface remains an equipotential. An

elementary example is with a grounded conducting plate, where an image charge −q placed behind the plane op-

posite q and at equal distance will produce the required B.C. on the plane. Here, the volume is bounded by the

plane and an hemisphere at infinity on the side of the real charge.

Less trivial is Jackson’s first worked-out example involving a grounded conducting sphere of radius a, the only

one we will take up here using instead our Dirichlet solution (1.13) that, as pointed out (somewhat cryptically) in

Jackson’s section 2.6, has an interesting connection with the method of images. Indeed, we have already noted in

section 1.4 above that the Dirichlet Green function for the Laplacian can be written:

GD(x,x
′) =

1

|x− x′| + F (x,x′)

where x (r = |x| ≥ a) denotes the position of the observation point, and F is any function that satisfies

∇2F (x,x′) = 0. This means that within the volume between the sphere and infinity, G can be viewed as the

electrostatic potential due to a point-charge q = 1/ke lying at some point x′ outside the sphere, plus another po-

tential due to a source lying at some point x′′ inside the sphere, since that latter potential will indeed satisfy the

Laplace equation outside the sphere. This is precisely how the method of images works for a point-charge q in the

presence of an object with B.C. specified on its surface!

At r = a we can write:

GD(x = an̂,x′) =
1

a

√

1 +
r′2

a2
− 2

r′

a
n̂ · n̂′

+
g

r′′

√

1 +
a2

r′′2
− 2

a

r′′
n̂ · n̂′′

where n̂ = x/r, etc., and g and x′′ = r′′n̂′′ are to be fixed by the “‘universal” B.C.: GD(x = an̂,x′) = 0. By

inspection, we see that if this B.C. is to be satisfied for n̂ and n̂′ in arbitrary directions, we must have n̂ · n̂′ = n̂ · n̂′′

(n̂′ and n̂′′ collinear), 1/a = −g/r′′, and r′/a = a/r′′, or:

g = − a

r′
, r′ r′′ = a2 (2.1)
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As expected, r′′ < a if r′ > a. Our Dirichlet Green function has been found:

GD(x,x
′) =

1
√

r2 + r′2 − 2rr′ cos γ
− 1
√

r2r′2/a2 + a2 − 2rr′ cos γ
(2.2)

where cos γ = n̂ · n̂′. GD is symmetric in x and x′, as it should be, and it vanishes at r = a, as required for a

Dirichlet problem.

The surface integral in (1.13) does not contribute for a grounded conductor. Writing the volume integral as:

∫

ρ(y)GD(x,y) d
3y

and inserting ρ(y) = q δ(y − x′) yields the potential exterior to the grounded conducting sphere:

Φ(x) = keq





1
√

r2 + r′2 − 2rr′ cos γ
− 1
√

r2r′2/a2 + a2 − 2rr′ cos γ



 (2.3)

The surface charge density on the sphere is easily obtained from:

σ = − 1

4πke

∂Φ

∂r

∣

∣

∣

r=a
= − q

4πa2

[

a(r′2 − a2)

(r′2 + a2 − 2ar′ cos γ)3/2

]

(2.4)

Green functions are much more powerful than the method of images! The Green function we have found is

valid for a point-charge in the presence of any sphere and it does not care which particular B.C. for Φ is specified

on the sphere. When Φ(r′ = a) 6= 0, all we have to do is add the surface integral in eq. (1.13); the volume integral

remains the same since it is independent of the B.C. on Φ. Noting that n̂′ for the exterior volume points in the

negative radial direction, the partial derivative of the Green function in the surface integral is simply:

∂GD

∂n′
= − ∂GD

∂r′

∣

∣

∣

r′=a
= − r2 − a2

a (r2 + a2 − 2ar cos γ)3/2

In our example, the potential in the presence of a point-charge outside the sphere, with Φ(a, θ, φ) specified on the

sphere, is:

Φ(x) = keq





1
√

r2 + r′2 − 2rr′ cos γ
− 1
√

r2r′2/a2 + a2 − 2rr′ cos γ





+
1

4π

∫

Φ(r′ = a)
r2 − a2

a (r2 + a2 − 2ar cos γ)3/2
da′ (2.5)

If this is evaluated in spherical coordinates centered on the sphere, then Φ(r′ = a) = Φ(a, θ′, φ′), da′ = a2dΩ′,

and cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′).

As a bonus, this easily generalises to arbitrary charge distributions outside the sphere, simply by evaluating the

volume integral in eq. (1.13) with the above Green function unchanged. We can even remove any charge outside

the sphere, and be left with:

Φ(x) =
1

4π

∫

Φ(a, θ′, φ′)
a(r2 − a2)

(r2 + a2 − 2ar cos γ)3/2
dΩ′ (2.6)

which is the solution to the Laplace equation, valid outside the sphere. To use this expression, we don’t need to

know the charge distribution inside the sphere; all we need is Φ(a, θ′, φ′) on its surface.
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2.2 Boundary-Value Problems with Azimuthal Symmetry (section J3.3)

There is an important class of boundary-value problems in which the potential is independent of the azimuthal

angle φ. They are said to exhibit azimuthal symmetry (not to be confused with cylindrical symmetry). When

m = 0, the general spherical solution of the Laplace equation, eq. (0.46), has no dependence on the azimuthal

angle, and it collapses to:

Φ(r, θ) =
∞
∑

l=0

[

Al r
l + Bl r

−(l+1)
]

Pl(x) (x = cos θ) (2.7)

with the Al and Bl determined by matching and boundary conditions.

2.2.1 A clever method to find potentials with azimuthal symmetry (pp. J102-103)

If the observation point lies on the symmetry axis (θ = 0 or π), eq. (2.7) becomes:

Φ(r, 0) =
∞
∑

l=0

[

Al r
l + Bl r

−(l+1)
]

The coefficients Al and Bl in eq. (2.7) are independent of the location of the observation point. Therefore, if we

can obtain the on-axis potential by some other means, all we have to do is expand it in a/r and r/a, where a is a

characteristic length for the problem, and read off the coefficients from the previous expression. (see pp. 102-103

in Jackson for examples).

2.2.2 An important expansion for 1/|x − x′|

We can also use the same reasoning to obtain a very important result. If we ask for the potential, at an observation

point x, of a point-charge q = 1/ke situated at position x′, we know that the answer is the Coulomb expression

Φ = 1/|x−x′|. This expression is coordinate-free, but nothing prevents us from working in a spherical coordinate

basis and orienting the axes so that q lies on the +z-axis, thus creating a situation with azimuthal symmetry. Then,

from eq. (2.7):

1

|x− x′| =
∞
∑

l=0

(

Al r
l +Bl r

−(l+1)
)

Pl(cos θ)

Note that the angle γ between x′ and x is now the spherical coordinate θ (see figure J3.3).

First, let r′ < r < ∞. Then Al = 0 ∀ l since Φ → 0 as r → ∞, Then use our little trick and put the

observation point also on the +z-axis. We have:

1

|x− x′| =
1

r − r′
=

1

r

(

1− r′

r

)−1

≈ 1

r

[

1 +
r′

r
+

(

r′

r

)2

+ . . .

]

But
∞
∑

l=0

Bl r
−(l+1) =

1

r

[

B0 +
B1

r
+
B2

r2
+ . . .

]

By inspection of the two expansions, Bl = r′l, so that when x′ is along the z-axis, with r > r′:

1

|x− x′| =
1

r

∞
∑

l=0

(

r′

r

)l

Pl(cos θ) ∀ θ! θ′ = 0

When r′ = 0, 1/|x− x′| = 1/r, as expected.
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We can also use the same reasoning to show that, for r < r′, Al = 1/r′l+1
, Bl = 0, and:

1

|x− x′| =
1

r′

∞
∑

l=0

( r

r′

)l
Pl(cos θ) r < r′, θ′ = 0

Now what happens when x′ lies off the z-axis, removing the azimuthal symmetry? Very little, actually: just copy

the above expressions to coordinate-free form by noting that γ is still the angle between x′ and x, ie. x′ · x =
rr′ cos γ. Thus, cos θ → cos γ.

Finally, the two expressions for r > r′ and r < r′ can be combined into one, which is the general expansion

sought:

1

|x− x′| =
∞
∑

l=0

rl<

rl+1
>

Pl(cos γ) (2.8)

where r< is the smaller of r and r′, and r> is the larger of r and r′.

Apart from a choice of origin, this expression is coordinate-free, but often we wish to work in spherical

coordinates. We must invoke the Addition Theorem for spherical harmonics proved in section J3.6, using

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′):

Pl(cos γ) =
4π

2l + 1

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ) (2.9)

to write an expansion with completely factorised terms, useful when integrating over primed or unprimed coordi-

nates:

1

|x− x′| = 4π

∞
∑

l=0

l
∑

m=−l

1

2l + 1

rl<

rl+1
>

Y ∗
lm(θ′, φ′)Ylm(θ, φ) (2.10)

Example 2.1. Application to a volume integral of the field (pp. J148-149)

The expansion of 1/|x − x′| in terms of Legendre polynomials can be put to work to calculate the

integral of the electric field over a sphere of radius R:

∫

r<R
E(x) d3x = −

∫

r<R
∇Φ(x) d3x

= −
∮

r=R
R2Φ(x) n̂ dΩ

= − keR
2

∫

d3x′ ρ(x′)

∮

r=R

n̂

|x− x′| dΩ (2.11)

where the second line is obtained from the second theorem on the right in Jackson’s front cover. As

usual n̂ = x/R is a unit vector out of the sphere centered at the origin, which reads:

n̂ = r̂ = i sin θ cosφ + j sin θ sinφ + k cos θ

(2.12)

=

√

2π

3

(

i (Y ∗
1,−1 − Y ∗

11) − j i (Y ∗
1,−1 + Y ∗

11) + k
√
2Y ∗

10

)

The purpose of the last line was to show that n̂ can be expressed as a linear combination of Y ∗
1m.

Therefore, when we insert expansion (2.10) in the surface integral, orthogonality eliminates all terms
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with l 6= 1, leaving the same combination of spherical harmonics as in eq. (2.12), but with (θ′, φ′) as

arguments, that is: n̂′ = x′/r′. We are left with:

∫

r<R
E(x) d3x = − 4πke

R2

3

∫

r<
r2>

n̂′ ρ(x′) d3x′

= − 4πke
R2

3

∫

r′<R

r′

R2
n̂′ ρ(x′) d3x′ − 4πke

R2

3

∫

R<r′<∞

R

r′2
n̂′ ρ(x′) d3x′

(2.13)

Two interesting possibilities can occur:

a) The charged source lies entirely outside the sphere. Then the first integral vanishes, and compari-

son with eq. (1.2) reveals that the second is just −RE(0)/4πke , yielding:

∫

r<R
E(x) d3x =

4πR3

3
E(0) (2.14)

Therefore, the average of an electrostatic electric field over a sphere containing no charge is equal

to the value of the field at its centre.

b) The sources lie entirely within the sphere. In this case, the second integral vanishes, and:

∫

r<R
E(x) d3x = − 4πke

3

∫

x′ ρ(x′) d3x′ (2.15)

where n̂′ = x′/r′ has been used.

We shall see in the next chapter what meaning can be ascribed to the integral on the right in this

last equation.

2.3 Expansion of Green Functions in Spherical Coordinates (section J3.9)

Go back to our solution of the Dirichlet problem with Green functions:

Φ(x) = ke

∫

ρ(x′)GD(x,x
′)d3x′ − 1

4π

∮

S
Φ(x′) ∂n′GD(x,x

′) da′

We did obtain the Dirichlet Green function for a sphere, eq. (2.2), but it may not lead to tractable integrals.

Fortunately, it is possible to find expansions for Dirichlet Green functions with factorised terms, that vanish on

spherical or cylindrical surfaces. Here, we only consider the former.

In spherical coordinates, Green functions for the Laplacian operator all satisfy:

∇2
xG(x,x

′) = −4πδ(x − x′)

= − 4π

r2
δ(r − r′)

∞
∑

l=0

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ) (2.16)

where eq. (0.44) has been invoked.

We shall look for a separable expansion of the form:

G(x,x′) =

∞
∑

l=0

l
∑

m=−l

gl(r, r
′)Y ∗

lm(θ′, φ′)Ylm(θ, φ)
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Inserting into eq. (2.16), we immediately find that gl(r, r
′) must satisfy the radial equation:

1

r2
dr
(

r2 gl(r, r
′)
)

− l(l + 1) gl(r, r
′) = − 4π δ(r − r′)

Consider the case r 6= r′. Then gl(r, r
′) satisfies the Laplace radial equation whose solutions are given by (0.46):

gl(r, r
′) =

{

A(r′) rl + B(r′) r−l−1 r > r′

A′(r′) rl + B′(r′) r−l−1 r < r′

Now, at r = r′, drgl has a discontinuity equal to −4π/r′2. To see this, integrate the radial differential equation

over r from r′ − ǫ to r′ + ǫ. Continuity of gl at r = r′ eliminates the integral of the last term on the left, yielding

the result quoted.

Implementing the continuity of gl and the discontinuity in drgl at r = r′ allows us (EXERCISE) to eliminate

A and B:

A = A′ +
4π

2l + 1

1

r′ l+1
, B = B′ − 4π

2l + 1
r′ l

We determine A′ and B′ for the most important case of a volume enclosed within two concentric spheres of radius

a and b, (a < b). Since we want to solve the Dirichlet problem, G(x,x′) must vanish on the spheres, so that

gl(r, r
′) = 0 for both r = a and r = b. This can be used to find B′(r′) and A′(r′). Enforcing gl(a, r

′) = 0 in the

region r < r′ yields B′ = −a2l+1A′.

In the r > r′ region, the radial Green function is then:

gl(r, r
′) = A′(r′) rl

(

1 − a2l+1

b2l+1

)

− 4π

2l + 1

(

rl

r′l+1
− r′l

rl+1

)

Implementing gl(b, r
′) = 0 leads to (EXERCISE):

A‘(r′) =
4π

(2l + 1) [1− (a/b)2l+1]

(

1

r′l+1
− r′l

b2l+1

)

Then switching r and r′ and noting that gl(r, r
′) = gl(r

′, r), there comes:

gl(r, r
′) =

4π

(2l + 1) [1− (a/b)2l+1]

(

rl< − a2l+1

rl+1
<

)(

1

rl+1
>

− rl>
b2l+1

)

The complete expansion for Dirichlet Green functions in spherical coordinates becomes:

GD(x,x
′) = 4π

∞
∑

l=0

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ)

(2l + 1) [1− (a/b)2l+1]

(

rl< − a2l+1

rl+1
<

)(

1

rl+1
>

− rl>
b2l+1

)

(2.17)

Two important cases:

GD(x,x
′) = 4π

∞
∑

l=0

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ)

(2l + 1)
rl<

(

1

rl+1
>

− rl>
b2l+1

)

(a = 0) (2.18)

GD(x,x
′) = 4π

∞
∑

l=0

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ)

(2l + 1)

1

rl+1
>

(

rl< − a2l+1

rl+1
<

)

(b→ ∞) (2.19)

The first expression is useful when finding the potential inside a sphere; the second one, outside a sphere. As

expected, when a = 0 and b→ ∞ we recover expansion (2.10).
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When 0 ≤ r ≤ b (interior case) we can immediately rewrite (EXERCISE) the term in the surface integral in

eq. (1.13) as:
∞
∑

l=0

l
∑

m=−l

[
∫

Φ(b, θ′, φ′)Y ∗
lm(θ′, φ′) dΩ′

]

(r

b

)l
Ylm(θ, φ)

where Φ(b, θ′, φ′) is the potential specified on the surface r′ = b. The normal derivative of the Green function on

the surface, ∂n′G = ∂r′G
∣

∣

∣

r′=b
, has been evaluated for r< = r and r> = r′ since r < r′ = b. Also, the surface

element on a sphere of radius b is da′ = b2dΩ′.

This, however, is no other than the interior solution of the Laplace equation we obtained from eq. (0.46) by

putting Blm = 0: a nice check on our calculations! And we have found another way of calculating the Alm

coeffcients.

Now, for simplicity, we concentrate on a Dirichlet problem in which there is no surface term in eq. (1.13) and

only the volume integral contributes. We must express the charge density ρ(x′) in spherical coordinates. Very

often, δ-functions can be used to localise the source.

Example 2.2. Charged line inside a grounded sphere (J3.10)

Consider a uniform line of total charge Q on the z axis inside and along the whole diameter of a

hollow grounded sphere of radius b. The appropriate expression for the volume charge density is:

ρ(x′) =
λ

2πr′2
[

δ(cos θ′ − 1) + δ(cos θ′ + 1)
]

where the linear charge density is λ = Q/2b. The factor in front of the δ-functions is chosen so that

the volume integral of the charge density over all space gives Q. Thanks to the azimuthal symmetry

of the problem, only the m = 0 terms in the first equation of eq. (2.18) contribute. The spherical

harmonics Yl0 are just Legendre polynomials multiplied by
√

(2l + 1)/4π. After integrating over all

solid angles, we find for the potential inside the sphere:

Φ(r, θ) = ke

∫

ρ(x′)GD(x,x
′) r′2 sin θ′ dr′ dθ′ dφ′

=
keQ

2b

∞
∑

l=0

[

1 + (−1)l
]

Pl(cos θ)

∫ b

0
rl<

(

1

rl+1
>

− rl>
b2l+1

)

dr′ (2.20)

where Pl(1) = 1 and Pl(−1) = (−1)l have been used. The radial integral requires some care. First,

we evaluate it for l = 0, breaking up the interval into a part where r′ < r and a part where r′ > r.

The integral is ln(b/r).

Then the radial integral is evaluated for l 6= 0, as in eq. (J3.134) in Jackson. We note that the result is

indeterminate when l = 0, which is why we had to evaluate the l = 0 term on its own. The result is

eq. J3.136:

Φ(x) =
keQ

b

[

ln b/r +

∞
∑

n=1

4n+ 1

2n (2n+ 1)

[

1 − (r/b)2n
]

P2n(cos θ)

]

Another interesting example involving a charged ring inside a grounded sphere can be found in Jackson.
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3 Multipole Expansion and Ponderable Media

3.1 The Multipole Expansion (section J4.1)

3.1.1 Multipole moments

In the absence of boundary conditions other than the one at infinity, the potential outside a sphere that encloses

a localised charge distribution ρ(x) is often most usefully expressed using the expansion in spherical coordinates

obtained in eq. (2.10), with r< = r′ and r> = r:

Φ(x) = ke

∫

ρ(x′)

|x− x′|d
3x′

= 4πke

∞
∑

l=0

l
∑

m=−l

1

2l + 1

qlm
rl+1

Ylm(θ, φ) (3.1)

where

qlm =

∫

Y ∗
lm(θ′, φ′) r′

l
ρ(x′) d3x′ (3.2)

are constant coefficients called spherical multipole moments. They inherit a property of the spherical harmonics:

ql,−m = (−1)mq∗lm (3.3)

The second line of eq. (3.1) is the famous multipole expansion. Quite often, the first few non-vanishing terms

provide a description of the potential accurate enough for most purposes.

If, on the other hand, we go back to the coordinate-free expansion (2.8) of 1/|x−x′| and put cos γ = x·x′/rr′,
the potential immediately becomes:

Φ(x) =
ke
r

∫

ρ(x′) d3x′ +
ke
r3

∫

x · x′ ρ(x′) d3x′ +
ke
r5

1

2

∫

[

3(x′ · x)2 − (x · x)(x′ · x′)
]

ρ(x′) d3x′ + . . .

This expression is the multipole expansion in coordinate-free notation. Now define the electric dipole mo-

ment:

p =

∫

x′ρ(x′) d3x′ (3.4)

and the symmetric, traceless electric quadrupole moment tensor, both in Cartesian coordinates:

Qij =

∫

(3x′ix
′
j − δijr

′2)ρ(x′) d3x′ (3.5)

If (and only if!) we work in Cartesian coordinates, we can then rewrite the coordinate-free expansion as:

Φ(x) =
keq

r
+ ke

x · p
r3

+
ke
2

xixj

r5
Qij + . . . (3.6)

where q is the total charge of the distribution and a sum over repeated indices is implied. This last expression

gives all its meaning to the term “multipole expansion”. The potential can be written as the sum of the potentials

of a monopole, of a dipole, of a quadrupole, etc. But we must remember that it is valid in Cartesian coordinates

only, although we are free to evaluate any one rectangular component of the dipole vector or quadrupole tensor in

whatever coordinates we wish.

While the spherical moments qlm are written above in spherical coordinates, writing them in a Cartesian basis

is also very instructive. We use:

e±iφ′

=
1

r′ sin θ′
(x′ ∓ iy′), cos θ′ =

z′

r′
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to write:

q00 =
1√
4π

q q10 =

√

3

4π
pz q1,±1 = ∓

√

3

8π
(px ∓ i py)

q20 =

√

5

16π
Q33 q2,±1 = −

√

5

24π
(Q13 ∓ iQ23) q2,±2 =

√

5

96π
(Q11 ∓ 2iQ12 − Q22)

(3.7)

where q is the total charge in the distribution.

A nice feature of the multipole expansion is that it breaks the source into physically intuitive pieces (monopole,

dipole, quadrupole, and so on). Because Maxwell’s equations for electromagnetism are linear in the fields, the

potential is the sum of the potentials of each of these pieces. The same holds for weak gravitational fields: a mass

distribution can be resolved into monopole, quadrupole, . . . moments (why is there no dipole moment?), each of

which has its own characteristic field. But this is no longer true for strong gravitational fields which obey the

nonlinear equations of Einstein’s theory of gravitation.

It is important to remember that r in eq. (3.6) is the distance from an origin inside the distribution to the

observation point x as if the monopole, dipole, quadrupole, etc., were located at that origin. If we wish to put the

origin somewhere else, say x0, without changing the moments, we must replace x by x− x0 and r by |x− x0|.
A spherical-multipole expansion of the electric field is easily obtained by differentiating each lm term in (3.1):

Elm =
4πke
2l + 1

qlm
rl+2

Ylm(θ, φ)

(

r̂ + θ̂ ∂θ lnYlm(θ, φ) + φ̂
im

sin θ

)

(3.8)

3.1.2 Calculating the multipole moments

Symmetric charge distributions can have very simple moments. Consider for instance ρ(r, θ), which has azimuthal

symmetry. Then in eq. (3.2) m = 0, and inspection of eq. (3.7) immediately yields px = py = 0, and:

pz = 2π

∫ ∫

r′
3
cos θ′ sin θ′ρ(r′, θ′) dr′ dθ′ (3.9)

Also, Q12 = Q13 = Q23 = 0, and Q11 = Q22. Qij being traceless, we must have Q11 = Q22 = −Q33/2 ≡
−eQ/2, where:

Q =
2π

e

∫ ∫

(3z′
2 − r′

2
) ρ(r′, θ′) r′

2
sin θ′ dr′ dθ′ (3.10)

is the electric quadrupole moment, with units of length squared. Finally, in eq. (3.6), xixjQij = [−(x2+y2)/2+
z2] eQ (EXERCISE), and if the observation point lies on the z-axis, only 2z2Q survives.

In general the multipole moment integrals depend upon the choice of origin. But the first non-zero moment is

independent of the choice of origin. This means that when you calculate that moment, and only that one, you are

at liberty to translate (but not rotate!) the axes if this results in an easier calculation. It is straightforward to show

that this applies to the quadrupole term when p = 0; just replace x′i by x′i + ai in the Cartesian expression for

Qij , and expand.

In problems with a point-charge distribution, you can always write ρ(x) =
∑

qiδ(x − x′
i), where x′

i is the

position vector of charge qi. The moment integrals must extend over all space, and in this case it is easiest to work

them out in Cartesian coordinates.

You can split any charge distribution into sub-distributions whose potentials add. In particular, a point-charge

distribution can often be split into sums of cancelling dipoles (by vector addition) plus something else which may

turn out to be much simpler than the original distribution.

The components, pi, of the dipole moment must go like charge times distance; the components, Qij , of the

quadrupole moment each must go like charge times distance squared. This serves as one check on your answers.

36



Lecture Notes on Graduate Electrodynamics 2020

3.1.3 Field of the electric dipole moment

The electric field associated with the dipole potential kep·x/r3 is also important, and we can derive it in coordinate-

free form:

Edip = −∇Φdip

= −ke [p ·∇]
( x

r3

)

=
ke
r3
[

3n̂ (n̂ · p) − p
]

(3.11)

where the third-from-last identity on the left of Jackson’s front cover has been invoked. If the dipole is oriented

along the z-axis, the familiar expressions for a dipole field are recovered.

Actually, this is not quite the whole story. Back in chapter 2, we derived eq. (2.15), an expression for the

integral of any electric field over a sphere when this sphere contains charge and there is no charge outside. We now

recognise the integral on the right-hand side of that equation as the dipole moment of the charge distribution:
∫

r<R
E(x) d3x = − 4π

3
ke p (3.12)

The problem is that if, for example, we integrate using eq. (2.12) the field of a dipole as given by eq. (3.11), the

angular integrations make all three components of the integral vanish (EXERCISE). So we arrive at p = 0, a

contradiction.

Well, the differentiation that leads to eq. (3.11) yields unambiguous results everywhere except at the position

of the dipole, here the origin. This means that to be consistent with eq. (3.12), we must add a term to our field

which vanishes everywhere except at the origin. Generalising to the field of a dipole located at some position x0,

and with n̂ pointing from x0 to x, we write:

Edip(x) = ke

[

3n̂ (n̂ · p) − p

|x− x0|3
− 4π

3
p δ(x − x0)

]

(3.13)

3.2 Energy of a Charge Distribution in an External Potential (section J4.2)

The interaction energy of a charge distribution with an external potential is:

W =

∫

ρ(x)Φext(x) d
3x

Unlike in eq. (1.17), there is no factor 1/2 since Φext is not the potential of the distribution!

Assuming that the potential varies slowly over the distribution, perform a Taylor expansion of the potential

around some chosen origin x = 0, with E(x) = −∇Φ(x):

Φext(x) = Φext(0) + x ·∇Φext

∣

∣

∣

0
+

1

2
xixj ∂i∂jΦext

∣

∣

∣

0
+ . . .

= Φext(0) − x ·Eext(0) − 1

6
(3xixj − r2δij) ∂iE

j
ext

∣

∣

∣

0
+ . . .

where the last term, r2 δij∂iE
j
ext(0) = r2 ∂jE

j
ext(0) = r2∇ · Eext

∣

∣

0
= 0, is introduced so that when the expansion

is inserted in the energy, we can write:

W = qΦext(0) − p ·Eext(0) − 1

6
Qij ∂iE

j
ext

∣

∣

∣

0
+ . . . (3.14)

This tells us that so far as interaction energy is concerned, the total charge of the distribution couples to the external

potential, its dipole moment to the external field, and its quadrupole tensor to the gradient of the external field.
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We can use our energy expansion to write the interaction energy of two dipoles at x1 and x2. From eq. (3.13),

this is:

W12 = −p1 ·E2(x1) = ke
p1 · p2 − 3(n̂ · p1)(n̂ · p2)

|x1 − x2|3
(3.15)

where x1 6= x2 and n̂ points from x2 to x1.

3.3 Electrostatics in Ponderable Media: Polarisation (section J4.3)

Consider a small volume ∆V of a medium that still contains a very large number of molecules of various type.

∆V may also contain a free charge density ρfree(x). Normally, over this volume the bound charges in each type

of molecule average out to zero; so do their electric dipole moments. Assuming that ∆V is located at a variable

macroscopically small, smeared “point” x′ and is small enough that any free ρ is uniform over it, we know that the

potential at some point x outside ∆V is:

∆Φ(x,x′) = ke
ρfree(x

′)∆V

|x− x′|

When an external field is applied to the molecules in ∆V , their average charge remains zero, but now the

average† total dipole moment per unit volume, or electric polarisation, P = N 〈p〉, no longer vanishes for a

given type of molecule with number density N . The field tries to orient the dipoles in its direction. Even when the

molecules have no intrinsic dipole moment, they acquire one under the influence of the field.

Now there is a new dipole contribution to the potential. It is given by the dipole term in the multipole expansion,

eq. (3.6), with x′ taken as the location of the multipole sources. That is:

∆Φ(x,x′) = ke

[

ρfree(x
′)

|x− x′| +
P(x′) · (x− x′)

|x− x′|3
]

∆V

= ke

[

ρfree(x
′)

|x− x′| + P(x′) ·∇′

(

1

|x− x′|

)]

∆V

= ke

[

ρfree(x
′)

|x− x′| − ∇′ ·P(x′)

|x− x′| + ∇′ ·
(

P(x′)

|x− x′|

)]

∆V

At this point, we let ∆V → d3x′ and integrate over all space. By the divergence theorem the integral of the

divergence vanishes because P/|x − x′| vanishes at infinity. There comes:

Φ(x) = ke

∫

all space

[

ρfree(x
′) − ∇′ ·P(x′)

]

|x− x′| d3x′ (3.16)

This treatment raises two questions:

1. We started with an equation for the potential outside a charge distribution, and we have come up with an

expression that we claim is the potential everywhere, not only outside, but also inside the medium. We justify

this by mentally removing any charge sitting at x; doing this should not significantly affect the potential at

that point, produced by all other charges located elsewhere.

2. More seriously, we have used the multipole expansion and neglected all multipole moments higher than

the dipole. How valid can this be when the microscopic fields inside the medium are probably extremely

complicated, and we are certainly not far from the sources? The answer lies with eq. (3.12), which, as will

be seen in the next section, proves that the average field from all the molecules inside an arbitrary sphere is

entirely accounted for by the dipole moment of the molecules!

†For a careful discussion of this averaging process, see section 6.6 in Jackson.
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We see from eq. (3.16) that the net potential is generated by an effective volume charge density ρeff = ρfree +
ρpol = ρfree −∇ ·P, which means that Gauss’ law in differential form, valid for macroscopic media, can now be

written as:

∇ ·D = ρfree (3.17)

where the electric displacement D ≡ ǫ0Enet + P in SI units. We call ρpol = −∇ · P the polarisation charge

density (some call it the bound charge density).

Does this equation determine D, in the same way that Gauss’ law determines E because ∇ × E = 0? In

general, no: ∇ ×P = 0 only in certain situations, such as when polarisation is uniform in the medium, or when

there is spherical symmetry and the fields are all central.

An immediate consequence of eq. (3.17) is that the boundary condition between two media, eq. (1.9), must be

replaced by:

(D2 − D1) · n̂ = σfree (3.18)

which is immediately put in the much more useful form in terms of net fields:

(E2 − E1) · n̂ =
σfree + σpol

ǫ0
(3.19)

where σpol = − (P2 − P1) · n̂, and n̂ is taken to point from medium 1 to medium 2. In terms of the potential,

this becomes:

∂nΦ2 − ∂nΦ1 = − σfree + σpol

ǫ0
(3.20)

At the surface of a dielectric placed in air,or in vacuum, the polarisation P is produced by a surface polarisation

(or bound) charge density σpol = P · n̂, where in this case n̂ points out of the medium.

The tangential components of E still match at the surface, as does the potential.

There is a subtle yet important point that must be made here. This surface charge density that appears in eq.

(3.19) acts as a source for the net field, and therefore the potential calculated from eq. (3.16), yet it does not appear

in that equation! To resolve this potential contradiction, we must examine more closely the second term in the

integral for the potential. This assumes that P is a differentiable function of position known everywhere in space.

In other words, there can be no sharp boundaries where the polarisation vector is discontinuous. The problem is

that in the vicinity of the surface of a dielectric (or near an interface between two dielectrics), P can change very

rapidly, for instance decreasing from some finite value down to zero, in a continuous but unknown fashion, so that

we cannot in practice calculate the volume charge density ρpol inside that thin layer, and we cannot calculate its

contribution to the potential via eq. (3.16).

What we can do is to replace that thin layer by a sharp boundary surface where P is modelled as discontinuous.

Then our expression (3.16) cannot include the contribution of the boundary, if only because ρpol diverges there. To

compensate we can integrate over the volume of the dielectric instead of over all space. Then the surface integral

that was zero at infinity does not vanish anymore, and our potential becomes:

Φ(x) = ke

∫

V

[

ρ(x′) − ∇′ ·P(x′)
]

|x− x′| d3x′ + ke

∮

S

σpol

|x− x′| da
′ (3.21)

where S is the surface of the dielectric, and σpol = P · n, as was found before. This is the more useful expression

for the potential of a dielectric.

To solve such an electrostatic problem, we need to know the polarisation P. Fortunately, unless applied

external fields are very large, the response of the vast majority of media is linear, in the sense that the magnitude

of P is linear in the applied field. Most media are also isotropic, so that the magnitude of the induced polarisation

does not depend on the direction of the applied field and is in the same direction as that field. It is customary to

write this so-called constitutive relation in terms of the net field E, which is the sum of the applied and induced

fields, as:

P = ǫ0χeEnet (3.22)
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where the dimensionless quantity χe bears the suggestive name of electric susceptibility. Then the displacement

and the net field are related by:

D = ǫ0ǫr E = ǫE (3.23)

where ǫr = 1+χe ≥ 1 is called the dielectric constant of the medium. (From now on in this discussion, we write

E = Enet.)

At this stage, we have the differential Gauss law ∇ · (ǫE) = ρfree, with ǫ a constant only for homogeneous (or

uniform) media. In this very frequent case, ∇ · E = ρfree/ǫ, and everything that happens inside the medium can

be described by the same expressions we have derived in chapters 1–3 by letting ǫ0 → ǫ. We also see that since

ǫ > ǫ0, E is decreased compared to what it would be without the dielectric.

For linear and homogeneous media the polarisation is given by:

P = (ǫr − 1) ǫ0 E (3.24)

and the matching equation (3.20) then becomes, using σpol = − (P2 − P1) · n̂:

ǫr2 ∂nΦ2 − ǫr1 ∂nΦ1 = − σfree

ǫ0
(3.25)

In the absence of free charge, the problem for linear and homogeneous media always reduces to solving the

Laplace equation with appropriate B.C., something we know how to do from chapter 2 in these notes..

3.4 Relating Susceptibility to Molecular Polarisability; Models for the Latter (sections J4.5, 4.6)

The electric susceptibility, χe, is a macroscopic parameter; somehow, it must be related to the microscopic proper-

ties of the medium at the molecular level. We can find this relation in the case of non-polar molecules, but first we

must discover what field acts on such a molecule.

Consider a sphere of radius R containing lots of molecules, small enough that the macroscopic field E is

roughly uniform over it. The actual field acting on a molecule at the centre of the sphere, however, which we will

call Elocal, is not really E, especially in dense media! To find Elocal, which is a field at the microscopic scale,

we subtract from the macroscopic net field E the contribution Epol from the other molecules inside the sphere,

calculated according to our polarisation model, and add back what we hope is a more accurate field Enear from

these nearby molecules: Elocal = E −Epol +Enear. We have already found a powerful expression, eq. (3.12), for

the integral over the sphere of the field due to the charge distribution inside:

∫

r<R
E(x) d3x = − ptot

3ǫ0

where, here, ptot is the total induced dipole moment of all the molecules for r < R. Then the average field inside

the sphere due to that induced dipole moment is:

Epol = − ptot

3ǫ0

3

4πR3
= − P

3ǫ0
(3.26)

where the use of a uniform polarisation (or dipole moment density) follows from the assumption of roughly uni-

form E over the sphere.

Now we need a good estimate for Enear. An argument, due to Lorentz and summarised by Jackson on pp. 160–

161, shows that in cubic crystals the field at the centre of the sphere from nearby dipoles vanishes. Therefore†,

Elocal = E−Epol +Enear = E+P/3ǫ0 .

†In so-called ferroelectric crystals, the net field of the nearest neighbours, far from cancelling, can be so large as to cause spontaneous

polarisation over a small volume, even without an external field! The net polarisation over macrosopic regions still averages to zero, except

when an external field aligns these polarisations. The resulting effect can be very large and can persist after the external field is turned off.
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Next, introduce the molecular polarisability, γmol, defined so that, on average, the induced dipole moment of

a molecule is:

〈pmol〉 =
P

N
= γmol ǫ0Elocal = γmol (ǫ0 E + P/3) (3.27)

Recall that the polarisation is related to the macroscopic field by P = ǫ0χeE. Comparing the two expressions

yields:

χe =
N γmol

1 − N γmol/3
(3.28)

This can be inverted to obtain the Clausius-Mossotti equation (aka Lorentz-Lorenz formula) for the (micro-

scopic) molecular polarisability, γmol, in terms of the (macroscopic) dielectric constant, ǫr:

γmol =
3

N

ǫr − 1

ǫr + 2
(3.29)

It is clear that γmol has dimensions of a volume. Since the only relevant volume is that of the molecule, we estimate

that γmol . 10−29 m3. Thus, we predict that the susceptibility will be very small (χe . 10−3) for dilute subtances

such as gases (N ≈ 1025), and of order unity for liquids and solids (N ≈ 1028 − 1029). These predictions agree

well with experiment.

Next, we try to calculate γmol at the microscopic level. We take charges e of massm to be bound to a molecular

or atomic core by a force F = −mω2
0x, ω0 being a characteristic frequency. We immerse them in a field E = E k

which causes the equilibirium distance to change by δx = eE/mω2
0 , resulting in an induced dipole moment

pmol = eδx = e2E/mω2
0. Then, comparing with eq. (3.27), γmol = e2/(ǫ0mω

2
0).

But we should worry about the possible effect of thermal fluctuations. In our first calculation, the molecules or

atoms have no permanent dipole moment, so that the Hamiltonian of the charges is (note: p here is momentum!)

H =
p2

2m
+

1

2
mω2

0x
2 − eEz =

p2

2m
+

1

2
mω2

0x
′2 − e2E2

2mω2
0

where x′ = x− eEk/mω2
0 .

From statistical mechanics, the average dipole moment in the z direction is:

〈pmol〉 =

∫

d3p d3x ez e−H/kT

∫

d3p d3x e−H/kT

=

∫

d3p d3x′ (ez′ + e2E/mω2
0) e−H/kT

∫

d3p d3x′ e−H/kT

=
e2E

mω2
0

(3.30)

To obtain the last line, we have noticed that the integrand with the z′ term is odd since H is even in z′, making

the integral of the first term vanish. This result shows that thermal fluctuations do not affect the average dipole

moment, and there comes

γmol =
〈pmol〉
ǫ0E

=
1

ǫ0

e2

mω2
0

(3.31)

The resonant frequency for helium is measured to be ω0 = 3.71 × 1016/s; for STP conditions, N = 2.69 ×
1025/m3. Inserting these data into the last equation and into eq. (3.28) yields a susceptibility of 6.21× 10−5 about

10% off the measured value of 6.84 × 10−5. To do better we would need quantum mechanics.

When molecules have a permanent dipole moment, say p0, the external field tries to orient the dipoles along

its direction, but this ordering effect is impeded by thermal fluctuations. Also, the orientations of nearby dipoles

become correlated in a way that invalidates the Clausius-Mossotti equation.
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The relevant Hamiltonian for such a dipole in an external field is H = H0 − p0E cos θ, where θ is the angle

between the dipole and the field E = Ek. Because of the azimuthal symmetry, the average of the permanent

moment components in directions other than z must vanish. After integrating over irrelevant variables, we arrive

at the Langevin formula:

〈pmol〉 =

∫

dΩ p0 cos θ ep0E cos θ/kT

∫

dΩ ep0E cos θ/kT

= p0 du ln

∫ π

0
sin θ eu cos θ dθ = p0 du ln

(

2 sinhu

u

)

= p0 (cotanh u − 1/u)

where u = p0E/kT . Now, except at low temperatures where quantum effects will in any case invalidate this

classical calculation, u is very small, and cotanh u ≈ (1 + u2/3)/u. Thus, the average induced dipole moment is:

〈pmol〉 ≈ 1

3

p20
kT

E (3.32)

Combining induced and permanent contributions, the general dependence of molecular polarisability on tempera-

ture is of the form a+ b/T , in agreement with experimental data.

Example 3.1. An Example of a Boundary-Value Problem with Dielectric Media (section J4.4)

We consider the second example treated by Jackson in this section, that of an uncharged sphere of

radius a and dielectric constant ǫr, with a uniform applied field Eapp = E0k and associated potential

Φapp = −E0 z. Since this problem has azimuthal symmetry with no free charge, the solution must be

of the form:

Φin =

∞
∑

l=0

Al r
l Pl(cos θ) Φout =

∞
∑

l=0

[

Bl r
l + Cl r

−l−1
]

Pl(cos θ)

Matching the exterior and interior potentials at r = a brings:

Al = Bl +
Cl

a2l+1

whereas condition (3.25) is:

ǫr Al = Bl −
l + 1

l

Cl

a2l+1

This system can be rewritten as:

Al = Bl
2l + 1

l(ǫr + 1) + 1
Cl = Bl

ǫr − 1

l(ǫr + 1) + 1
a2l+1

We expect the induced potential to go to zero at infinity, so that Φout → −E0 z. This can happen only

if Bl = − δ1lE0. Then our coefficients reduce to:

A1 = − 3

ǫr + 2
E0 C1 =

ǫr − 1

ǫr + 2
a3E0

leading to the potential:

Φin = − 3

ǫr + 2
E0 z

Φout = −E0 z +
ǫr − 1

ǫr + 2

(a

r

)3
E0 z (3.33)

42



Lecture Notes on Graduate Electrodynamics 2020

For a conductor (ǫr → ∞), these potentials reduce to the correct ones for an uncharged spherical

conductor immersed in a uniform electric field.

The potential induced inside the sphere is:

Φpol = Φin − Φapp =
ǫr − 1

ǫr + 2
E0 z

corresponding to an induced field directed opposite the applied field. The net field inside is:

Ein =
3

ǫr + 2
E0 (3.34)

and so the polarisation is:

P = (ǫr − 1) ǫ0 Ein = 3ǫ0

(

ǫr − 1

ǫr + 2

)

E0 = −3ǫ0Epol (3.35)

Note that the polarisation is uniform. This means that the induced contribution to the potential in

eq. (3.16) comes only from a thin layer near the surface of the sphere, over which the polarisation

decreases to zero. As we have argued, the whole effect can be modelled as being the result of the

induced surface charge density:

σpol = P · n̂ = 3ǫ0

(

ǫr − 1

ǫr + 2

)

E0 cos θ (3.36)

whose θ dependence is typical of polarisation charge.

3.5 Electrostatic Energy in a Dielectric Medium (section J4.7)

Suppose there exists a macroscopic, localised charge density ρ(x). The energy associated with a small change

δρfree in the free-charge distribution, in the presence of an applied potential Φ, reads:

δW =

∫

δρfree(x)Φ(x) d
3x (3.37)

Using ∇ · (δD) = δρfree and integrating by parts as we have done in our previous treatment of energy in free

space, we find that:

δW =

∫

E · δDd3x (3.38)

This counts all the energy, including what is required to polarise the medium.

For linear, isotropic media, however, E · δD = 1
2δ(E ·D), and the work becomes:

δW = δ

[

1

2

∫

E ·Dd3x

]

= δ

[
∫

1

2
ǫE2 d3x

]

(3.39)

so that the energy density stored in the total charge configuration is ǫE2/2. This fits with our earlier assertion that

in linear and homogeneous media, substituting ǫ for ǫ0 allows the use of free-space results. It is also equivalent to:

W =
1

2

∫

ρfree(x)Φ(x) d
3x

showing that this latter expression is only valid for linear media. Otherwise the more general eq. (3.38) must be

used to calculate the energy of the dielectric medium. (But it is not always clear what meaning can be ascribed to

"energy" in those non-linear systems for which the work done to produce the final state often depends on the path

taken!)
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4 A. Magnetostatics (sections J5.1–5.12)

4.1 Sources of the Magnetic Field

Electrical phenomena involve two kinds of charges, positive and negative. Similarly, magnetostatics involves

two poles, usually dubbed North and South. The all-important difference, however, is that those poles cannot be

isolated like electric charges. So far as we know, magnetic monopoles do not exist. At bottom, magnetism arises

from electric charges in motion. This motion gives rise to a current density, J, with units of charge density times

velocity, or charge per unit area per unit time.

Now electric charge is conserved and, like anything that is conserved, its density and current density are related

by a continuity equation:

∂tρ + ∇ · J = 0 (4.1)

The physical meaning of this equation is clearer when it is integrated over an arbitrary volume and the divergence

theorem used to convert the J integral to a flux integral. Then we recognise that any increase/decrease in the

charge density within the volume corresponds to a flux of charge entering/leaving the volume through the surface

enclosing the volume.

4.2 Biot and Savart, Ampère Laws

The fundamental field B in magnetism is called magnetic flux density or magnetic induction field by Jackson

(and many others), and we shall do the same for consistency. Then, according to the Law of Biot and Savart:

B(x) = km

∫

I dl× (x− x′)

|x− x′|3 (4.2)

where I =
∫

J · da is the current (or amount of charge per unit of time) flowing along a length element dl
situated at x′ and pointing in the direction of the current, assuming that the surface (the cross-section of a wire, for

instance) through which I flows is small enough. km ≡ µ0/4π = 10−7 N/A2 in SI units. It is remarkable that this

expression holds even when the motion of the charges is relativistic.

Lines of magnetic induction are always closed, and they are perpendicular both to the current element and to

the distance between the current element and the point of observation, which means that they are concentric around

the current element.

In terms of current density J, the Law of Biot and Savart is:

B(x) = km

∫

J(x′)× x− x′

|x− x′|3 d
3x′ = − km

∫

J(x′)×∇
1

|x− x′| d
3x′

= km ∇×
∫

J(x′)

|x− x′| d
3x′ (4.3)

One piece of information we draw from the continuity equation (4.1) is that when ∂tρ = 0 everywhere, as happens

in the steady state, ∇ · J = 0. Look at this as a constraint on magnetic sources in magnetostatics. A moving

point-charge does not give rise to a steady-state current density as its fields cannot be static.

The last form for B in eq. (4.3) is often much more useful than the first.

Example 4.1. Consider a straight wire of length 2L with a uniform J = J k. Put the origin of the

z axis mid-way down the wire and the observation point in the xy plane at distance ρ from the wire.

With I = Jδ(x − x′)δ(y − y′):
∫

J(x′)

|x− x′| d
3x′ = I k

∫ L

−L

1
√

ρ2 + z′2
dz′

= 2I k
[

− ln ρ + ln(L+
√

ρ2 + L2)
]
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As seen from the x-y plane, the source has cylindrical symmetry, and its field is found (EXERCISE)

by taking the curl in cylindrical coordinates. When L is very large, the second term goes to a constant,

and B = (2kmI/ρ)φ̂.

Although the vector structure of the B field is rather different from that of the electric field E, there are often

circumstances in which B turns out to be analogous to E for similar source geometry, as we have seen in the above

example.

4.2.1 Gauss’ Law for B and Ampère’s Law (section J5.3)

According to eq. (4.3), the magnetic induction field can be written as a curl, which means that its divergence

vanishes. On the other hand, we could argue directly that the absence of magnetic monopoles anywhere means

that B must be divergenceless:

∇ ·B = 0 (4.4)

This is Gauss’ Law for magnetism in differential form, and it shows that the Law of Biot and Savart is consistent

with the non-existence of magnetic charge. Gauss’ Law imposes a constraint on any B, but not on the source J.

To obtain a differential form for Biot and Savart’s Law, we must take ∇ × B, then use ∇ × ∇ × V =
∇(∇ ·V)−∇2V and replace ∇ by −∇′ after bringing it into one integral:

∇×B = km ∇×∇×
∫

J(x′)

|x− x′| d
3x′ = km ∇

[∫

J(x′) ·∇ 1

|x− x′| d
3x′
]

− km

∫

J(x′)·∇2 1

|x− x′| d
3x′

In the first integral, replace ∇ with −∇′ and obtain a total divergence using ∇′ · J(x′) = 0. When turned into a

surface integral at infinity, this vanishes. Then eq. (0.18) yields:

∇×B = 4π km J (4.5)

Ampère’s Law, as this is known, guarantees the conservation law ∇ · J = 0 as an identity on its left-hand side.

An integral form for Ampère’s Law is readily obtained by taking its flux through some open, not necessarily

planar, surface and invoking Stoke’s theorem to arrive at

∮

B · dl = 4π km I (4.6)

where I is the current in the loop enclosing the surface.
∮

B · dl is called the circulation of B around the loop.

4.3 The Vector Potential A (section J5.4)

We have seen that we could deduce ∇ · B = 0 from the Biot and Savart Law, but starting instead from the

divergence is very instructive. If its divergence vanishes everywhere (no magnetic monopoles), B can be written

as the curl of a vector:

B = ∇×A (4.7)

where, to be consistent with Biot and Savart, A(x) must be:

A(x) = km

∫

J(x′)

|x− x′| d
3x′ + ∇Ψ(x)

with Ψ an arbitrary scalar function. Gauss’ Law for magnetism is then an identity on A(x), so contains no

information about it. Such information is to be found in Ampère’s Law:

∇×B = ∇× (∇×A) ≡ ∇ (∇ ·A) − ∇2A = 4π km J
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But, as we saw in the last section when deriving eq. (4.5), the divergence of the integral term in A vanishes, and

∇ ·A = ∇2Ψ is undetermined, free for us to choose as we wish. A convenient choice here is ∇ ·A = 0. Then Ψ
is no longer completely arbitrary, but must satisfy the Laplace equation everywhere, and thus can only be zero. So

we arrive at the vector potential due to a localised J distribution:

A(x) = km

∫

J(x′)

|x− x′| d
3x′ (4.8)

which satisfies both ∇ ·A = 0 and a Poisson equation for each Cartesian component of A:

∇2A = − 4π km J (4.9)

This argument, of course, is fully consistent with Biot and Savart’s Law, but it serves to reinforce an important

point: A is not fully determined by the theory. The sources nail down its curl, but its divergence is arbitrary!

As usual with vector integration, the integral in eq. (4.8) must be written first in Cartesian coordinates, after

which we are free to transform each component to another coordinate system if we so wish.

Sometimes it is easier to find the field first from the integral form of Ampère’s law,
∮

B · dl = µ0Iencl, and

then exploit its formal analogy with:

∮

A · dl =

∫

(∇×A) · da =

∫

B · da

If there is sufficient symmetry and if B is known, one finds the flux of B and then proceeds as with Ampère’s law.

For instance, in the case of the infinite solenoid, the form A = km
∫

J/|x − x′|d3x′ cannot be used because J is

not localised. But it is not difficult to obtain B directly, and then A is only one step away (EXERCISE).

Now that we have introduced the vector potential, we can find useful volume integrals of the magnetic induction

field, just like we did for the electrostatic field in example 2.1. The argument (see p. J187-188) proceeds along the

same lines as with the latter, so we will only quote the results:

There are two possible outcomes to the integral of a magnetic induction field over a sphere of radius R:

a) The source currents lie entirely outside the sphere. Then:

∫

r<R
B(x) d3x =

4πR3

3
B(0) (4.10)

Therefore, the average magnetic induction field over a sphere containing no current density is equal to the value

of the field at its centre. (Note the typo in eq. J5.63)).

b) The current density lies entirely within the sphere. In this case:

∫

r<R
B(x) d3x =

µ0
3

∫

x′ × J(x′) d3x′ (4.11)

4.4 Dipole Approximation to Fields of a Localised Current Distribution (section J5.6)

For each component of the vector potential, Eq. (4.8) is formally the same as the Coulomb equation for the electro-

static scalar potential. Therefore we expect to be able to express it as a multipole expansion similar to the one we

found in chapter 3. That expansion, of course, is an expansion of 1/|x − x′|, of which we already have obtained

a couple of useful versions in terms of spherical harmonics. Here, we expand the ith component of A (really it is

1/|x− x′| that is being expanded —see J5.50) in a Taylor series, keeping only the first two terms for the moment:

Ai(x) = km

[

1

|x|

∫

J i(x′) d3x′ +
x

|x|3 ·
∫

x′ J i(x′) d3x′
]

+ . . .
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If J is localised, then
∫

∇′ · (Jx′i)d3x′ = 0. But this is also
∫

[J · ∇′x′i + x′i∇
′ · J]d3x′ =

∫

Jk′∂k′x
′
id

3x′ =
∫

J id3x′. The second term inAi, which never vanishes, becomes the dominant contribution, and it can be rewritten

so that:

A(x) = km
m× x

|x|3 + . . . (4.12)

where identity J5.52 has been invoked, and:

m =
1

2

∫

x′ × J(x′) d3x′ (4.13)

is the magnetic dipole moment of a localised current distribution.

In the important case of a closed circuit, part of the integration is over the cross-section of the loop, and

m =
I

2

∮

x′ × dl′ (4.14)

where I is the current flowing throught he circuit and dl′ is a length element situated at x′ along the loop with

respect to the origin. Furthermore, if the loop is planar, m is perpendicular to the loop, and
∣

∣x × dl
∣

∣/2 = da,

where da is the area of the solid angle subtended by dl. So the loop integral is just the area of the loop.

Thus, the magnetic moment of a planar loop has a magnitude equal to the current flowing in it multiplied by

the loop’s area.

To obtain the magnetic induction, take the curl of eq. (4.12) and use two identities on the left of Jackson’s front

cover:

Bdip(x) = km∇×
(

m× x

r3

)

= km (m ·∇)
x

r3

= km

[

3n̂ (n̂ ·m) − m

r3

]

(4.15)

where, as usual, n̂ = x/r. Again, we encounter the same form in electrostatics, for the dipole field given by eq.

(3.11).

The dipole induction field splits nicely into components along, and perpendicular to, the direction of observa-

tion:

Bdip = km
m

r3

(

2 cos θ r̂ + θ̂ sin θ
)

(4.16)

where θ is the angle from the dipole moment to the direction of observation.

With eq. (4.13), our result of eq. (4.11) for the volume integral of B over a sphere of radius R containing

currents, with none outside the sphere, becomes:

∫

r<R
Bd3x =

2µ0
3

m (4.17)

As in the electrostatic case, however, the volume integral of a dipole magnetic induction over a sphere vanishes

due to the spherical symmetry of the integrand about the origin of the dipole. To be fully consistent, we must write:

Bdip(x) = km

[

3n̂ (n̂ ·m) − m

r3
+

8π

3
m δ(x)

]

(4.18)

47



Lecture Notes on Graduate Electrodynamics 2020

4.5 Magnetic Force and Energy for Localised Currents (section J5.7)

The magnetic force on a current element Idl is Idl × B, so the total force exerted by an external B on a current

distribution is just
∫

[J(x′)×B(x′)] d3x′.If B varies slowly enough over the volume where J exists, we can expand

it around some origin inside, so that:

Fi = ǫijk

[

Bk(0)

∫

J j(x′) d3x′ +

∫

x′ ·∇Bk
∣

∣

∣

x=0
J j(x′) d3x′ + . . .

]

As before, the first integral vanishes, and the second one can be written in terms of the magnetic moment by

noticing that since ∇Bk
∣

∣

x=0
is a constant vector which can be taken out of the integral, replacing x with it in the

expansion of A in section 4.4 leads, by analogy to eq. (4.12), to::

Fi = ǫijk
[

(m×∇)j Bk
]

x=0

= ǫijkǫ
jlnml ∂nB

k = − (δi
lδk

n − δi
nδk

l)ml ∂nB
k

= ∂i(m ·B) − mi∇ ·B

So, to lowest-order:

F = ∇(m ·B) (4.19)

Using the idea of the force as the negative gradient of potential energy, we immediately write the interaction

energy (which is not the total energy!) of a dipole in an external magnetic induction:

U = −m ·B (4.20)

4.6 Macroscopic Equations, Matching Conditions (section J5.8)

Just as in electrostatics, magnetic phenomena inside matter are complicated by the response of the matter to

applied fields. For instance, existing atomic dipoles will tend to align with the applied field, creating their own

field. Current sources will in general fluctuate rapidly at the atomic scale. Thus the need to average over a

microscopically large but macroscopically small volume.

Define the magnetisation as the average magnetic moment density over a macroscopically small volume

containing many dipoles and situated at point x′:

M(x′) =
∑

i

Ni 〈mi〉

where N is the dipole number density. We combine the vector potential from free currents, eq. (4.8), with the

matter contribution derived from eq. (4.12) to obtain, after integrating over all space:

A(x) = km

[
∫

Jfree(x
′)

|x− x′| d
3x′ +

∫

M(x′)× x− x′

|x− x′|3 d
3x′
]

The geometrical factor in the second integrand is now rewritten as ∇′(1/|x − x′|). Using an identity in Jackson

(left front cover), the integrand is converted to a curl plus
(

∇′×M(x′
)

/|x−x′|). With the integral
∫

∇×C d3x =
−
∫

S
C× n̂′ da on the right front cover, this gives:

A(x) = km

[∫

Jfree(x
′) + ∇′ ×M(x′)

|x− x′| d3x′ +

∮

S

M(x′)× n̂′

|x− x′| da

]

(4.21)

If M is localised and goes smoothly to zero (no discontinuity), the surface integral does not contribute because the

volume integral can be taken over all space. Like in electrostatics, however, there can be interfaces near which the

magnetisation changes very quickly in an unknowable way over a thin layer near the interface. So we replace this
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thin layer by a surface across which M is discontinuous and thus not differentiable. The missing contribution is

taken up by the surface integral, where S is now the interface, and there is a surface current, M(x′) × n̂′. In the

absence of free currents inside the volume and if the magnetisation is uniform within, the whole vector potential

is generated by these surface currents.

Because of the presence of the extra magnetisation current density, ∇×M, Ampère’s Law must be modified

as follows:

∇×H = Jfree (4.22)

where we have introduced the magnetic field:

H =
1

4πkm
B − M (4.23)

H plays the same rôle in magnetism that D plays in electricity. Both take into account the contributions from

atomic charges and currents to sources.

In terms of the vector potential, Ampère’s Law becomes, with the choice ∇ ·A = 0:

∇2A = − 4π km (Jfree + ∇×M) (4.24)

This completely general Poisson-like equation has for solution eq. (4.21).

Unlike the response of most materials to applied electric fields, which is most often linear, the response to

applied magnetic fields is typically much more complicated. Only in isotropic diamagnetic and paramegnetic

materials can one write the simple analog to eq. (3.23), in SI units:

B = µr µ0H = µH (4.25)

where µr is the relative permeability of the material. In these cases, 1−µr ≈ ±10−5. For ferromagnetic materials,

the relationship between the magnetic field H and the induction B is typically nonlinear and depends on history

(hysteresis).

In linear and homogeneous magnetic media, the vector potential satisfies

∇2A = −µ0(µr Jfree) (4.26)

Another difference with electric phenomena in matter is that, whereas electric polarisation results in a net field

that is smaller than the applied field, in magnetism, when µr > 1, the effect is the opposite: magnetisation results

in a larger induction field than the external induction field.

4.6.1 Magnetostatic matching conditions

By using Gauss’ Law for magnetism in its integral form,
∮

B · da = 0, it is easy to show that the component

of B normal to any surface is continuous across the surface. The tangential components of H, however, are

discontinuous if there is a free surface current density K, as can be derived from Ampère’s law in matter. Therefore:

(B2 −B1) · n̂ = 0

n̂× (H2 −H1) = K (4.27)

where, as before, n̂ points from medium 1 to medium 2.

The vector potential is continuous across a surface, but its normal derivative inherits the discontinuity in the

tangential components of H.
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Example 4.2. Magnetic Potential and Induction of a Circular Current Loop (section J5.5)

The most important example of a magnetic induction field is that of a circular loop, say of radius a,

carrying a counterclockwise current I , and with coordinate axes oriented so that it lies in the xy plane.

The source is J = Jφφ̂ = −Jφ sinφ′ i+ Jφ cosφ′ j, where Jφ = I δ(cos θ′) δ(r′ − a)/a. With this,

J is perpendicular to the x axis when φ′ = 0.

Without loss of generality, the azimuthal symmetry of the problem allows us to put the observation

point in the xz plane, at φ = 0. We have, with x̂ · x̂′ = cos θ cos θ′ + sin θ sin θ′ cosφ′:

A(r, θ) = km

∫ −Jφ sinφ′ i+ Jφ cosφ′ j
√

r2 + r′2 − 2rr′ (cos θ cos θ′ + sin θ sin θ′ cosφ′)
d3x′ (4.28)

The integral along the x axis vanishes by symmetry, leaving the y component, which is also the φ
component at φ = 0. Then, putting in Jφ and doing the δ-function integrals in spherical coordinates

leaves:

Aφ(r, θ) = km Ia

∫ 2π

0

cosφ′ dφ′
√

r2 + a2 − 2ar sin θ cosφ′

This can be recast in terms of elliptic integrals and so is a closed-form solution, but it is not so

intuitive. . .

Instead, expand the inverse distance factor inside the integral (4.28) using eq. (2.10) with φ = 0. Write

cosφ′ in terms of complex exponential e±iφ′
, and notice that this will restrict them sum to itsm = ±1

terms†, leaving Y ∗
l,±1(θ

′, φ′), because
∫

ei(m±1)φ′
dφ′ = 0. For the m = ±1 terms the integrands are

no longer φ′-dependent, and the integral over φ′ just yields 2π. After integrating over the δ-functions

as before, we get:

Aφ = 8π2 km Ia

∞
∑

l=1

Yl,1(θ, 0)

2l + 1

rl<

rl+1
>

Yl,1(π/2, 0)

where r< is the smaller of a and r, and r> the larger of the two.

Eq. (0.42) then leads to:

Aφ(r, θ) = −π km Ia

∞
∑

n=0

(−1)n+1 (2n − 1)!!

2n (n+ 1)!

r2n+1
<

r
2(n+1)
>

sin θ dxP2n+1(x) (4.29)

where x = cos θ and (2n − 1)!! = ((2n − 1)(2n − 3) . . . × 3 × 1. The magnetic induction is then

obtained by taking the curl:

B(r, θ) = − 1

r

[

r̂ ∂x
(

√

1− x2Aφ

)

+ θ̂ ∂r(r Aφ)
]

(4.30)

The derivatives are straightfoward and one arrives at eq. J5.48 and 5.49, which we will not bother to

reproduce here. Rather we will extract the asymptotic behaviour, far from the loop at r >> a. Then

r< = a and r> = r. The n = 0 term dominates the series. Since dxP
1(x) = 1, the potential is, to a

good approximation:

Aφ(r, θ) −→
r≫a

π km I
a2

r2
sin θ

with a magnetic induction:

B(r, θ) −→
r≫a

km I (πa
2)

r3
(r̂ 2 cos θ + θ̂ sin θ) (4.31)

Alternatively, and more simply, we can derive (EXERCISE) the dipole approximation directly from

eq. (4.12) and (4.18) in the previous section, recognising that here the area of the loop is πa2.

†Note how azimuthal symmetry does not lead to m = 0, because the Cartesian components of the source current density have a φ
dependence.
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4.7 Magnetostatic Boundary-Value Problems with no Free Current (section J5.9)

A useful simplification can be made in a simply-connected region with no free currents. Indeed, in such a region,

∇×H = 0 allows us to define a magnetostatic scalar potential, Φm, with H = −∇Φm. In each linear region with

uniform µr, this scalar potential obeys the Laplace equation, ∇2Φm = 0, which can be solved as a boundary-value

problem, just as in chapter 2.

What can we say when there are no free currents but the magnetic material is non-linear? Sometimes, such

as in substances whose magnetisation is more or less insensitive to applied fields (so long as these are not large),

information about M may still be recoverable from the magnetostatic scalar potential. In general, Gauss’ Law for

magnetism, written in terms of H and M, yields:

∇2Φm = −∇ ·H = ∇ ·M ≡ − ρm (4.32)

Here we have introduced an effective magnetic charge density. One form of the general solution of this Poisson

equation is:

Φm = − 1

4π

∫

∇′ ·M(x′)

|x− x′| d3x′ +
1

4π

∮

S

n̂′ ·M(x′)

|x− x′| da′ (4.33)

where the surface integral contributes only when M goes to zero in discontinuous fashion at a surface. The origin

of this integral can be traced to the existence of an effective magnetic surface charge density, σm = n̂ ·M, which

is easiest to exhibit by taking the volume integral of ∇ · M = −ρm over a small cylinder enclosing a surface

element, invoking the divergence theorem and evaluating the surface integral when M = 0 on one side of the

surface.

The presence of σm will cause some lines of H (but not of B!) to terminate on the surface.

An alternative fornulation of the solution starts with just the first term of eq. (4.33), ignoring any possible

discontinuity. So long as M is localised, an integration by parts (or use of an identity on Jackson’s front left cover)

produces:

Φm =
1

4π

∫

all space

M(x′) ·∇′ 1

|x− x′| d
3x′

= − 1

4π
∇ ·

∫

M(x′)

|x− x′| d
3x′ (4.34)

where in the last line ∇′ was first turned into −∇ and then taken outside. The advantage of this particular form

of the solution is that it can handle any M, even a discontinuous one. So, if one chooses to use it, there is no need

for a surface integral.

In the first line in the last equation, we could instead have calculated the gradient and taken the large distance

limit: |x− x′| ≈ |x| = r, so that far from any source:

Φm ≈ m · x
4πr3

(4.35)

where m =
∫

M(x′)d3x′ is the total dipole moment of the distribution. We recognise this as a dipole scalar

potential giving rise to the same kind of field as the electrostatic dipole field, but with p → m.
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Example 4.3. Uniformly Magnetised Sphere (section J5.10)

Consider a sphere of radius a and permanent magnetisation M =M0 k, embedded in a non-magnetic

medium. Because of the uniform magnetisation and discontinuity at r = a, only the surface integral

in eq. (4.33) contributes, with σm =M0 cos θ. This has azimuthal symmetry, whence:

Φm =
M0a

2

4π

∫

cos θ′

|x− x′| dΩ
′

We have encountered this kind of integral before in section 2.1, where we made use of the expansion

(2.10). Since cos θ′ = P1(cos θ
′), only the l = 1 term survives the integration. We find:

Φm(r, θ) =











1

3
M0 z (r < a)

m

4πr3
z (r ≥ a)

where the total dipole moment of the sphere is m = 4πa3M/3. We see that the exterior potential

is that of a dipole not only asymptotically, but everywhere. Inside the sphere, the magnetic field and

induction are:

Hin = − 1

3
M Bin =

2µ0
3

M (4.36)

We observe that B is parallel, and H antiparallel, to M.

We could also have found the vector potential with eq. (4.21). This is a bit more involved because of

the vector character of the integrand, but the derivation of the fields proceeds pretty much along the

same lines and with the same type of argument, as can be seen in section J5.10.

Example 4.4. Magnetised Sphere in an External Field (section J5.11)

We can certainly take the interior fields found in the last example and superpose them with any uniform

external field B0. Suppose that instead of being permanent, M is entirely induced by the external field,

as in a paramagnetic or diamagnetic material. That induced uniform magnetisation still generates the

fields given in eq. (4.36), to which the external field is added to produce the total fields Bin and Hin,

But we must also have: Bin = µHin, that is:

B0 +
2µ0
3

M = µ

(

1

µ0
B0 − 1

3
M

)

which yields for the magnetisation inside the sphere:

M =
3

µ0

(

µr − 1

µr + 2

)

B0 (4.37)

Observe the analogy with the electric polarisation in a dielectric sphere in chapter 3.

In a ferromagnetic material, however, we must seek another relation between Bin and Hin. We can

always eliminate the magnetisation from the expressions for each of Bin and Hin to obtain (for a

uniformly magnetised sphere only!):

Bin + 2µ0 Hin = 3B0

To go further, we need the hysteresis curve. If, for instance, the external field is increased until Bin

reaches saturation and is then brought back to zero, one should look at the resulting hysteresis curve

(see fig. J5.12) for its intersection with the straight line of slope −2 with 3B0 as intercept.
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Example 4.5. An Example of Magnetic Shielding (section J5.12)

Consider a spherical shell of inner radius a and outer radius b, with a linear permeability µ, immersed

in a constant and uniform induction B0 = B0 k̂. There are no free currents. Then our remarks at

the beginning this section (or J5.9B) lead to the existence of a scalar potential Φm which obeys the

Laplace equation everywhere and which goes to −H0z as r → ∞. The following general solutions

are regular:

Φm =































−H0z +
∑

l=0

αl r
−(l+1) Pl(cos θ) b ≤ r <∞

∑

l=0

(

βl r
l + γl r

−(l+1)
)

Pl(cos θ) a ≤ r ≤ b

∑

l=0

κl r
l Pl(cos θ) 0 ≤ r ≤ a

(4.38)

Continuity of Φm at r = b and r = a gives, respectively:

αl − βl b
2l+1 − γl = H0 δl1b

l+2

βla
2l+1 + γl − κl a

2l+1 = 0

µr2 ∂nΦm2 = µr1 ∂nΦm1 at r = b and r = a gives, respectively:

(l + 1)αl + µr l βlb
2l+1 − µr(l + 1)γl = −H0δl1b

l+2

µr l βla
2l+1 − µr(l + 1)γl − l κl a

2l+1 = 0

When l 6= 1, the system has only a trivial solution: all coefficients vanish. Only l = 1 terms contribute.

Give the system with l = 1 to Maple; which outputs:

> solve(sys_eq,{alpha[1],beta[1],gamma[1],kappa[1]});

κ1 = −9
µrH0b

3

4µra3 − 2 a3 + 5 b3µr + 2 b3 − 2µ2ra
3 + 2 b3µ2r

, γ1 = −3
a3H0b

3(µr − 1)

4µra3 − 2 a3 + 5 b3µr + 2 b3 − 2µ2ra
3 + 2 b3µ2r

α1 =
H0b

3
(

−2µ2ra
3 + µra

3 + 2 b3µ2r − b3µr + a3 − b3
)

4µra3 − 2 a3 + 5 b3µr + 2 b3 − 2µ2ra
3 + 2 b3µ2r

, β1 = −3
(2µr + 1)H0b

3

4µra3 − 2 a3 + 5 b3µr + 2 b3 − 2µ2ra
3 + 2 b3µ2r

We are interested in the cavity surrounded by the shell, where Φr<a = κ1 z and Hr<a = −κ1. Force

Maple to simplify the denominator of the coefficients nicely:

> factor(selectremove(has,expand(denom(rhs(op(1,%)))/b^3),a)[1]) +

> factor(selectremove(has,expand(denom(rhs(op(1,%)))/b^3),a)[2]);

−2
a3 (µr − 1)2

b3
+ (µr + 2) (2µr + 1)

Then:

κ1 = −
[

9µr

(2µr + 1)(µr + 2) − 2 a3

b3 (µr − 1)2

]

H0 −→
µr≫1

κ1 ≈ − 9

2µr (1− a3/b3)
H0

So long as the shell is not too thin, κ1 can be quite small and the interior field can be much smaller

than the external one. The spherical shell thus acts as a magnetic shield that bends field lines around

the inner cavity.
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4 B. Time-dependent Magnetic Phenomena

4.8 Faraday’s Law of Induction (section J5.15)

When a conducting loop is moved in a static magnetic field, it is an experimental fact that a current is set up in the

loop proportional to the rate of change of the magnetic induction flux through the loop. This current multiplied

by the loop’s resistance (assuming Ohm’s law holds) is a quantity called the electromotive force, or emf (often

dubbed motional emf), a quite misleading name really since its dimensions are those of a force per unit charge

times length. The phenomenon is due to the magnetic force acting on the free charges in the conductor, and it can

be shown that the emf is indeed:

Emotion = −dt

∫

B · da (4.39)

Where things get interesting is that, as was discovered by Faraday, if the loop is kept at rest in the magnetic

induction but the latter varied, the same phenomenon occurs: when the induction field is generated by a current

flowing in another loop, only the relative motion of the two loops matters. This is quite striking, because when the

magnetic source is moving, there is no magnetic force on the charges in the other loop since they are at rest. The

only possible explanation is that an electric field is induced which in turn produces the emf that sets up the current.

So we write:

E =

∮

E′ · dl = − dtF

E′ is the electric field measured in the loop’s rest-frame. This electric field is different from an electrostatic field:

its sources are not monopoles and its circulation does not vanish.

There is a catch, however. If the source loop is moving with respect to the observer, the magnetic flux is not

the same as if it were at rest! The time derivative (see section 0.9) is in fact a convective derivative. In order to be

able to bring the time derivative inside as only a partial derivative, without extra terms, both the electric and the

magnetic induction fields must be understood to be in the same reference frame, eg., the lab frame. We arrive at

Faraday’s induction law:
∮

E · dl = −
∫

∂tB · da (4.40)

The direction of integration around the loop is given by the right-hand rule, with the thumb pointing in the direction

of da. The direction of integration is essentially the direction of the current that would be set up if there were a

wire loop to carry it. The direction of this current is usually determined by Lenz’s Law, according to which the

direction is such that the flux of the magnetic induction of this current opposes the change in flux of the external

field through the loop. It is best viewed as preventing runaway buildups of emf, acting as a sort of inertia.

When we convert the left-hand side of eq. (4.40) to a flux integral and note that the path and surface are

arbitrary, we obtain the important differential form:

∇×E + ∂tB = 0 (4.41)

If we put B = ∇ ×A into the differential Faraday law, we see that now it is the curl of E + ∂tA that vanishes

everywhere. So E + ∂tA must be the gradient of some scalar function, and we obtain the most general form for

E:

E = − ∂tA − ∇Φ (4.42)

where Φ is just the electrostatic potential. When the time-varying magnetic field is the only source for the electric

field (no free charges anywhere), we can drop the electrostatic term.

Note that we have expressed the six components of the electric and magnetic fields in terms of the four in

the A and Φ potentials. Clearly, the field components are not all independent. In fact, writing E and B in terms

of the potentials takes the place of the two homogeneous equations, Gauss’ Law for magnetism and Faraday’s

Law. A burning question now arises: just how many independent variables (or degrees of freedom) are there in

electromagnetism? The question will be answered in chapter 5, and we will learn why it is vital that it be answered.
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4.9 Quasi-static Magnetic Fields in Conductors (section J5.18)

Faraday’s induction law prompts the question: if changing magnetic fields induce electric fields, is the converse

also true? As we shall see in the next chapter , it is, and Ampère’s Law will have to be modified accordingly. Except

when we are dealing with electromagnetic waves, however, there will be many situations where this modification

can be neglected and the magnetostatic equations still hold. In particular, whenever characteristic lengths are small

compared with cT , with c the speed of light and T the characteristic time scale of the fields, this quasi-static

approximation is valid. In conductors,

∇×H = Jfree = σE

where σ is the conductivity of the material assumed to obey Ohm’s Law. We note that even if there are no free

sources of electrostatic E, there are still free currents since these are the only source of the magnetic field. In

homogeneous, linear magnetic media:

∇×B = µJfree = µσE (4.43)

Differentiating with respect to time and using Faraday’s Law; recalling that ∇ · E = 0 when there are no free

charges as sources of E, we obtain a diffusion equation for the electric field:

∇2E = µσ ∂tE

Writing eq. (4.43) in terms of the vector potential A shows that it obeys the same diffusion equation.

4.10 Magnetic Field Energy (section J5.16)

To find the magnetic energy of a current-field distribution, we must include the energy needed to set up the cur-

rents. In a magnetic material, we must also factor in the energy associated with the response of the atoms to the

applied magnetic field. So we must ask how much work has to be done to change the macroscopic fields while

incorporating the response of the material.

Start with some free current density J which generates an induction field B. Change the current by an amount

δJ, thereby producing a change δB in a time δt long enough that the quasi-static spproximation is still valid. By

Faraday’s Law, there will be an induced electric field E which, by Lenz’s Law, opposes the change in the current,

doing work on it at the the rate
∫

J ·E d3x. By conservation of energy, work to change the current density is done

at the rate:

δW/δt = −
∫

J ·E d3x

Since E = −δA/δt, and J is a free current, we obtain:

δW =

∫

δA · Jd3x =

∫

δA ·∇×H d3x

=

∫

H ·∇× δAd3x +

∫

∇ · (H× δA) d3x

As usual, we turn the second integral into a flux integral vanishing at infinity. We are left with:

δW =

∫

all space

H · δBd3x (4.44)

This expression is completely general and applies to all types of magnetic media. It is the analog of eq. (3.38) in

electrostatics.

If the material is linear, we can go further and write H · δB = 1
2δ(H ·B). To bring the fields up from zero to

their final values necessitates an energy:

W =
1

2

∫

H ·Bd3x =
1

2

∫

J ·Ad3x (4.45)
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In a non-linear material, we can use the hysteresis curve to find a relationship between B and H.

By an argument entirely analogous to the one used in electrostatics, one finds that when a magnetic material is

inserted in a magnetic field whose sources are fixed, the resulting change of energy is:

W =
1

2

∫

M ·Bd3x (4.46)

The sign is different from the electrostatic result, due to the fact that, contrary to what happens in electrostatics,

the fixed magnetic sources must also do work against the induced emf. We should also keep in mind that this is

the total energy needed to produce the final configuration, not just to rotate the magnetic moments in an external

field, ie. the interaction energy of eq. (4.20).

Example 4.6. Example of the use of the quasistatic approximation (section J5.18)

We consider a harmonic, uniform magnetic field H = (H0 cosωt) i defined below the xy plane,

with the space above the xy plane entirely occupied by a conductor with uniform conductivity σ and

permeability µ. What is the field inside the conductor?

First, matching at the interface shows that the field for z > 0 is also in the x direction. Taking the curl

of eq. (4.43) shows that H also obeys the same diffusion equation as E and A:

∇2H = µσ ∂tH

Inserting the complexified inhomogoneous solution Hx(z, t) = h(z) e−iωt gives:

(

d2z + iµσω
)

h(z) = 0

whose solution is h(z) = A eikz + C e−ikz, where k = (1 + i)/δ, with the skin depth δ =√
2/
√
µσω. Setting C = 0 to quell a divergence at infinity, and A = H0 for correct matching at

z = 0, we finally get:

Hx(z, t) = ℜ
[

H0 e−z/δ ei(z/δ−ωt)
]

or

H(z, t) = iH0 e−z/δ cos(z/δ − ωt) (4.47)

The time-variation of B generates an electric field inside the conductor; it is most easily found from

Ampère’s Law, eq. (4.43), using the complex exponential form of H:

E =
1

σ
dzH (k× i) = jℜ

[−1 + i

σδ
H0 e−z/δ ei(z/δ−ωt)

]

= j
µωδ√

2
H0 e−z/δ cos(z/δ − ωt+ 3π/4) (4.48)

We should check whether this electric field is consistent with the quasi-static approximation which we

have been using. The relevant dimensionless ratio to take is:

E/c

µH
= O(ωδ/c)

For the quasi-static approximation to be valid, this should be much smaller than 1. For copper, a good

conductor, ωδ/c = 1.2×10−8 √ν with ν the field frequency. For sea-water, the ratio is 3.7×10−5 √ν.

This puts an upper limit on the frequency of the field that will allow the above treatment.

The time-averaged power dissipated per unit volume, 〈J ·E〉 = σ 〈E2〉, is:

P =
1

2
µωH2

0 e−2z/δ =
σ

δ2
H2

0 e−2z/δ (4.49)
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5 Maxwell’s Equations and Conservation laws

5.1 First and Second Order Maxwell Field Equations (section J6.1)

When we allow electric and magnetic fields to vary in time and do not require that ∂tρ = 0, Ampère’s Law,

∇ × H = J, is no longer compatible with the continuity equation. This inconsistency led Maxwell to propose

instead:

∇×H = Jfree + ∂tD (5.1)

The new term, which he called the displacement current, restores consistency via Gauss’ Law ∇ · D = ρ, and

makes it clear that changing electric fields are also sources of the magnetic field. The two equivalent full sets:

∇ ·D = ρfree ∇×H = Jfree + ∂tD ∇ · E = 4πkeρtotal ∇×B = 4πkm Jtotal +
1

c2
∂tE

(5.2)
∇ ·B = 0 ∇×E + ∂tB = 0 ∇ ·B = 0 ∇×E + ∂tB = 0

constitute Maxwell’s macroscopic (on the left) and microscopic (on the right) field equations. With the rela-

tions: D = 4πkeE+P and H = B/4πkm −M, they provide a complete classical description of electromagnetic

phenomena and do contain the continuity equation for the sources, whether free or total ( including polarisation P

and magnetisation M):

∂tρfree = ∇ · ∂tD = −∇ · Jfree ∂tρtotal =
1

4πke
∇ · ∂tE = −∇ · Jtotal (5.3)

By taking the curl of Faraday’s Law and the curl of Ampère’s Law in the microscopic version, we arrive

(EXERCISE) at the wave equations:

✷E = − 4πke

(

∇ρtotal +
1

c2
∂tJtotal

)

(5.4)
✷B = 4πkm ∇× Jtotal

where ✷ = (1/c2)∂2t − ∇2 is the d’Alembertian operator (Jackson’s definition is consistent with his metric

convention in chapter 11), and c =
√

ke/km in any units (c = 1/
√
ǫ0µ0 in SI units). Equivalent equations for D

and H, with source terms now involving the polarisation and magnetisation, may be obtained from the macroscopic

first-order equations.

So called free fields obey the source-free first-order equations:

∇ ·E = 0 ∇×B − 1

c2
∂tE = 0

(5.5)
∇ ·B = 0 ∇×E + ∂tB = 0

and the second-order equations:

✷E = 0 ✷B = 0 (5.6)

Such free fields have field lines that do not end on electric charges (E) and do not enclose currents (B). It is

important always to remember that these second-order equations hold for each component of the field only in

Cartesian coordinates. If one did insist on using curvilinear coordinates, the action of the Laplacian operator on

the vector would have to be defined using the identity: ∇2E = ∇(∇ · E) − ∇ × ∇ × E, and only then would

each curvilinear component of this object enter in the d’Alembertian to form a scalar wave equation.
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5.2 Electromagnetic Potentials (section J6.2)

The two homogeneous equations 5.2 are still equivalent to:

E = − ∂tA −∇Φ B = ∇×A (5.7)

In unpolarised, unmagnetised media, the inhomogeneous Maxwell equations then become (exercise) second-

order equations for the potentials:

∇2Φ + ∂t(∇ ·A) = −4π keρ
(5.8)

✷A + ∇

(

∇ ·A +
1

c2
∂tΦ

)

= 4π km J

These two equations constitute Maxwell’s equations for the scalar and vector potentials with free sources.

5.2.1 Transverse and longitudinal projections of Maxwell’s equations for the potentials

When we try to solve for the vector potential A, we expect Maxwell’s theory to provide us with equations, either

first-order or second-order, for ∇ ×A and ∇ ·A. It certainly does for ∇ ×A. However, neither of Maxwell’s

equations (5.8) for the potentials Φ and A can determine ∇ ·A. A very instructive way to see this is to note that,

according to Helmholtz’s theorem (0.19), any 3-dim vector field A may be written as the sum of two vectors:

A = AL + AT = ∇u + ∇×w (5.9)

The first term, AL := ∇u, whose curl vanishes identically, is called the longitudinal (irrotational) part, or projec-

tion, of A; the second, AT := ∇×w, whose divergence vanishes identically, is called the transverse (solenoidal)

part of A. Each of the three components of A potentially carries energy as a wave, all the way to infinity, in

which case we say that it is a dynamical degree of freedom. By inspection, AL has one independent component,

whereas AT has two independent components (the third is determined by ∇ ·AT = 0).

Observe that ∇ · A is really ∇ · AL and contains no information about AT; also, ∇ ×A is really ∇ ×AT

and contains no information about AL.

Project the second equation (5.8). The transverse projection immediately gives:

✷AT = 4π kmJT (5.10)

where we have used the fact that a gradient is a longitudinal object.

Now take the divergence of the longitudinal projection of the second equation (5.8):

∇ ·
[

✷AL + ∇

(

∇ ·AL +
1

c2
∂tΦ

)

− 4π km J

]

= ✷(∇ ·AL) + ∇2(∇ ·AL) +
∂t∇2Φ

c2
− 4π km∇ · J

=
1

c2
∂t
[

∂t(∇ ·AL) + ∇2Φ + 4π keρ
]

But the terms in the square bracket on the second line are just the first of equations (5.8). Therefore, the longitudinal

projection of the second equation Maxwell equation for the 3-vector potential contains no information about ∇ ·A
that is not in the first equation. But that is really an equation for Φ with ∇ · ∂tA (more precisely, ∇ · ∂tAL) as a

source together with ρ. Therefore, Maxwell’s theory cannot determine the divergence of the 3-vector potential.
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5.2.2 Choices of the divergence of A

Since the theory does not know ∇ · A, we have to tell it what it is by making an arbitrary choice. If we choose

∇ · A to vanish (Coulomb condition), the vector potential is pure transverse, and the Φ equation becomes a

Poisson-type equation with solution:

Φ(x, t) = ke

∫

ρ(x′, t)

|x− x′| d
3x′ (5.11)

This looks innocuous enough until we realise that any change in the source is instantaneously reflected in the

scalar potential. The Coulomb condition leads to acausal behaviour, which is also a reflection of the fact that the

condition is not relativistically covariant, in the sense that it is not necessarily the same in all inertial frames. But

the equation for Φ is not a classical wave equation, and Φ does not really propagate as a wave, so one should not

expect proper causal behaviour from it. As for A, it now obeys a wave equation equivalent (EXERCISE) to eq.

(5.10).

When manifestly causal behaviour for the potentials is desired, we can choose instead the Lorenz† condition:

∇ · A = −∂tΦ/c2, which also happens to turn eq. (5.8) into nice-looking, decoupled wave equations for each

component of A, of the type ✷(potential) = source with causal solution eq. (5.18). Then one can calculate

the energy radiated to infinity following standard treatments (eg. chapter 14 in Jackson) and find that the scalar

potential does make a mathematical contribution to the energy radiated to infinity by accelerated charges. But we

should not attach any physical significance to that contribution: it arises simply out of consistency with the choice

of the Lorenz condition for ∇ ·A.

Note also that, under the Lorenz condition, the energy radiated to infinity by an oscillating system can be

calculated (see chapter 7 here) solely in terms of A, since Φ is determined.

5.3 Initial Value Problem in Maxwell’s Theory: First-order Cauchy problem

The Initial Value Problem (IVP) of a theory consists in finding which data must be specified at a given time for

the time evolution of variables of the theory to be uniquely determined by their equations of “motion". By initial

data, one means the state of the system of variables everywhere in space at t = t0. The IVP together with the

evolution equations constitute the Cauchy Problem of the theory. If it can be solved, the dynamical behaviour of

the system can be uniquely predicted from its initial data.

Most often, the equations of “motion” take the form of a set of wave equations, each of the form f = F . If

they always told the whole story, the Cauchy problem would be solved by specifying the value of f and its first-

order time derivatives at t = t0. Things are not so simple, however when there are inherent, built-in constraints

on the initial data. Those constraint equations must be discovered and solved. Also, we must find which initial

data we are allowed to specify freely.

Eq. (5.4) do look like standard wave equations for six decoupled quantities. But the first-order, coupled, field

equations (5.2) must also be satisfied!

The two divergence equations contain no time derivatives and are thus constraints on E and B at all time,

including t = t0. The one involving E (EL in effect) can be rewritten ∇2u = ρ for a scalar field u, a Poisson-type

equation which can in principle be solved for u at initial time so long as ρ falls off faster than 1/r at infinity. As for

B, because its divergence vanishes, it is always a manifestly transverse object. Thus, we have no control over the

longitudinal components of the fields; the two transverse components for each are the only ones for which initial

data can be freely specified at this stage.

Next, look at the two Maxwell first-order equations for E and B which contain time derivatives. Suppose we

specify E and ∂tE at t = t0, which are needed to solve the 2nd-order equation for E in eq. (5.4). Then the two

†L. Lorenz, On the Identity of the Vibrations of Light with Electrical Currents, Philosophical Magazine and Journal of Science, 34,

July-December, 1867, pp. 287–301 (translated from Annalen der Physik und Chemie, June 1867)
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transverse components of B are determined by the generalised Ampère Law; ∂tB is determined by Faraday’s Law,

also at t = t0. Once we have specified the two transverse components of E and their time derivatives, Maxwell’s

equations take over and determine the others at t = t0. Alternatively, we could have started with the two transverse

components of B; specifying them and their time derivatives at t = t0 constrains all the other field components

and time derivatives.

You can also use the transverse/longitudinal projections of the first-order equations (5.2) to show (EXERCISE)

that in source-free space, only the transverse components of E and B obey a classical wave equation.

One of the advantages of this Cauchy analysis is that it does not rely on any particular solution, but is valid for

any electromagnetic field. Later we shall reformulate the theory in the much more powerful and compact language

of the four-vector relativistic formalism which will allow for much easier manipulation. We note that since ∇ ·A,

which determines the longitudinal component of A, is arbitrary, only the two transverse components controlled

by ∇×A correspond to physical dynamical degrees of freedom, consistent with the Cauchy-data analysis of the

first-order Maxwell equations (although the latter could not tell us which initial field data could be freely specified,

only their number).

5.4 Green Functions for the d’Alembertian Operator (section J6.4)

With the Fourier integral representation (note the normalisation!):

g(x, t) =
1

2π

∫ ∞

−∞
g(x, ω) e−iωt dω g(x, ω) =

∫ ∞

−∞
g(x, t) eiωt dt (5.12)

we can transform a typical wave equation, with = (1/c2)∂2t −∇2:

Ψ(x, t) = 4π f(x, t)

where f(x, t) is a known source, to its so-called Helmholtz form for a frequency-dependent function Ψ(x, ω):

(∇2 + k2)Ψ(x, ω) = − 4π f(x, ω) (5.13)

where k can be taken as a short form for ω/c. In a non-dispersive medium, ω(k) = kc is actually the dispersion

relation, with k the wave vector and k the wave number.

Just as for the Laplacian operator, there exist Green functions for ∇2 + k2; they satisfy:

(∇2 + k2)G(x,x′) = −4π δ(x− x′) (5.14)

Jackson does not really explain why one must take G(x,x′) = G(x−x′); like the Laplacian, the k2 dependence on

the wave vector picks no preferred direction, so the solutions have spherical symmetry with the centre of symmetry

at the source point x′. Therefore G(x− x′) = G(R), with R = |x− x′|.
A solution of the inhomogeneous equation (5.14) for G(R) is:

G(±)(R) =
1

R
e±ikR (5.15)

Indeed:

(∇2 + k2)

(

e±ikR

R

)

=
1

R
∇2e±ikR + e±ikR∇2

(

1

R

)

+ 2∇

(

1

R

)

·∇e±ikR + k2
e±ikR

R

=

[

− k2

R
± 2ik

R2
− 4π δ(x− x′) ∓ 2ik

R2
+
k2

R

]

e±ikR = − 4π δ(x− x′)

Now we are ready to find the full Green functions for the d’Alembertian operator, which satisfy:

✷xG(x, t;x
′, t′) = 4π δ(x − x′) δ(t − t′) (5.16)
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The Fourier transform of the source term, f(x, t) = 4π δ(x− x′) δ(t− t′), is f(x, ω) = 4π δ(x− x′) eiωt′ . In the

frequency domain, then, we have:

(∇2
x + k2)G(x,x′, ω, t′) = − 4π δ(x− x′) eiωt′

Assume separable solutions of the form G(x,x′)eiωt′ ; inserting into this equation, we get from (5.14) the solutions

G±(x,x′, ω, t′) = ei(±kR+ωt′)/R. Then, transforming back to the time domain and using the representation (0.16)

for the δ-function yields the time-dependent Green functions in a nondispersive medium (k = ω/c):

G(±)(x, t;x′, t′) =
1

2π

∫ ∞

−∞

eiω[±R/c−(t−t′)]

R
dω

=
δ
(

t′ − [t∓R/c]
)

R
(5.17)

Using eq. (5.16), we recognise that:

x

∫ ∞

−∞
G(±)(x, t;x′, t′) f(x′, t′) d3x′ dt′ =

∫ ∞

−∞
f(x′, t′) xG

(±)(x, t;x′, t′) d3x′ dt′ = 4π f(x, t)

has the generic form Ψ(x, t) = 4πf(x, t), which shows that the general solution of a wave equation with sources

localised in time and space can be written either as the retarded solution:

Ψ(x, t) = Ψin(x, t) +

∫∫ ∞

−∞
G(+)(x, t;x′, t′) f(x′, t′) d3x′ dt′

= Ψin(x, t) +

∫

f(x′, t′ret)

|x− x′| d3x′ (5.18)

or, equivalently, as the advanced solution:

Ψ(x, t) = Ψout(x, t) +

∫∫ ∞

−∞
G(−)(x, t;x′, t′) f(x′, t′) d3x′ dt′

= Ψout(x, t) +

∫

f(x′, t′adv)

|x− x′| d3x′ (5.19)

where the suffixes ret and adv stand for the fact that t′ must be evaluated at the retarded time t′ret = t − R/c, or

the advanced time t′adv = t + R/c. This ensures the proper causal behaviour of the solutions, in the sense that,

eg., the solution at time t is only influenced by the behaviour of the source point x′ at time t−R/c. Ψin and Ψout

are possible plane-wave solutions of the homogeneous wave equation for Ψ. Most often they can be taken to be

zero. Note, however, that this breaks the time-reversal symmetry of theories such as Maxwell’s electromagnetism.

5.5 Retarded Solutions for the Potentials and Fields of a Localised Source (section J6.5)

Nothing prevents the source f(x′, t′ret) in eq. (5.18) from having terms that contain Ψ. Thus, the inhomogeneous

causal solution to Maxwell’s equation (5.8) for the potential A is:

A(x, t) =

∫ −∇′(∇′ ·A(x′, t′) + ∂t′Φ(x
′, t′)/c2)/4π

∣

∣

ret
+ km J(x′, t′ret)

R
d3x′

One advantage of this result (and, therefore, of the Green-function method) is that whatever condition we impose

on ∇ ·A will automatically be satisfied by the solution. If we impose the Lorenz condition, the electromagnetic

potentials now obey wave equations whose retarded solutions are:

Φ(x, t) = ke

∫

d3x′
ρ(x′, t′ret)

R
(5.20)

A(x, t) = km

∫

d3x′
J(x′, t′ret)

R
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where R = |x − x′
ret|. For the potentials, and only for the potentials, the solutions have the same dependence as

the static potentials, except that the sources must be evaluated at retarded time before integrating. This similarity

does not hold for the fields, however! In media without polarisation or magnetisation, eq. (5.4) becomes:

✷E = − 4πke

(

∇ρ +
1

c2
∂tJ

)

(5.21)

✷B = 4πkm ∇× J

where the sources are now free. Again, according to the results of the last section:

E(x, t) = − ke

∫

d3x′

[

∇′ρ(x′, t′) + 1
c2∂t′J

]

ret

R
(5.22)

B(x, t) = km

∫

d3x′
[

∇′ × J(x′, t′)
]

ret

R

We would like to transfer the spatial derivatives to the 1/R factor with an integration by parts, but to do this we

must have derivatives of functions which have first been evaluated at t′ = t − R/c, keeping t′ fixed . In the

integrands, however, we must also take into account the dependence of R on x′ when differentiating. From the

chain rule, we have:

∇
′f(x′, t−R/c) =

[

∇
′f(x′, t′)

]

t′=t−R/c
+ ∂t′f

∣

∣

∣

t′=t−R/c
∇

′(t−R/c)

that is,
[

∇
′f(x′, t′)

]

ret
= ∇

′f(x′, t−R/c) − R̂

c
∂t′f

∣

∣

∣

ret
, where we have used ∇′R = − (x− x′)/|(x− x′| =

− R̂.

A similar argument for the curl of some vector C leads to:

[

∇′ ×C(x′, t′)
]

ret
= ∇′ ×C(x′, t−R/c) +

R̂

c
× ∂t′C

∣

∣

∣

ret

Now we can insert these expressions into the field solutions and integrate by parts the term with the spatial deriva-

tive to get:

E(x, t) = ke

∫

d3x′
[

ρ(x′, tret)
R

R3
+

R

R2
∂ct′ρ

∣

∣

∣

ret
− 1

cR
∂ct′J

∣

∣

∣

ret

]

(5.23)

B(x, t) = km

∫

d3x′
[

J(x′, tret)×
R

R3
+ ∂ct′J

∣

∣

∣

ret
× R

R2

]

The first term in each expression is clearly the straightforward generalisation of the static field, evaluated at retarded

time; but note the extra terms, all with time derivatives.

These Jefimenko solutions are not often used because it is normally easier to find the retarded potentials first

and then obtain the fields via eq. (5.7). But they provide some insight on how the time-dependent solutions go

to their static limit. And by expanding J in a Taylor series around t and, assuming that it varies slowly enough,

keeping only first-order terms in tret−t, one can show that we recover the Biot-Savart Law, B = km
∫

d3x′J(x, t)×
R̂/R3 which is thus seen to have a wider domain of validity than one might have supposed.
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5.6 The Hertz Superpotential Formulation of Maxwell’s Theory (section J6.13)

In eq. (5.2) we wrote a set of Maxwell field equations in terms of the E and B fields:

∇ · E = 4πke ρtot ∇×B = 4πkm Jtot +
1

c2
∂tE

∇ ·B = 0 ∇×E + ∂tB = 0 (5.24)

where the total sources are now involved, not just the free ones. These so-called microscopic equations have

general validity and are the ones to be used to find the fields of a localised source. Under the Lorenz condition:

∇ ·A +
1

c2
∂tΦ = 0

they are equivalent to the second-order equations for the scalar (Φ) and vector (A) potentials:

Φ = 4πke ρtot A = 4πkm Jtot (5.25)

But these equations do not “know” how they have been derived, and (unless they are solved by the method of

sections 5.4 and 5.5, we must check that any of their solutions satisfy the Lorenz condition. While this is not hard

to do for plane-wave solutions, it can get messy in more general cases.

In a 1889 study of the fields radiated by an oscillating dipole, Hertz was led to introduce a vector superpo-

tential (often referred to nowadays as a polarisation potential or a Hertz vector) which lately has received some

attention as a useful tool. The idea is to express the potentials as derivatives of this superpotential, which always

exists as will easily be shown later (in chapter 11) with the four-vector formalism. Here, we will just review a

non-relativistic version.

In his very cursory treatment of the polarisation potential, Jackson (J6.13) uses macroscopic potential equations

in polarised and magnetised matter, with no free sources but with external sources of polarisation and magneti-

sation. While there is nothing wrong with this, it fails to exhibit the full power of the superpotential. Instead we

follow (with some alterations!) a paper by J. J. Sein†. This paper also cites many useful references.

The Hertz superpotential Π is defined so as to satisfy: Φ = −∇ · Π. To find A in terms of Π, we take

advantage of our choice of the Lorenz condition. In terms of A and Π, this is:

∇ ·
(

A − 1

c2
∂tΠ

)

= 0

whose solution is A = (1/c2)∂tΠ +∇ ×V, with V an arbitrary vector field. Then eq. (5.25) for the potentials

are readily converted to the following equations for Π:

∇ · Π = − 4πke ρtot
1

c2
∂t Π + ∇× V = 4πkm Jtot

Now apply the following transformation to the superpotential: δΠ = ∇ × G, where G is arbitrary. The trans-

formation induced on the potentials leaves (EXERCISE) the Lorenz condition, as well as the divergence equation,

invariant. Then we simply choose G so as to cancel the V term in the second equation. This is equivalent to

setting V = 0, and we are left with:

∇ · ✷Π = − 4πke ρtot ∂t✷Π = 4πke Jtot (5.26)

As a check, taking the time derivative of the first equation and subtracting the divergence of the second, the

continuity equation ∇ · Jtot + ∂tρtot = 0 is seen to be satisfied, as expected.

†Am. J. Phys. 57, 834(1989) [https://aapt.scitation.org/doi/10.1119/1.15905]

63

https://aapt.scitation.org/doi/10.1119/1.15905


Lecture Notes on Graduate Electrodynamics 2020

The superpotential approach is most useful for harmonic sources: ρtot(x, t) = ρtot(x)e
−iωt and Jtot(x, t) =

Jtot(x)e
−iωt. This in effect turns time derivatives into −iω = −ick, where k = ω/c. Then the continuity equation

becomes: ∇ · Jtot − ickρtot = 0, and we can eliminate ρtot from our evolution equations (5.26) for Π to obtain:

∇ ·
[

∇2Π + k2Π − 4πi
ke

ck
Jtot

]

= 0 ∇2Π + k2Π − 4πi
ke

ck
Jtot = 0

The first equation automatically holds since the second one is satisfied everywhere, and we arrive at a simple

equation for Π:

(∇2 + k2)Π = 4πi
ke

ck
Jtot (5.27)

This is an inhomogeneous Helmholtz equation whose solution has been found in eq. (5.20), with Jtot(x, t
′
ret) =

Jtot(x)e
−iωt′ = Jtot(x)e

−iωteiωR/c, and R = |x− x′|:

Π(x) = i
ke

ck

∫

Jtot(x
′)

eikR

R
d3x′ (5.28)

where the integration runs over all space. We recognise eikR/R as the Green function for the Helmholtz operator.

This equation may not look so different from the equivalent equation for the vector potential A, but it is. For one

thing, any of its solutions will be consistent with the Lorenz condition—no need to impose it anymore! Also, it

holds in arbitrary media since these may be treated as a bunch of localised sources in vacuum. It all comes down to

specifying Jtot. The formalism also applies equally well to macroscopic variables, eg. in a conducting, magnetic

dielectric where Jtot = Jfree − iωP+∇×M; P and M are the polarisation and magnetisation vectors.

Once the superpotential has been obtained, the harmonic potentials and the harmonic electric and magnetic

fields can be found, using the fields’ expressions in terms of the potentials:

Φ = −∇ ·Π, A = − i
k

c
Π; E = k2Π + ∇(∇ ·Π), B = − i

k

c
∇×Π (5.29)

5.7 Energy and Momentum Conservation for a Field-Particle System (section J6.7)

5.7.1 Conservation of Energy

Let u be the energy density (electric and magnetic) associated with electromagnetic fields in some volume of a

linear, nondispersive material, which we assume to be the same as for static fields (sections 3.5 and 4.10):

ufield =
1

2
(E ·D + H ·B)

If there are no free charges within the volume, we can write a continuity equation:

∂tufield + ∇ · S = 0

where S is an energy current-density vector. As usual this expresses the fact that any change in the amount of

energy inside the volume must correspond to a flux of energy into, or out of, the volume through its boundaries.

If there are free charges or currents in the volume, however, we expect the electric field to do work on them

(the magnetic field does no work) and energy to be transferred between the fields and the charges. To take this into

account, we should write a continuity equation of the form:

∂tu + ∇ · S = 0

where now u = ufield + umech, with umech the mechanical energy density of the charge configuration.
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To find S, assume that the medium is both linear and non-dispersive (otherwise, see the last section in this

chapter). Take the time derivative of ufield:

∂tufield = E · ∂tD + H · ∂tB
= E · ∇×H − H ·∇×E − E · J
= −∇ · (E×H) − E · J

where we have also used Faraday’s Law and the generalised Ampère Law, together with a vector calculus identity.

It is now clear that we can write the energy current density as the Poynting vector:

S = E×H (5.30)

if we recognise E · J as the rate at which the fields do work on the sources per unit volume, and therefore as the

rate of change of the sources’ mechanical energy density, ∂tumech. S has the expected dimensions of energy per

unit area per unit time:

∂tu + ∇ · (E×H) = 0 (5.31)

with u the total energy density (fields and sources) is often known as the Poynting Theorem.

5.7.2 Conservation of Momentum

If there is energy in the fields, it should come as no surprise that there is also momentum, and that the fields can

exchange it with the sources. From the Lorentz force law, the total force exerted by the fields on sources contained

inside a volume V is:

F = dtPmech =

∫

V

(ρE+ J×B) d3x

where Pmech is the total momentum of all the charges (free and bound) in the volume. Now we eliminate the

sources with Maxwell’s equations for the microscopic fields E and B. This yields:

ρE+ J×B =
1

4πke

[

E (∇ · E) + c2 B (∇ ·B) − E× (∇×E) − c2 B× (∇×B)
]

− 1

4πke
∂t(E×B)

where we have inserted a ∇ ·B term and written:

(∂tE)×B = ∂t(E×B) − E× ∂tB = ∂t(E×B) + E× (∇×E)

Now that we have a symmetrical-looking form, we will work out the electric part and transpose the results to the

magnetic part. With the identities in Jackson’s left front cover we eliminate the curl term for E. Thus:

E (∇ ·E) − E× (∇×E) = E (∇ · E) + (E ·∇)E − 1

2
∇(E2)

The right-hand side is easier to manipulate if we write it in index notation:

Ei (∂jE
j) + (Ej∂j)E

i − 1

2
∂iE

2 = ∂j

[

EiEj − 1

2
δj

iE2

]

If then we define the components of the Maxwell stress tensor as:

Tij :=
1

4πke

[

EiEj + c2BiBj − 1

2
δij (E

2 + c2B2)

]

(5.32)
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we obtain the law of conservation of momentum:

∂t(Pmech + Pfield)
i =

∫

V

∂jT
ij d3x

=

∮

S

T ij nj da (5.33)

where, in SI units:

Pfield =

∫

V

ǫ0(E ×B) d3x =
1

c2

∫

V

Sd3x (5.34)

If no charge crosses the boundary of the volume, we interpret T ij as the ith component of the flow of field momen-

tum per unit area, or momentum flux density, in the jth direction across the boundary. We can also see it as the

force per unit area acting across the boundary on the field-particle system contained in the volume. On the other

hand S/c2 is identified as the momentum density in the fields.

The Cartesian components of the total electromagnetic force on a charge distribution are given by:

F i = − 1

c2
dt

∫

Si d3x +

∮

S

T ijnj da (5.35)

where any volume that encloses the whole charge distribution can be used. In static cases, the first term on the

right-hand side vanishes.

5.8 Poynting Theorem for Harmonic Fields (section J6.9)

Often the fields we deal with are harmonic, and it is useful to derive the form of the Poynting theorem relevant to

those fields.

The time dependence of the harmonic fields and sources is of the form e−iωt, eg.:

E(x, t) =
1

2

(

E(x) e−iωt + E∗(x) eiωt
)

Maxwell’s macroscopic field equations for the position-dependent part of harmonic fields then become:

∇ ·D = ρ ∇×H = J − iωD

∇ ·B = 0 ∇×E − iωB = 0 (5.36)

To understand the information contained in the results we are about to derive, we note that scalar products of real

vectors can be written as:

A(x, t) ·B(x, t) =
1

4

[

A(x) e−iωt + A∗(x) eiωt
]

·
[

B(x) e−iωt + B∗(x) eiωt
]

=
1

2
ℜ
[

A∗(x) ·B(x) + A(x) ·B(x) e−2iωt
]

Therefore, the time-averaged scalar product is:

〈

A(x, t) ·B(x, t)
〉

=
1

2
ℜ
[

A∗(x) ·B(x)
]

(5.37)

Now use Maxwell’s equations to write sources in terms of fields in the following expression:
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1

2

∫

V

J∗ · E d3x =
1

2

∫

V

E · [∇×H∗ − iωD∗] d3x

=
1

2

∫

V

[

− ∇ · (E ×H∗) − iω (E ·D∗ − B ·H∗)
]

d3x

= 2iω

∫

V

(wm − we) d
3x −

∮

S

S · n̂ da (5.38)

the last line being the complex Poynting theorem for harmonic fields, where:

S =
1

2
E×H∗ (5.39)

is defined as the complex Poynting vector, and:

we =
1

4
E ·D∗ wm =

1

4
B ·H∗ (5.40)

are the electric and magnetic field energy density, respectively.

Thus, 〈J(x, t) ·E(x, t) 〉 is just the real part of the left-hand side of the complex Poynting theorem. We see that

the real part of eq. (5.38) is just a statement of energy conservation for time-averaged harmonic fields. Also, the

real part of the right-hand side of eq. (5.39) is to be interpreted as the time-averaged Poynting vector for harmonic

fields.

In the complex Poynting theorem, the term that depends on the field energies contributes to the real part only

when these energies are complex, ie. in the case of the lossy dielectrics treated in the next section.

5.9 Poynting Theorem for Lossy, Dispersive Linear Media (section J6.8) — (optional)

In realistic media, even when linear and isotropic, other phenomena are present, such as energy dissipation and

dependence of the permittivity ǫ on frequency (dispersion), that make energy conservation somewhat more com-

plicated to analyse in the macrosopic formalism.

As we shall see when we solve Maxwell’s wave equations, energy losses translate into a complex ǫ. The way

to introduce this into our analysis while at the same time allowing for dispersion is to write a time-domain to

frequency-domain Fourier integral of the fields. For instance:

E(x, t) =

∫ ∞

−∞
E(x, ω) e−iωt dω

D(x, t) =

∫ ∞

−∞
D(x, ω) e−iωt dω

where linearity and isotropy mean that D(x, ω) = ǫ(ω)E(x, ω), with E(x, ω) and D(x, ω) complex fields. Take

the complex conjugate of these expressions and note that the fields on the left-hand side are real. Then consistency

demands that E(x,−ω) = E∗(x, ω) and ǫ(−ω) = ǫ∗(ω).

Now, in our derivation of the Poynting theorem (5.31), when differentiating the electric energy density, 1
2D ·E,

we assumed that the medium was non-dispersive. We can calculate a more general form of the theorem in terms of

our Fourier integrals. Substituting ω′ = −ω in the E integral,
∫

E(x,−ω′)eiω′t dω′ =
∫

E∗(x, ω′)eiω′t dω′, and

there comes (dropping the x dependence to minimise clutter):

E · ∂tD =

∫

dω

∫

dω′E∗(ω′) ·
[

− iωǫ(ω)
]

E(ω) e−i(ω−ω′)t

=
1

2

∫

dω

∫

dω′E∗(ω′) ·
[

− iωǫ(ω) + iω′ǫ∗(ω′)
]

E(ω) e−i(ω−ω′)t
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where the first line can be recovered (exercise) from the second by substituting ω → −ω′ and ω′ → −ω in its

second term. At this stage, all this is just rewriting.

To make further progress, we assume that E(x, ω) has a narrow frequency spectrum (it comes as a long pulse),

ie., it is negligible outside a fairly narrow range of frequencies over which ǫ(ω) changes only slowly. If this true,

then an expansion of the terms inside the square bracket around ω′ = ω gives:

−iωǫ(ω) + iω′ǫ∗(ω′) ≈ 2ωℑ[ǫ(ω)] − i (ω − ω′) dω

[

ω ǫ∗(ω)

]

Inserting this into our previous expression and noticing that the second term can be written as a time derivative,

we finally get:

E · ∂tD =

∫

dω

∫

dω′E∗(ω′) ·E(ω)ωℑ[ǫ(ω)] e−i(ω−ω′)t

+ ∂t
1

2

∫

dω

∫

dω′E∗(ω′) ·E(ω) dω
[

ω ǫ∗(ω)
]

e−i(ω−ω′)t (5.41)

When ǫ is independent of frequency (no dispersion), ǫ∗(ω) = ǫ(ω) = ǫ, so ℑ[ǫ(ω)] = 0 and the first term vanishes.

In that case the second term is simply the change in electric energy density, ∂tufield, as in our previous treatment

of the Poynting theorem which we now realise assumed a non-dispersive medium.

Evidently, in the dispersive case, the term that is being differentiated with respect to time must be some sort

of effective energy density ueff. We can write it in a less complicated form when E(x, t) = Ẽ(x, t) cos(ω0t),
where ω0 is the central frequency of the narrow frequency range over which the field is significant, and Ẽ(x, t) is

a function with slow time variation. Averaging over a period corresponding to ω0 yields:

〈E · ∂tD 〉 = 2ω0 ℑ
[

ǫ(ω0)
]

〈E2(x, t)
〉

+ ∂t

(

ℜ
[

dω
[

ω ǫ(ω)
]

∣

∣

∣

ω0

] 〈

E2(x, t)
〉

)

An exactly analogous expression obtains for H ·∂tB. In the end, the Poynting theorem is modified in the following

way:

∂tueff + ∇ · S = −J ·E − 2ω0ℑ
[

ǫ(ω0)
] 〈

E2(x, t)
〉

− 2ω0ℑ
[

µ(ω0)
] 〈

H2(x, t)
〉

(5.42)

where ueff is the average energy stored in the fields:

ueff = ℜ
[

dω
[

ω ǫ(ω)
]

∣

∣

∣

ω0

]

〈

E2(x, t)
〉

+ ℜ
[

dω
[

ω µ(ω)
]

∣

∣

∣

ω0

]

〈

H2(x, t)
〉

(5.43)

The new terms on the right of the improved Poynting theorem represent non-ohmic dissipation of field energy,

ie. energy absorbed by the material. Only in non-dipersive media do they vanish, since then the permittivity and

permeability are real. Dissipation can occur only when there is dispersion. As for ueff, we see that it has the

expected dependence on the fields, but with ǫ/2 replaced by the Brillouin correction, ℜ
[

dω
[

ω ǫ(ω)
]

∣

∣

∣

ω0

]

, and

similarly for the magnetic term.
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6 Plane Electromagnetic Waves

6.1 Plane Waves in Nonconducting media (section J7.1)

There are very well known solutions to the wave equation for Maxwell fields in vacuum, eq. (5.6): they are the

solutions to the source-free scalar wave equation. To find those plane-wave solutions, we look for vector functions

that depend only on time and one spatial variable, say x. Then we use an elegant trick from monsieur d’Alembert

to change variables to the two independent variables ξ± = x± ct, so that the wave equation becomes ∂2ξ+ξ−
F = 0,

where F = {E, B}, whose general solution drops out immediately:

F = f−(x− ct) + f+(x+ ct)

The arbitrary functions f∓(0, t) are propagated in opposite directions at velocity ±cx̂, with F±(x±ct, y, z) uniform

on a plane perpendicular to the direction of propagation corresponding to a constant value of x±ct, thus justifying

their name “plane wave”.

Instead of a wave propagating in a one-dmensional vacuum, consider a wave propagating in a 3-dim medium

without free charges and currents, and specialise to time-harmonic fields. According to eq. (5.36), Maxwell’s

equations for the position-dependent part of harmonic fields in a uniform, linear and isotropic medium without

free sources are:

∇×B + iωµǫE = 0
(6.1)

∇×E − iωB = 0

These two equations are sufficient to determine the fields since they contain the divergence equations as identities.

To decouple them, take the curl of one and combine it with the other to obtain Helmholtz equations (k2 = ω2µǫ):

(∇2 + k2)E = 0
(6.2)

(∇2 + k2)B = 0

The complex representation of the solution of the Helmholtz equation (with the harmonic time dependence

tagged on) is, in Cartesian coordinates:

E(x, t) = E0 ei(k·x−ωt)

B(x, t) = B0 ei(k·x−ωt)

where we have also folded in the time dependence, and:

k · k = µǫω2 = µrǫr ω
2/c2

with the field strengths E0 and B0 complex constants, and k the wave vector in the direction of propagation. The

solutions exhibit the magic x ± vt dependence on x and t seen in d’Alembert’s solution that identifies them as

progressive waves traveling at the phase velocity of magnitude cm = ω/k = c/n, where n =
√
ǫrµr is known as

the index of refraction of the medium.

In a nondispersive medium, in which ǫr and µr are independent of frequency, we can superpose solutions with

different values of k to construct any pulse shape that propagates at the same phase velocity as its components.

In a dispersive medium, each component propagates at its own speed and this causes the shape to change as it

propagates.

Now the Helmholtz equation is a second-order differential equation and, as we know, not all its solutions will

satisfy the first-order Maxwell equations! Inserting the solutions into the divergence and curl equations gives:

k · E0 = 0 k ·B0 = 0 B0 =
√
µrǫr n̂× E0

c
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where n̂ = k/k is a unit vector in the direction of propagation. This means that both E and B are perpendicular

to each other and to the direction of propagation (hence the name transverse wave).

The energy density (5.40) in the fields is:

u =
1

4

(

ǫE · E∗ +
1

µ
B ·B∗

)

=
ǫ

2
|E0|2 =

1

2µ
|B0|2 (6.3)

the last line being true only if k is real.

The energy flux density is given by the real part of the Poynting vector from eq. (5.39), averaged over time to

get rid of oscillations. If k is real, we have:

S =
1

2Z
|E0|2 n̂ = uv (6.4)

where Z =
√

µ/ǫ, with units of ohms, is called the impedance of the medium. We also see that the speed of the

energy flow is v = c/n as expected. [Note the missing factor of 1/2 in eq. (J7.13).]

When k is complex, things get a bit more, well, complex. If we write ℜ [n̂] ≡ n̂R, and ℑ [n̂] ≡ n̂I, then the

requirement that n̂ · n̂ = 1 no longer means that n has unit length! Instead:

n̂2
R − n̂2

I = 1

n̂R · n̂I = 0

The orthogonality of the real and imaginary parts of k provides one natural choice for the x and y coordinate axes.

Also, we can write |n̂R| = cosh θ and |n̂I| = sinh θ, with θ a real parameter. Therefore:

n̂ = ê1 cosh θ + i ê2 sinh θ (ê1 = i, ê2 = j)

Then the constraint k ·E0 = kn̂ ·E0 = 0 can be satisfied by:

E0 = A (i sinh θ ê1 − cosh θ ê2) +A′ ê3 (6.5)

Also, when k is complex, the amplitude of the fields undergoes exponential decay, and so do the energy density

and flux.

6.2 Linear and Elliptical Polarisation (section J7.2)

When k is real, we shall find it useful to introduce a set of basis vectors (̂ǫ1, ǫ̂2, n̂), called the linear polarisation

basis.

Consider two superposed waves of equal frequency with orthogonal electric fields Ei = ǫ̂i Ẽi exp[i(k·x−iωt)
(i=1, 2), where Ẽi ≡ ai eiδi are complex amplitudes. The associated magnetic fields in the waves are: Bi =√
µrǫr n̂×Ei/c.

The most general form for the superposition of waves that have a phase difference is:

E(x, t) = (̂ǫ1 Ẽ1 + ǫ̂2 Ẽ2) ei(k·x−ωt)

=
(

ǫ̂1 a1 + ǫ̂2 a2 e−i(δ1−δ2)
)

ei(k·x−ωt+δ1) (6.6)

Two cases of interest arise:
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• Linear polarisation (δ1 = δ2 or δ1 = δ2 ± π)

If the waves are exactly in phase, we can write a1 = E0 cos θ, a2 = E0 sin θ. Then E is linearly polarised,

with its direction at an angle such that tan θ = a2/a1.

• Elliptical polarisation (δ1 − δ2 6= 0, 6= ±π)

When the two perpendicular waves are out of phase, we can recast eq. (6.6) in a more transparent form by

choosing the x and y axes along ǫ̂1 and ǫ̂2, respectively. Then k · x = kz, and the field components are

obtained from the real part:

Ex(x, t) = a1 cos(kz − ωt+ δ1)

Ey(x, t) = a2
[

cos(δ1 − δ2) cos(kz − ωt+ δ1) + sin(δ1 − δ2) sin(kz − ωt+ δ1)
]

(6.7)

Squaring and eliminating the time-dependent harmonic functions, we arrive at:

E2
x

a′21
+
E2

y

a′22
− 2 cos(δ1 − δ2)

Ex

a′1

Ey

a′2
= 1

where a′i = ai sin(δ1 − δ2). This shows that the tip of the field vector traces an ellipse, and the wave is said

to be elliptically polarised. The cross-term indicates that the ellipse is tilted with respect to the x and y axes.

When δ1 − δ2 = ±π/2, the principal axes are oriented along the coordinate axes. If in addition a1 = a2,

we speak of circular polarisation.

Viewed from a fixed point and facing the oncoming wave, the electric field vector rotates counterclockwise

(positive helicity) when 0 < δ1 − δ2 < π, or clockwise (negative helicity) when π < δ1 − δ2 < 2π.

Elliptical polarisation can also be described by transforming to a different orthonormal basis, the circular

polarisation basis ǫ̂± = (̂ǫ1 ± i ǫ̂2)/
√
2, in which:

E(x, t) = (̂ǫ+ Ẽ+ + ǫ̂− Ẽ−) ei(k·x−ωt) (6.8)

where

Ẽ± = a± eiδ± =
1√
2
(Ẽ1 ± i Ẽ2)

We close this short discussion of polarisation by mentioning a useful parametrisation that allows to find the

polarisation of a wave from intensity measurements. In the linear polarisation basis, they are:

s0 = |̂ǫ1 ·E1|2 + |̂ǫ2 ·E2|2 = a21 + a22

s1 = |̂ǫ1 ·E1|2 − |̂ǫ2 ·E2|2 = a21 − a22

s2 = 2ℜ[(̂ǫ1 ·E1)
∗(̂ǫ2 · E2)] = 2a1 a2 cos(δ1 − δ2)

s3 = 2ℑ[(̂ǫ1 ·E1)
∗(̂ǫ2 · E2)] = 2a1 a2 sin(δ1 − δ2) (6.9)

These Stokes parameters, as they are known, obey the constraint s20 − s21 − s22 − s23 = 0.

Similar expressions can be written in the circular basis — see eq. (J7.28).

6.3 Reflection and Refraction at a Plane Interface Between Dielectrics (section J7.3)

We wish to find out what happens to an electromagnetic wave incident on a flat interface between two linear,

isotropic and homogeneous dielectrics. A monochromatic plane wave:

E(x, t) = E0ei(k·x−ωt), B(x, t) =
1

cm

(n̂×E) (6.10)
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is incident on a plane interface (see figure J7.5) , giving rise to a transmitted wave:

E′(x, t) = E′
0ei(k′·x−ωt), B′(x, t) =

1

cm

(n̂′ ×E′) (6.11)

and a reflected wave:

E′′(x, t) = E′′
0ei(k′′·x−ωt), B′′(x, t) =

1

c′′m
(n̂′′ ×E′) (6.12)

All three waves have the same frequency, ω, and their wave numbers are related by ω = k cm = k′′ cm = k′c′m,

with cm = 1/
√
µǫ.

The combined incident and reflected fields in the medium of incidence must match the fields transmitted into

the other medium at the interface. These boundary conditions will have the general form:

(stuff)eik·x + (stuff)eik′′·x = (stuff)eik′·x (6.13)

We’ll worry about the “stuff” later. What is important in all the matching conditions is that the position and time

dependence reside in the exponentials, not in the stuff which is made of constants. Since the relations must hold

everywhere on the interface and at all times, the exponentials must be equal! This means that, on the interface,

k · x = k′ · x = k′′ · x, that is: (k− k′) · x = (k − k′′) · x = 0. Since x is not restricted other than being on the

interface, this can hold only if the components of all three k vectors are separately equal.

Conclusion:

a) The incident, reflected, and transmitted wave vectors form a plane, the plane of incidence.

The equality of the components of the wave vectors implies that k sin i = k′ sin r = k′′ sin r′, where i is the

angle of incidence, r′ is the angle of reflection, and r is the angle of transmission (or refraction). Then:

b) the angles of reflection and incidence are equal:

i = r′ (6.14)

c) and the Snell-Descartes law governs refraction:

n sin i = n′ sin r (6.15)

These three statements are the fundamental laws of geometrical optics. Notice that they arise from the fact that

we are dealing with waves. The electromagnetic nature of these waves has not been used. Other kinds of waves

(eg. sound) will obey the same laws!

Going back to the general form of the matching conditions (6.13), we can now cancel the exponentials and

deal with the “stuff”. This is where the electromagnetic nature of the waves comes into play.

The matching of the normal components of D and B gives:

[

ǫ (E0 + E′′
0) − ǫ′E′

0

]

· n̂ = 0
[

B0 + B′′
0 − B′

0

]

· n̂ = 0 (6.16)

Next, matching of the tangential (parallel to the interface) components of E and H leads to:

[

E0 + E′′
0 − E′

0

]

× n̂ = 0
[

H0 + H′′
0 − H′

0

]

× n̂ = 0 (6.17)

Note that since H = B/µ =
√
ǫµ n̂×E/µ, H0 = E0/Z from the definition of the impedance: Z =

√

µ/ǫ.

Two cases must be considered: when the polarisation of the incident wave is parallel (p-polarised) to the plane

of incidence, and when it is perpendicular (senkrecht in German), or s-polarised, to the plane of incidence. In

both cases, one normal condition is trivial and the other one is equivalent to one of the tangential conditions after

implementing the Snell-Descartes law in the form ǫ′ sin r = (Z/Z ′)ǫ sin i. Then we shall only use eq. (6.17).
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• For E parallel to the plane of incidence (p-polarisation), eq. (6.17) projected on the interface becomes:

cos i (E0 − E′′
0 ) − cos r E′

0 = 0

1

Z
(E0 + E′′

0 ) − 1

Z ′
E′

0 = 0

Solving for the relative amplitudes with the Snell-Descartes law, we obtain the Fresnel relations for p-

polarisation:

E′
0

E0
=

2 cos i

(Z/Z ′) cos i +
√

1− n2

n′2 sin2 i

(6.18)

E′′
0

E0
=

(Z/Z ′) cos i −
√

1− n2

n′2 sin2 i

(Z/Z ′) cos i +
√

1− n2

n′2 sin2 i

• For s-polarised E, perpendicular to the plane of incidence (ie. parallel to the interface), eq. (6.17) becomes:

E0 + E′′
0 − E′

0 = 0

1

Z
(E0 − E′′

0 ) cos i −
1

Z ′
E′

0 cos r = 0

Solving for the relative amplitudes, using the Snell-Descartes law, we obtain the Fresnel relations for s-

polarisation:

E′
0

E0
=

2 cos i

cos i + (Z/Z ′)
√

1− n2

n′2 sin2 i

(6.19)

E′′
0

E0
=

cos i − (Z/Z ′)
√

1− n2

n′2 sin2 i

cos i + (Z/Z ′)
√

1− n2

n′2 sin2 i

Note the formal resemblance with the “p” case, except for the location of the impedance ratio. At normal

incidence, the two sets become:

E′
0

E0
=

2

1 + Z/Z ′
=

µ=µ′

2

1 + n′/n

(6.20)

E′′
0

E0
= ± 1 − Z ′/Z

1 + Z ′/Z
=

µ=µ′
± 1 − n/n′

1 + n/n′

where the +/− sign applies to perpendicular/parallel polarisation, respectively.

If n′ > n, the reflected electric field has its phase reversed with respect to the incident field; it is in phase if

n′ < n. The transmitted field is always in phase with the incident one.

6.4 Polarisation by Reflection and Total Internal Reflection (section J7.4)

For p-polarisation, the reflected amplitude vanishes when the numerator does, ie. when:

tan i =

√

(Z/Z ′)2 − 1

1− (n/n′)2
=

µ=µ′

n′

n
(6.21)

73



Lecture Notes on Graduate Electrodynamics 2020

This magic angle of incidence is called the Brewster angle, θB. For s-polarisation, demanding that the reflected

amplitude in eq. (6.19) vanish gives tan i =
√
−1: there is always some reflection for any angle of incidence.

For an air to water (n = 4/3) interface, θB ≈ 50◦. Since s-polarised waves always undergo some reflection,

unpolarised sunlight incident on a water surface at an angle of about 50◦ is reflected mostly s-polarised, ie. parallel

to the horizontal water surface. This is why polaroid sunglasses with a vertical transmission axis help to reduce

the intensity of sunlight reflected from water.

The Brewster effect can also be put to effective use whenever one wishes to extract the s-polarised component

of a beam, or to maximise transmission of p-polarised light at an interface. The efficiency of gas lasers is routinely

maximised by the use of so-called Brewster windows, through which the p-polarised component of the light can

pass with negligible loss.

The Snell-Descartes law shows that when the incidence angle i has a value i0 called the critical angle, such

that sin i0 = n′/n with n > n′, r = π/2 and the transmitted wave in fact propagates along the surface as an

evanescent wave which is exponentially attenuated with distance into the second medium. Indeed, when i > i0,

sin r = (n/n′) sin i = sin i/ sin i0, so that cos r = i[(sin i/ sin i0)
2 − 1]1/2 is imaginary. However:

eik′·x = eik′(z cos r+x sin r) = e−k′| cos r|z eik′(sin i/ sin i0)x

Then, if we calculate the energy transmitted into the the second medium, we find, using eq. (5.37):

〈S · ẑ 〉 =
1

2
ℜ
[

ẑ · (E′ ×H′∗)
]

=
1

2ω µ′
ℜ
[

(ẑ · k′)|E′
0|2
]

=
1

2ω µ′
ℜ
[

(k′ cos r)|E′
0|2
]

= 0

since cos r is imaginary. This shows that no energy is transmitted into the medium, even though the fields there

are not zero. If, however, the thickness of the medium is of the order of a few wavelengths, a wave can be observed

travelling on the other side of the medium, as in transmission through a finite-height potential barrier in quantum

mechanics when the incident energy is smaller than the height of the barrier.

Interestingly enough, though, when a narrow beam is incident at an angle larger than the critical angle, it

emerges slightly shifted laterally, as though it has reflected from a depth of about δ =
[

k
√

sin2 i− sin2 i0
]−1

beyond the interface. This is known as the Goos-Hänchen effect (See Jackson and references quoted therein).

6.5 The Hertz Superpotential and the Interaction of a Plane Wave with a Medium

In this section, we would like to present an illustration of the use of the Hertz superpotential formulation developed

in section 5.6 to study the interaction of a plane wave with a bounded medium. We recall that the general solution

for macroscopic electric and magnetic harmonic fields is, from eq. (5.29) and (5.28):

Π(x) = i
ke

ck

∫

Jtot(x
′)

eikR

R
d3x′

E = k2Π + ∇(∇ ·Π), B = − i
k

c
∇×Π

where Jtot = Jfree − iωP+∇×M, P and M being the polarisation and magnetisation vectors. As before, the in-

tegrand is to be evaluated at retarded time. The use of macroscopic variables simplifies the treatment considerably,

because it bypasses the need to care about things like the “local field”, and the molecular polarisibility models of

section 3.4.
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For the purposes of our illustration we will assume no free charges in a homogeneous, linear and isotropic

dielectric medium, so that Jtot(x) = −iωP(x). Using the constitutive relation that relates P and the electric field

E′ in such dielectrics: P = ǫ0χeE
′, it is clear that the above are integro-differential equations for the fields. In this

view, the electric field at any point in space is the superposition of the retarded electric fields from every source

point. In particular, inside a bounded medium, the net field must be the sum of the incident fields from sources

outside the medium and those produced by free (when present) and induced sources in the medium.

So as to be self-consistent, the sources must generate a field that cancels the incident field inside the medium

and replaces it by the transmitted field inside the medium..

Similarly, the reflected (scattered) field outside the medium is produced by sources at every point inside the

medium, not just from the surface as in the standard analysis given in section 6.3.

Let the dielectric occupy the infinite half-space x > 0. We will first solve the wave equation (5.29) for the

superpotential:

∇2Π + k2Π = 4πi
ke

ck
Jtot = 4πke P (6.22)

We will work with the polarisation vector, and assume that it is a linearly polarised plane wave travelling in the

direction perpendicular to the interface: P(x) = P0eik′x = P0einkx, where P0 = P0ẑ, and n is a dimensionless

constant. Then eq. (5.28) becomes:

Π(x) = i
ke

ck

∫

Jtot(x
′)

eikR

R
d3x′ = keP0

∫

einkx′ eikR

R
d3x′ = ke einkxP0

∫

eink(x′−x) eikR

R
d3x′

The integral of the Green function in the y′-z′ plane is most easily done in polar coordinates (ρ′, φ′), with the

change of variable: ρ′2 = R2 − |x′ − x|2, suggested by the geometry of the calculation:

∫ ∞

ρ′=0

∫ 2π

φ′=0

eikR

R
ρ′dρ′ dφ′ = 2π

∫ ∞

|x′−x|
eikR dR = 2π lim

α→0

∫ ∞

|x′−x|
e(ik−α)R dR

The regulator α > 0 is introduced to compensate for the unphysical uniformity of the plane wave in the plane

perpendicular to the direction of propagation. Then even Maple is happy to evaluate it:

> int(exp((I*k -alpha)*R),R=a..infinity) assuming alpha>0;

− ea(Ik−α)

Ik − α

Taking the limit and inserting into our expression for Π leaves an integral over x′. Without loss of generality, take

the point of observation to lie on the x axis, either outside (x < 0) or inside x > 0) the medium. In SI units:

Π(x) = Π(0)(x) + i
P0

2kǫ0
einkx

∫ ∞

0
eink(x′−x) eik|x′−x| dx′ (6.23)

where we have added a formal homogeneous solution, Π(0), to the particular solution of eq. (6.22) we have just

found. It is clear that Π(0) is associated with the incident electric field E , with E = E0eikx.

Now, in eq. (5.29), ∇ · Π = 0 because the superpotential has no component in the longitudinal direction,

which carries the x dependence. Therefore, E′ = k2Π′ for x > 0 (inside the medium), and E′′ = k2Π′′ for x < 0
(outside the medium).

• x > 0

When the observation point lies inside the medium, we have:

Π′(x) = Π(0)(x) + i
P0

2kǫ0
einkx

[
∫ x

0
ei(n−1)k(x′−x) dx′ +

∫ ∞

x
ei(n+1)k(x′−x) dx′

]

= Π(0)(x) +
P0

k2ǫ0

[

1

n2 − 1
einkx − 1

2(n− 1)
eikx

]
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The second integral has been made to converge with a regulator in the same way as above. Now it is time to

implement consistency with the constitutive relation P = ǫ0χeE
′:

P = P0 einkx = ǫ0χe(k
2 Π′) = χe

[

ǫ0E0eikx + P0

(

1

n2 − 1
einkx − 1

2(n− 1)
eikx

)]

or, rearranging:

P0

(

1 − χe

n2 − 1

)

einkx = χe

(

ǫ0E0 − P0

2(n − 1)

)

eikx

For this equality to hold everywhere, the coefficients in front of the exponentials on both sides must vanish

separately. This immediately yields:

n2 = 1 + χe (6.24)

the standard result for the index of refraction, leading directly to the phase velocity in the medium. Also:

E0 − 1

n− 1

P0

2ǫ0

= 0

represents the cancellation of the incident field inside the medium by a field emitted by the sources induced

by that very same incident field. This is usually known as the extinction theorem.

Indeed, with this condition, the transmitted field becomes:

E′(x) =
✘✘✘✘✘✘✘✘1

2(n − 1)

P0

ǫ0

eikx +
P0

ǫ0

(

1

n2 − 1
einkx −

✘✘✘✘✘✘✘1

2(n − 1)
e i kx

)

=
P0

ǫ0

1

n2 − 1
einkx = E′

0 einkx

(6.25)

• x < 0

When the observation point lies outside the medium, we obtain the reflected field emitted by the induced

sources inside:

E′′(x) = k2 Π′′(x) = i k
P0

2ǫ0
e−ikx

∫ ∞

0
ei(n+1)kx′

dx′ = − P0

2ǫ0

1

n+ 1
e−ikx = E′′

0 e−ikx (6.26)

With P0 = 2ǫ0(n−1)E0 from the extinction theorem, the reflection and transmission coefficients are, respectively:

E′′
0

E0
= − n− 1

n+ 1

E′
0

E0
=

2

n+ 1
(6.27)

which are consistent with the Fresnel relations obtained in eq. (6.20). Note how, in the superpotential formulation,

there is no need for the matching conditions at the interface, unlike in the more standard treatment. Everything,

including the phase velocity in the medium, derives from the self-consistency of the constitutive relation for the

medium.
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6.6 Dispersion in Dielectrics, Conductors and Plasmas (section J7.5)

6.6.1 Simple Drude-Lorentz model for the frequency-dependent dielectric constant

In section 4.3, we wrote down an an expression, eq. (4.5), relating the polarisation vector P to the molecular

polarisability γmol of a species of molecules with number density N and the local electric field:

P = N 〈pmol〉 = N γmol ǫ0 Elocal

In trying to calculate γmol, we assumed that bound electrons behaved as damped harmonic oscillators. We now

delve deeper into this model. If we write p = −ex, where x is the position of an electron of mass m and charge

−e, then the dipole moment that it contributes obeys:

d2tp + γ dtp + ω2
0 p = − e2

m
E(x, t) (6.28)

where E is the applied electric field which for our purposes here we take to be harmonic and roughly equal to

the local field. The constant γ (not to be confused with γmol) represents a damping effect. This equation has the

well-known solution:

p =
e2/m

ω2
0 − ω2 − iγ ω

E (6.29)

Now, P = (ǫr−1) ǫ0 E (eq. (3.24)). If we multiply the solution for p by the number of electrons per molecule,

fj , that have natural frequency ωj , and then by N , and sum over j, we obtain an equation for P which can be

compared with the relation involving ǫr, yielding:

ǫr(ω) = 1 +
N e2

ǫ0m

∑

j

fj
ω2
j − ω2 − i γjω

= 1 +
N e2

ǫ0m

∑

j

fj
ω2
j

[

1− ω2/ω2
j + iγj/ωj

(1− ω2/ω2
j )

2 + (γ2j /ω
2
j )(ω

2/ω2
j )

]

(6.30)

with
∑

fj = Z if there are Z electrons in one molecule. The fj are often called oscillator strengths.

6.6.2 Anomalous dispersion, resonant absorption

In general, γj/ωj ≪ 1 and, at frequencies below the lowest resonant frequency, ǫr as given by eq. (6.30) is approx-

imately real, and it increases with frequency: we say that the medium exhibits normal dispersion. When ω ≈ ω1

(see figure J7.8), however, the imaginary part of ǫr manages to dominate, giving rise to resonant absorption of the

wave. Indeed, we know that k ·k = µrǫr ω
2/c2. Writing k ≡ β+ iα/2, this equation becomes, for non-magnetic

media:
ω2

c2
ℜ[ǫr] = β2 − α2

4

ω2

c2
ℑ[ǫr] = αβ

Eliminating α yields:

β2 =
1

2

ω2

c2
ℜ[ǫr]

[

1 +
√

1 + 4 (ℑ[ǫr]/ℜ[ǫr])2
]

≈











ω2

c2
ℜ[ǫr] ℑ[ǫr] ≪ ℜ[ǫr]

ω2

c2
ℑ[ǫr] ℑ[ǫr] ≫ ℜ[ǫr]

(6.31)

The case ℑ[ǫr] ≪ ℜ[ǫr] illustrates the direct link between the absorption coefficient α that attenuates the wave

intensity and ℑ[ǫr]: α ≈ (ℑ[ǫr]/ℜ[ǫr]) β.

As calculated from eq. (6.30), dωℜ[ǫr] < 0 and ℜ[ǫr] > 0 decreases (anomalous dispersion) in the range

ω ≈ ωj .
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Example 6.1. Low frequencies, conductivity

When ω ≪ ω1, eq. (6.30) goes over to:

ǫr(ω) = 1 +
N e2

ǫ0m

∑

j

fj

ω2
j

> 1 (6.32)

if, as happens in a dielectric, the lowest resonant frequency does not vanish.

If a fraction f0 of a molecule’s electrons are free, however, ω0 = 0 and we must treat their contribution

to the dielectric constant in eq. (6.30) separately, with an extra term that diverges at ω = 0:

i
N f0 e

2

ǫ0mω(γ0 − iω)

Free electrons, as we know, make a substance a conductor, so we would expect their contribution to

be related somehow to the conductivity σ. A quick and dirty connection is provided by the classical

Drude model, which writes Ampère’s generalised law as: ∇×H = J− iωD = −iω
(

ǫ+ i σ/ω
)

E,

using Ohm’s law, J = σE.

But we could just as well put J = 0 and identify the quantity in round brackets with the total permit-

tivity which would already include the contribution from conducting electrons. This would give:

σ =
f0N e2

m(γ0 − iω)
(6.33)

Example 6.2. High-frequency limit, plasma frequency

At the other end of the spectrum, far above any resonant frequency, eq. (6.30) assumes the simple

form:

ǫr ≈ 1 − NZ e2

ǫ0m

1

ω2
= 1 −

ω2
p

ω2
(6.34)

with ωp the plasma frequency. At high frequencies, the permittivity is independent of the details of

the model, such as the resonant fequencies and damping. In dielectrics, ǫr ≈ 1, and this equation

holds only when ω ≫ ωp.

In a tenuous plasma, where electrons are mostly free and γ can be neglected, eq. (6.34) holds even at

low frequency, as can be seen from eq. (6.30) with γj neglected. Remembering that k2 = ǫr ω
2/c2 in

a non-magnetic material, we arrive at the dispersion relation:

ω(k) =
√

ω2
p + k2 c2 (6.35)

which shows that ωp is also a cut-off frequency, below which there is no wave propagation.

When ω < ωp, the wave vector is purely imaginary and the wave turns into exponentially decreasing

fields. Such a plasma reflects all incident waves of frequency lower than its plasma frequency.

Example 6.3. Absorption coefficient of water

A final interesting case is provided by the dramatic behaviour of the absorption coefficient of water.

At microwave frequencies, water is very absorptive (microwave ovens!), but the coefficient crashes

by more than seven orders of magnitude in the range 4 × 1014 < ν < 8 × 1014 Hz, what we call the

visible region. . .
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6.7 Simplified Model of Propagation in the Ionosphere (section J7.6)

Wave propagation in a tenuous plasma can be strongly affected by the presence of a magnetic induction field, such

as that of the Earth. Consider a uniform, static induction B0, with transverse waves propagating in its direction.

As we have done before, we ignore collisions as well as the influence of the magnetic induction of the waves

themselves on the motion of the electrons, to write the equation of motion for a dipole p = −ex:

p̈ − e

m
(B0 × ṗ + eE e−iωt) = 0

(We are introducing the useful standard notation ṗ = dtp.)

Restrict to circular polarisation: E± = (̂ǫ1 ± i ǫ̂2)E. Now B0 is parallel to the wave vector k, and so must be

perpendicular to both ǫ̂1 and ǫ̂2. We look for solutions of the form: p± = (̂ǫ1 ± i ǫ̂2) p e−iωt.

Inserting this into the differential equation, and using B̂0 × (̂ǫ1 ± i ǫ̂2) = ∓i (̂ǫ1 ± i ǫ̂2), we see that:

−ω2 p± ± ω ωB p± = e2 E±/m

where ωB = eB0/m. Solving for p, we find that the dipole moment of an electron obeys:

p± = − e2 E±

mω
(

ω ∓ ωB

)

Multiplying by the electron concentration NZ and comparing again with P = (ǫr − 1) ǫ0 E, we arrive at:

ǫr∓ = 1 −
ω2

p

ω
(

ω ∓ ωB

) = 1 − (ωp/ωB)
2

ω

ωB

(

ω

ωB

∓ 1

) (6.36)

where the upper(lower) sign applies to a positive(negative) helicity wave. This means that the medium is birefrin-

gent: the dependence of the dielectric constant (and the index of refraction) depends on the helicity of the incident

wave.

At low frequencies (ω < ωB), ǫr− is always positive, so waves with positive helicity always propagate. But

ǫr+ turns negative below a certain frequency that depends on ωp/ωB. Wave components with negative helicity are

then reflected by the plasma.

For ω > ωB, the positive-helicity components cannot propagate until a certain frequency, again dependent on

ωp/ωB, is reached. At high enough frequencies, both helicities always propagate and there is no reflection. See

figure J7.10 for illustrations.

Since a linearly polarised wave can be viewed as the sum of two waves with opposite helicities, there will

be ranges of incident frequencies for which one helicity is totally reflected while the other is partially reflected,

changing the helicity mix to produce an elliptically polarised reflection. By probing layers in the ionosphere from

the ground with suitably chosen frequencies, it is possible to map the dependence of the electron concentration

on altitude. Indeed, NZ , which increases with altitude, goes like ω2
p , so that when ωp is large enough for a given

incident frequency, one helicity component will see a negative dielectric constant and will be reflected. By timing

the arrival of the reflected wave, the altitude of the corresponding concentration can be determined (see fig. J7.11).

Such reflections off ionospheric layers explains why VHF signals, like TV, are sometimes received much further

away than line of sight propagation would allow.
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6.8 One-dimensional Wave Superposition, Group Velocity (section J7.8)

Fourier synthesis allows us to build pretty much any shape—finite-length wave train, pulse or what have you—out

of a superposition of harmonic waves of different frequencies, each with infinite duration and extent, eg., in one

dimension:

ψ(x, t) =
1√
2π

∫ ∞

−∞
A(k) ei[kx−ω(k)t] dk

A(k) =
1√
2π

∫ ∞

−∞
ψ(x, 0) e−ikx dx (6.37)

The relation that gives the frequency ω(k) = ω(−k) as a function of mode or wave number is the dispersion

relation, one example of which we saw in the previous section. If dissipation occurs, k is complex.

The intensity of the signal is proportional to |ψ(x)|2, with |A(k)|2 the intensity in k-space. Define the average

of a function f(x) as:

〈 f(x) 〉 =

∫

f(x) |ψ(x)|2 dx
∫

|ψ(x)|2 dx
where all integrals in this derivation extend from −∞ to ∞. We also define the mean-square deviation as

∆f2 =
〈 [

f − 〈 f 〉
]2〉

= 〈 f2 〉 − 〈 f 〉2.

Similarly, we can define the average of k by integrating over all k. But we can also express this average with

an integral over x. First, insert a δ-function in its integral representation (0.16):

〈 k 〉 =

∫

k |A(k)|2 dk
∫

|A(k)|2 dk =

∫∫

k′A∗(k)A(k′) δ(k′ − k) dk dk′
∫

|A(k)|2 dk =
1

2π

∫∫∫

k′A∗(k)A(k′) ei(k′−k)x dxdk dk′
∫

|A(k)|2 dk

With the Parseval-Plancherel theorem applied to the denominator, this can be written as:

〈 k 〉 =
1√
2π

∫

dxψ∗(x)
∫

k′A(k′) ei k′x dk
∫

|ψ(x)|2 dx =

∫

ψ∗(x) [−i dxψ(x)] dx
∫

|ψ(x)|2 dx

In the same manner:

〈 k2 〉 = −
∫

ψ∗(x) d2xψ(x) dx
∫

|ψ(x)|2 dx
Then:

∆k2 =

∫
∣

∣

∣

(

− i dx − 〈 k 〉
)

ψ(x)
∣

∣

∣

2
dx

∫

|ψ(x)|2 dx
represents the spread of the shape/pulse in k-space, just as ∆x2 represents its spread in position.

Next, consider the positive definite ratio:

r =

∫

|g(x)|2 dx
∫

|ψ(x)|2 dx

where

g(x) =
(

[

x− 〈x 〉
]

− i η
[

− i dx − 〈 k 〉
]

)

ψ(x)

with η an arbitrary parameter. Now we proceed to evaluate r. First, by definition:

∫

ψ∗(x)
(

x− 〈x 〉
)2
ψ(x) dx

∫

|ψ(x)|2 dx = ∆x2
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Also, as we have written above:

η2

∫

∣

∣

∣

(

− i dx − 〈 k 〉
)

ψ(x)
∣

∣

∣

2
dx

∫

|ψ(x)|2 dx = η2 ∆k2

The cross-terms give:

η

∫

[

(

x− 〈x 〉
)

ψ∗
(

dx − i✟✟✟〈 k 〉)ψ +
(

dxψ
∗ + i

✚
✚✚〈 k 〉ψ∗

)(

x− 〈x 〉
)

ψ
]

dx
∫

|ψ(x)|2 dx

= η

∫

(

x− 〈x 〉
)[

ψ∗ dxψ + ψ dxψ
∗
]

dx
∫

|ψ(x)|2 dx

= η

∫

(

x−✟
✟✟〈x 〉
)

ψ∗ dxψ − ψ∗ dx
[(

x−✟
✟✟〈x 〉
)

ψ
]

dx
∫

|ψ(x)|2 dx
= − η

where the next-to-last line is obtained by integrating the term with dxψ
∗ in the previous one by parts. So r =

∆x2 + η2 ∆k2 − η ≥ 0, with η an arbitrary parameter that we can choose so as to minimise r. Setting dηr equal

to zero, we find η = [2∆k2]−1. Then:

rmin = ∆x2 − 1

4∆k2
≥ 0

or

∆x∆k ≥ 1/2 (6.38)

A similar derivation shows that:

∆t∆ω ≥ 1/2 (6.39)

Thus, for a given spread in k-space or frequency space (bandwith), the spread of the signal in position or time is

bounded from below. We should realise that this important result applies to any kind of wave, not only electro-

magnetic waves.

We can also address the behaviour of a pulse or finite wave train as it propagates. If its bandwidth is fairly

narrow, or if the dependence of frequency on wave number (given by the dispersion relation) is not too fast, then

ω(k) can be expanded around the central value k0 which dominates the spectrum:

ω(k) = ω0 + dkω
∣

∣

k0
(k − k0) + . . .

When inserted into eq. (6.37), this yields:

ψ(x, t) =
ei[k0dkω−ω0]t

√
2π

∫ ∞

−∞
A(k) eik[x−dkω t] dk

= ei[k0dkω−ω0]t ψ(x− vg t , 0)

where we have introduced the group velocity:

vg = dkω
∣

∣

0
(6.40)

which is in general different from the phase velocity vph = ω(k)/k = c/n(k). Since the energy density goes like

|ψ|2, we see that it also propagates at the group velocity. Also, the pulse itself propagates undistorted.
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Written in terms of n, the group velocity becomes:

vg = cdk(k/n)
∣

∣

0
=

c

n

(

1 − k

n
vg dωn

)

=⇒ vg =
c

n(ω) + ω dωn
(6.41)

where we have used vg dωn = dkn to express vg in terms of n(ω).

In the case of normal dispersion, dωn > 0, and the group velocity is smaller than the phase velocity. When

dispersion is anomalous, however, the negative dωn causes the group velocity to be larger; in extreme cases, we

could even get vg > c (see figure J7.14) and vg < 0! Before we get all excited about this, however, we note that

eq. (6.41) was obtained under assumptions which do not hold when dispersion is anomalous as n then decreases

quickly with frequency. Although one can contrive experiments in which the peak of a pulse emerges from a thin

absorber before the peak of the incident pulse has entered it (vg < 0), no information can be transmitted this way.

One of our faculty, Aephraim Steinberg, has been heavily involved in such experiments—see reference cited in

Jackson.

6.9 Causality and the Relation between D and E - Kramers-Kronig Relations (section J7.10)

6.9.1 Non-locality in time

The response of a medium to a field cannot be instantaneous. When a field is turned on, it must take some time

for the electrons and atoms to respond (after all, they have mass!); when the field is turned off, it takes time for the

medium to relax back to its previous state. How can we incorporate this property in our formalism?

In section 6.8, when obtaining the Poynting theorem a dispersive medium, we already used a Fourier decom-

position of the time dependence of E and D over frequency space:

D(x, t) =
1√
2π

∫ ∞

−∞
D(x, ω) e−iωt dω

D(x, ω) =
1√
2π

∫ ∞

−∞
D(x, t′) eiωt′ dt′

with D(x, ω) = ǫ(ω)E(x, ω), where ǫ(ω) = ǫ0
(

1 + χ(ω)
)

. Thus, we can write:

D(x, t) =
1

2π

∫ ∞

−∞
dω ǫ(ω) e−iωt

∫ ∞

−∞
dt′ eiωt′ E(x, t′)

= ǫ0 E(x, t) + ǫ0

∫ ∞

−∞
G(τ)E(x, t − τ) dτ (τ = t− t′)

where the kernel, or response function, is defined as:

G(τ) =
1

2π

∫ ∞

−∞
χ(ω) e−iωτ dω (6.42)

We can now identify the term containing the kernel with the polarisation vector P, which provides a constitutive

relation between the response of the material and the field. We see that D(t) depends on the whole history of E,

and that the frequency-domain formalism provides non-locality in time (but not in space) in a natural way (see

J7.10B for a discussion of the time scales involved, and on how far we can push our implicit assumption of locality

in space). But there is a problem when τ ≤ 0, or t′ ≥ t: the response precedes the stimulus. . .
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6.9.2 Causality and analyticity of χ(ω)

If we impose causality, however, only values of the field before t can contribute to P(t). Thus, G(τ ≤ 0) = 0, and

we arrive at a very general relation:

P(x, t) = ǫ0

∫ ∞

0
G(τ)E(x, t − τ) dτ (6.43)

with the frequency dependence of the susceptibility given by:

χ(ω) =

∫ ∞

0
G(τ) eiωτ dτ (6.44)

Some very general information about the behaviour of the susceptibility can be derived by postulating that (1)

G(τ) and its derivatives go to 0 as τ → ∞, (2) that G(τ) is bounded everywhere, as well as (3) that G(τ ≤ 0) = 0
(causality).

Now we can show, using contour integration, that χ(ω) has no pole in the upper half of the complex-ω plane.

If a function f(ω) is analytic inside a contour C, the Cauchy-Goursat Theorem asserts that:

∮

C

f(ω) dω = 0

Conversely, let us evaluate the integral for G(τ) in eq. (6.42) over a contour enclosing the whole upper half-plane:

∮

C

χ(ω) e−iωτ dω =

∫ ∞

−∞
χ(ω) e−iωτ dω +

∫

R→∞
χ(ω) e−iωτ dω

Since we can choose any value of τ , let τ < 0. Then the first term on the right, which is just G(τ) (up to 2π),

vanishes because of causality. The integrand in the second term is bounded by |χ|eℑ(ω)τ . Because here ℑ(ω) > 0,

the integrand vanishes as R→ ∞ when τ < 0, and the contribution from the semi-circle at infinity also vanishes.

From complex analysis, the vanishing of the contour integral means that either χ(ω) has no singularities in the

upper half-plane, or else their contributions cancel out. But differentiate eq. (6.44) n times and note that the

resulting integrand remains bounded when τ > 0 and ℑ(ω) > 0. On the real ω axis, g(ω) is bounded, and any

branch point can be bypassed without changing anything. Because a function whose nth-order derivative exists ∀n
must be analytic, this establishes that χ(ω) has no singularities in the upper half-plane when causality is imposed.

In other words, causality implies analyticity!

Moreover, if we repeatedly integrate the right-hand side of eq. (6.44) by parts, we obtain:

χ(ω) ∼ i

ω
G(0) − 1

ω2
dτG

∣

∣

τ=0
+ . . .

assuming that G and its derivatives vanish at infinity. The first term vanishes from causality, and we find that:

ℜ[χ(ω)] ∼
ω→∞

O(1/ω2) ℑ[χ(ω)] ∼
ω→∞

O(1/ω3)

which shows that |χ(ω)| → 0 as ω → ∞, an important result which will be useful shortly.

We saw in section 6.6.2 that at high frequency the susceptibility may be written (eq. (6.34)):

χ(ω) = −
ω2

p

ω2

This result, which was derived in the context of a specific model (eq. (6.30)), is now seen to have more general

validity, and may be used to define the plasma frequency as:

ω2
p = − lim

ω→∞
ω2 χ(ω) (6.45)
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6.9.3 Kramers-Kronig Dispersion Relations

Because χ(ω) is analytic in the upper ω half-plane, the Cauchy Theorem can be used to relate its real and imaginary

parts at real frequencies..

First, consider the integral of the function χ(ω′)/(ω′ − ω) over a closed counter-clockwise path (contour) in

the complex ω′ plane, consisting of a half-circle of infinite radius R = |ω′| in the upper half-plane. centered on

the origin, with its base along the real axis. χ(ω′) is analytic on and within the contour, but χ(ω′)/(ω′ − ω) has a

singularity at ω on the real axis, so it is not analytic on the contour.

A strategy to make sense of this integral is to “avoid” ω along a semi-circle Cδ of radius δ in the upper half-

plane, centered on ω, whose diameter extends from ω−δ to ω+δ. Since now χ(ω′)/(ω′−ω) is analytic everywhere

within and on the closed path we have chosen, the contour integral vanishes by the Cauchy-Goursat theorem, and

we end up with:

0 =

∫ ω−δ

−∞

χ(ω′)

ω′ − ω
dω′ +

∫ ∞

ω+δ

χ(ω′)

ω′ − ω
dω′ +

∫

Cδ

χ(ω′)

ω′ − ω
dω′ +

∫

R→∞

χ(ω′)

ω′ − ω
dω′ (6.46)

The contribution from the upper half-circle vanishes† because of the fall-off of the integrand at infinity guaranteed

by the fact that |χ(ω′)| → 0 at infinity, as we have shown in section 6.9.2.

A corollary of the Cauchy-Goursat Theorem says that since χ(ω′) is analytic at ω, the integral of χ(ω′)/(ω′−ω)
on a counter-clockwise circular arc Cδ of radius δ, centered at ω and intercepting an angle α, is:

∫

Cδ

χ(ω′)

ω′ − ω
dω′ = α iχ(ω)

Here α = −π (Cδ is traversed clockwise), and:

∫

Cδ

χ(ω′)

ω′ − ω
dω′ = −iπ χ(ω)

Now we let δ → 0. Then the first two terms in eq. (6.46) are called the principal value integral:

P
∫ ∞

−∞

χ(ω′)

ω′ − ω
dω′ ≡ lim

δ→0

∫ ω−δ

−∞

χ(ω′)

ω′ − ω
dω′ + lim

δ→0

∫ ∞

ω+δ

χ(ω′)

ω′ − ω
dω′ (6.47)

Eq. (6.46) relates this object to the susceptibility evaluated at ω:

χ(ω) =
1

i π
P
∫ ∞

−∞

χ(ω′)

ω′ − ω
dω′

The i in front of the right-hand side works its magic when we separate out the real and imaginary parts:

ℜ[χ(ω)] =
1

π
P
∫ ∞

−∞

ℑ[χ(ω′)]

ω′ − ω
dω′

(6.48)

ℑ[χ(ω)] = − 1

π
P
∫ ∞

−∞

ℜ[χ(ω′)]

ω′ − ω
dω′

These relations are examples of Hilbert transforms. If that principal value causes discomfort, the following

manipulation gets rid of it, by making use of the relation, which holds on the real ω axis:

P
∫ ∞

−∞

χ(ω′)

ω′ − ω
dω′ = P

∫ ∞

−∞

χ(ω′) − χ(ω)

ω′ − ω
dω′

†For the detailed calculation see section 4.5 in http://www.physics.utoronto.ca/~phy1540f/p154019_cumullect.pdf.
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Now, because χ is analytic on the real axis, it is differentiable at ω, and we can drop the P symbol in the right-hand

side. Then the Hilbert transforms become:

ℜ[χ(ω)] =
1

π

∫ ∞

−∞

ℑ[χ(ω′)]−ℑ[χ(ω)]
ω′ − ω

dω′, ℑ[χ(ω)] = − 1

π

∫ ∞

−∞

ℜ[χ(ω′)]−ℜ[χ(ω)]
ω′ − ω

dω′ (6.49)

With a little extra manipulation, we can rewrite the Hilbert transforms as integrals over positive frequencies. To

do this, we must use the fact, already established back in section 6.8 for ǫ(ω), that E(x, t) ∈ R
3 and D(x, t) ∈ R

3

demands that χ(−ω) = χ∗(ω). In terms of real and imaginary parts, we have the crossing relations:

ℜ[χ(−ω)] = ℜ[χ(ω)] ℑ[χ(−ω)] = −ℑ[χ(ω)] (6.50)

Therefore, with a change of variable ω′ → −ω′ over the interval (−∞, 0), there comes::

ℜ[χ(ω)] =
1

π
P
[
∫ ∞

0

ℑ[χ(−ω′)]

−ω′ − ω
dω′ +

∫ ∞

0

ℑ[χ(ω′)]

ω′ − ω
dω′

]

=
1

π
P
[∫ ∞

0

ℑ[χ(ω′)]

ω′ + ω
dω′ +

∫ ∞

0

ℑ[χ(ω′)]

ω′ − ω
dω′

]

=
2

π
P
∫ ∞

0

ω′ℑ[χ(ω′)]

ω′2 − ω2
dω′

ℑ[χ(ω)] can be rewritten in the same way, and we obtain the Kramers-Kronig dispersion relations:

ℜ[χ(ω)] =
2

π
P
∫ ∞

0

ω′ℑ[χ(ω′)]

ω′2 − ω2
dω′

(6.51)

ℑ[χ(ω)] = − 2ω

π
P
∫ ∞

0

ℜ[χ(ω′)]

ω′2 − ω2
dω′

This type of relation, which can be derived with a minimum of assumptions (causality), can be very useful and

exists in other areas of physics (it was often used in particle physics in the early sixties, for instance). Similar

expressions exist between the real and imaginary parts of the index of refraction n(ω) =
√

1 + χ(ω). Provided

χ(ω) ≪ 1, n(ω) =≈ 1 + χ(ω)/2, and:

ℜ[n(ω)] = 1 +
1

π
P
∫ ∞

0

ω′ ℑ[n(ω′)]

ω′2 − ω2
dω′

(6.52)

ℑ[n(ω)] = − ω

π
P
∫ ∞

0

ℜ[n(ω′)]

ω′2 − ω2
dω′

Useful so-called sum rules can also be easily derived from the Kramers-Kronig relations: see eq. J7.122 and

J7.123 for examples.

6.10 A Constraint on the Speed of a Signal Through a Dispersive Medium (section J7.11)

We consider a plane wave train at normal incidence from vacuum to a nonpermeable medium of refraction index

n(ω). Then the electric field inside the medium (x > 0) is, using Fresnel’s equation (6.20),

Er(x, t) =

∫ ∞

−∞

(

2

1 + n(ω)

)

Ai(ω) eiω[n(ω)x/c−t] dω

where

Ai(ω) =
1

2π

∫ ∞

−∞
Ei(0, t) eiωt dt
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is the Fourier transform of the real incident field at x = 0−, just outside the medium.

The integral for Er can be evaluated by contour integration in the complex ω plane. The integral enclosing

the whole upper half-plane vanishes because the integrand is analytic there. Also, we saw in section 6.9.2 that

χ(ω) → 0 when |ω| → ∞ (even if causality is not imposed!). Then n(ω) =
√

1 + χ(ω) → 1 and the argument

of the exponential becomes iω[x − ct]/c, so that the contribution from the semi-circle at infinity also vanishes if

x > ct. Then the contribution along the real axis must also vanish, and there is no electric field amplitude for

x > ct. Without any specific knowledge of n(ω), analyticity does not allow a signal to propagate faster than c in

any medium. This provides evidence that Maxwell’s theory is consistent with Special Relativity.

6.11 Spreading of a Propagating Pulse (section J 7.9)

When we wrote our general expression for a propagating shape in eq. (6.37), we did not bother about the fact

that since this is a solution of second-order differential equation, two pieces of initial data must be given for the

initial-value problem to be well defined. Now we must be more careful, and write the general solution for ψ(x, t):

ψ(x, t) =
1√
2π

∫ ∞

−∞

[

A(k) ei[kx−ω(k)t] + B(k) e−i[kx−ω(k)t]
]

dk

Consistency demands that B(k) = A∗(k) if ψ(x, t) is to be real.. Then renormalising A(k) −→ 1
2A(k) gives:

ψ(x, t) =
1

2

[

1√
2π

∫ ∞

−∞
A(k) ei[kx−ω(k)t] dk +

1√
2π

∫ ∞

−∞
A∗(k) e−i[kx−ω(k)t] dk

]

Write A(k) in terms of ψ(x, 0) and ∂tψ(x, t)
∣

∣

0
. Now: 1

2

[

(ψ(x, 0) + i∂tψ(x, t)
∣

∣

t=0
/ω(k)

]

=
∫∞
−∞A(k) eikx dk,

leading to:

A(k) =
1√
2π

∫ ∞

−∞

[

ψ(x, 0) +
i

ω(k)
∂tψ(x, t)

∣

∣

∣

t=0

]

e−ikx dx

To illustrate this, choose an oscillation with a Gaussian envelope at t = 0: ψ(x, 0) = ℜ
[

e−x2/2L2

eik0x
]

.

L is the width of the envelope, in the sense that ∆x = L. To simplify manipulations, we choose

∂tψ(x, t)
∣

∣

∣

t=0
= 0 . This can only happen if ψ(x, 0) is in fact a superposition of two identical pulses trav-

elling at equal speed in opposite directions. From above, we then find:
> Int(exp(-x^2/2/L^2)*cos(k0*x)*exp(-I*k*x),x=-infinity..infinity)*

> (1/sqrt(2*Pi))=factor(combine(expand((1/sqrt(2*Pi))*int(exp(-x^2/2/L^2)*

> cos(k0*x)*exp(-I*k*x),x=-infinity..infinity)))) assuming L>0;

1/2
√
2

∫ ∞

−∞
e
−1/2 x2

L2 e−ikx cos (k0 x) dx
(√
π
)−1

= 1/2L
(

e−1/2 (k−k0 )2L2

+ e−1/2 (k+k0)2L2
)

Next, we need a dispersion relation for ω(k). We take the one obtained in example 6.2 for a tenuous plasma:

ω = ωp

√

1 + (ck/ωp)2 ≈ ωp

[

1 +
1

2

c2k2

ω2
p

]

which leads to the group velocity:

vg =
dω

dk

∣

∣

∣

k0
=

c2 k0/ωp
√

1 + (c k0/ωp)2

To leading order around k0, this is:

vg ≈ ωp

c2 k0
ω2

p

= ωp

λ2p
4π2

k0 (6.53)
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where λp is the incident wavelength around which dispersive effects are expected to become important.

To make contact with Jackson’s notation, just set ωp = ν and c/ωp = λ/2π = a. Also, define dimensionless

quantities: ξ = x/L, κ = kL, and α = a/L. Inserting A(k) and ω in our expression for ψ(x, t) then yields:

ψ(x, t) =
1√
8π

ℜ
[∫ ∞

−∞

[

e−(κ−κ0)2/2 + e−(κ+κ0)2/2
]

eiκξ−iνt[1+α2κ2/2] dκ

]

(6.54)

Now concentrate on the first term. We can either expand it to:

1√
8π

ℜ
{

e−iνt−κ2
0
/2

∫ ∞

−∞
exp

[

−κ2 1 + i ν t α2

2
+ κ (i ξ + κ0)

]

dκ

}

and, noticing that we have an integrand of the form e−(aκ2−b κ) = e−(a−b/2a)2eb
2/4α, perform the change of

variables y =
√
a (κ− b/2a), so that the term becomes:

1√
8π

ℜ
{ √

2
(

1 + iνtα2
)1/2

exp

[

(i ξ + κ0)
2

2(1 + iνtα2)
− κ20

2

]

e−iνt

∫ ∞

−∞
e−y2 dy

}

where the integral is just
√
π. Or, more simply, just give the initial integral to Maple:

> int(exp(-(kappa-kappa0)^2/2)*exp(I*(kappa*xi -nu*t*kappa^2*lambda^2/2)),

> kappa=-infinity..infinity): Int(exp(-(kappa-kappa0)^2/2)*

> exp(I*(kappa*xi -nu*t*kappa^2*lambda^2/2)),kappa=-infinity..infinity)

> =simplify(op(2,value(%))/sqrt(8*Pi),symbolic);

∫ ∞

−∞
e−1/2 (κ−κ0)

2

ei(κ ξ−1/2 ν tκ2α2)dκ = 1/2 e
1/2 i(−κ20ν tα2

+2κ0 ξ+iξ2)
1+iν tα2

1√
1 + iν tα2

Therefore the first term in u(x, t) is:

1

2
ℜ
{

1
(

1 + iνtα2
)1/2

exp

[−ξ2 + 2iκ0ξ − i κ20νtα
2

2(1 + iνtα2)

]

e−iνt

}

The rest is “merely” a matter of extracting i(κ0ξ − νtκ20α
2/2) in the argument of the big exponential. With

vg = νκ0αL, a few lines of algebra lead to:

ψ(x, t) =
1

2
ℜ
{

1
(

1 + iνtα2
)1/2

exp

[

− (x− vg t)
2

2L2
(

1 + iνtα2
)

]

eik0x−iνt[1+k2
0
a2/2] + (k0 −→ − k0)

}

(6.55)

where we have added the result for the second term which follows immediately from the form of eq. (6.54).

Admittedly, this expression is still somewhat obscure because of all the complex factors. But a few more lines

of manipulation show that it can be rewritten as:

ψ(x, t) =
1

(

1 + ν2t2a4/L4
)1/4

e(x−vgt)2/2L2(t) cos(k0x− ω0t+ θ) + (k0 −→ − k0) (6.56)

where ω0 and θ are complicated quantities irrelevant for our purpose. What is important is that we still have

Gaussian pulses travelling at speed vg, but whose width is now:

L(t) = L
[

1 +
(

νta2/L2
)2
]1/2

(6.57)

Thus, the pulses spread out as they propagate. The smaller the initial width compared to a (wavelength at which

dispersion becomes noticeable), the faster the spreading.
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The Parseval-Plancherel theorem tells us that ψ(x, t) and its Fourier transform, A′(k, t) = A(k) e−iω(k)t, have

the same norm. Therefore:
∫

∣

∣ψ(x, t)
∣

∣

2
dx =

∫

∣

∣A′(k, t)
∣

∣

2
dk

=

∫

∣

∣A(k, 0)
∣

∣

2
dk

=

∫

∣

∣ψ(x, 0)
∣

∣

2
dx

Since
∫

|ψ(x, t)|2 dx is a measure of the energy of the pulse, we see that this energy is constant in time in the

absence of dissipative effects.

Finally, this phenomenon of spreading of signals in dispersive media is very general, and the width always

increases with time.
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7 Radiating Systems

7.1 Fields of a Localised Harmonic Source (sections J9.1 and J9.6)

7.1.1 General results

In section 5.5, we wrote down the retarded solution for the vector potential, eq. (5.20), in the absence of boundary

surfaces:

A(x, t) = km

∫

d3x′
J(x′, t′ret)

R

with retarded time t′ret = t−R/c, R = |x− x′|. This solution was obtained by imposing the Lorenz condition.

We continue to assume that sources, potentials and fields are harmonic, ie. J(x)e−iωt′ = J(x)e−iωteiωR/c,

with ω the same for the three components, although their relative phase can be different. Then the time-oscillating

factors in t on both sides cancel out, and with k = ω/c, we have:

A(x) = km

∫

J(x′)
eikR

R
d3x′ (7.1)

When A has been found, the harmonic fields in vacuum immediately follow from:

H =
1

µ0
∇×A E = i

Z0

k
∇×H = i

c

k

[

∇(∇ ·A) − ∇2A
]

(7.2)

where Z0 =
√

µ0/ǫ0.

Alternatively, this expression for harmonic electric fields in terms of the vector potential can be derived from

the Lorenz condition, ∇ ·A+ ∂tΦ/c
2 = 0, by eliminating the scalar potential from E = −∂tA−∇Φ. Indeed:

Φ(x) = − i
c

k
∇ ·A(x)

Thus, the electric field everywhere can be found without the need for the scalar potential:

E(x) = iωA + i
c

k
∇(∇ ·A) = i

c

k

[

∇(∇ ·A) + k2A
]

(7.3)

7.1.2 A useful expansion of the vector potential of a localised source

Henceforth we will take the point of observation to be sufficiently far from the source that kr ≫ kr′. Approximat-

ing R ≈ r − n̂ · x′ and 1/R ≈ (1/r)[1 + n̂ · x′/r], the potential in eq. (7.1) becomes, to leading order:

A(x) = km
eikr

r

∫

J(x′) e−ikn̂·x′

d3x′ (7.4)

In this approximation, the source is localised in a small (compared to r) volume around the origin. The r depen-

dence resides entirely in the eikr/r factor; the integral depends only on angles in n̂ · x′ = r′ cos γ.

Most often, the integral in eq. (7.1) — or even the one for localised sources in in eq. (7.4) — cannot be

evaluated in closed form. To extract information from it, recall that the troublesome factor eikR/R in the integrand

was found in section 5.4 to be the Green function for the Helmholtz operator ∇2+k2. We now obtain an expansion

of this factor in spherical coordinates. Following the method used in sections 0.8.3 and 2.3 above (section J3.9)

for the Laplacian operator, we write:

G(x,x′) =

∞
∑

l=0

l
∑

m=−l

gl(r, r
′)Y ∗

lm(θ′, φ′)Ylm(θ, φ)
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Inserting into (∇2 + k2)G = −4πδ(R), we immediately find that gl(r, r
′) must satisfy the radial equation:

[

d2r +
2

r
dr + k2 − l(l + 1)

r2

]

gl(r, r
′) = − 4π

r2
δ(r − r′)

The homogeneous radial equation is known as the spherical Bessel equation, and its solutions are the spherical

Bessel functions jl(x) and nl(x) introduced in section 0.8.3. More properties of these functions are discussed in

Mathematical Handbooks, and the most important are summarised on pp. J426–427.

The solution of the inhomogeneous equation that is finite at the origin is:

gl(r, r
′) = 4π i k jl(kr<)h

(1)
l (kr>)

where l is an integer and A can be shown to be equal to i k, and the h
(1)
l = jl + inl are Hankel functions of the first

kind. Our spherical Green function expansion is thus:

eikR

R
= 4π i k

∞
∑

l=0

jl(kr<)h
(1)
l (kr>)

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ) (7.5)

Inserting this into eq. (7.1) yields, for x outside the sources (r> = r, r< = r′):

A(x) = 4π km i k
∑

l,m

h
(1)
l (kr)Ylm(θ, φ)

∫

J(x′) jl(kr
′)Y ∗

lm(θ′, φ′) d3x′ (7.6)

This expression is still exact, with no approximation. Eq. (J9.86) for jl and nl becomes, in terms of the spherical

Hankel functions:

h
(1)
l (x) = − i (−x)l

[dx
x

]l
(

eix

x

)

= − i (2l − 1)!!
eix

xl+1

(

1 + a1 (i x) + a2 (i x)
2 + . . . + al (i x)

l
)

where the ai are known coefficients.

Now we assume that the dimensions of the source are much smaller than the characteristic length of the

potential (wavelength λ = 2πc/ω) (long-wavelength approximation), In particular, kr′ ≪ 1 in all that follows.

But nothing more about kr is assumed at this stage than kr > kr′ ! Then we can use eq. (J9.88) which gives the

small x limit of jl(x); we keep only the leading order, xl/(2l + 1)!!. Inserting the low x behaviour of jl(kr
′) and

our expression for h
(1)
l (kr) in our expansion for the vector potential of a localised source A(x) gives:

A(x) = km
∑

l,m

4π Ylm(θ, φ)

2l + 1

eikr

rl+1

[

1 + a1 (i kr) + . . . + al (i kr)
l
]

∫

J(x′) r′l Y ∗
lm(θ′, φ′) d3x′ (7.7)

Often, we will find it convenient to use the Addition Theorem for spherical harmonics (section J3.6) to write:

A(x) = km
∑

l

eikr

rl+1

[

1 + a1 (i kr) + . . . + al (i kr)
l
]

∫

J(x′) r′l Pl(cos γ) d
3x′ (7.8)

where cos γ = n̂ · n̂′.

Two limits are of interest:
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• Near-field region (kr′ ≪ kr ≪ 1)

Inspection of eq. (7.7) shows that when the distance to the observation point is much shorter than the wave-

length, ie. when kr ≪ 1, we recover the static (or, more precisely, quasi-static) case, since eikr −→ 1:

A(x) ≈
kr≪1

km
∑

l,m

4π

2l + 1

Ylm(θ, φ)

rl+1

∫

J(x′) r′l Y ∗
lm(θ′, φ′) d3x′ (7.9)

which also follows more directly by inserting eq. (2.10) into eq. (7.1) in the same limit. The corresponding

near-fields display a leading 1/r2 dependence, as we shall find explicitly below in section 7.2.

• Far-field region (kr ≫ 1)

Then the term al (i kr)
l in the square bracket in eq. (7.8) dominates. Also, Pl(cos γ) is just a polynomial of

order l in n̂ · n̂′ = n̂ · x′/r′. Eq. (7.8) becomes:

A(x) ≈
kr≫1

km
eikr

r

∑

l

al (i k)
l

∫

J(x′) r′l Pl(n̂ · n̂′) d3x′ (7.10)

Just as this potential, the far-fields have a leading 1/r dependence. By inserting the expression for the vector

potential of a localised source into eq. (7.2), applying vector calculus identities and keeping only the leading

1/r terms at each stage, one shows (EXERCISE) that the far-field magnetic field is:

H =
i k

µ0
n̂×A (7.11)

To find the electric field in the far zone, we go back to the general expression E = ikcA−∇Φ and calculate

the gradient directly, starting with the far-zone expression for Φ derived from eq. (5.20) and carrying out the

calculation using vector calculus identities and the continuity equation. The result is (EXERCISE):

E = i kc
[

A − n̂(n̂ ·A)
]

= Z0 H× n̂ (7.12)

This shows that not only plane-wave fields, but all electromagnetic fields far from an oscillating source are

perpendicular to each other and transverse to the direction of observation.

Calculating the time-averaged Poynting vector for the far-fields from eq. (5.39) is now straightforward:

S =
1

2
(E×H∗) =

1

2
Z0 |H|2 n̂ =

µ0
2
c |H|2 n̂

We see that electromagnetic energy is being propagated at the speed of light in the direction of observation,

and that only the transverse component of A can drive this propagation. We can also write S directly in

terms of the vector potential:

S =
1

2
k2
Z0

µ20
|n̂×A|2 n̂ =

1

2µ0
k2c |A|2 sin2 θ n̂ (7.13)

where θ is the angle between the vector potential and the direction of observation (and propagation).

Remembering that the Poynting vector represents the amount of energy flowing through a surface element

R2dΩ per unit of time, we can ask how much power the source emits per unit solid angle dΩ. The angular

power distribution is:
dP

dΩ
= |S · n̂|R2 ≈ |S · n̂| r2 (7.14)

Inserting all the information from above in turn yields:

dP

dΩ
=

1

2µ0
(kr)2c |A|2 sin2 θ =

1

8π km
k2c sin2 θ

∣

∣

∣

∣

∫

J(x′) e−ikn̂·x′

d3x′
∣

∣

∣

∣

2

(7.15)

with angular information about the source stored in the integral. Since this expression has no r dependence,

only energy propagated by far-fields (aka radiation) reach arbitrarily large distances without attenuation.
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Example 7.1. The Linear Centre-Fed Antenna (section J9.4)

Sometimes we get lucky, and the current density is sufficiently simple that the integral for the potential

A can be done in closed form, and we don’t have to use the expansion in eq. (7.6).

x
z

−d/2

d/2

θ

Consider a linear antenna rod of length d, with a circular cross-

section of radius a. Orient the z axis so that the antenna lies

along it, with its centre at the origin, where there is a small gap

that serves to excite the antenna.

Make the following assumptions:

1) The antenna is a perfect conductor. This means that on its

surface the z component of the electric field vanishes, because

it is tangential: in cylindrical coordinates, Ez(ρ = a) = 0.

2) a is sufficiently smaller than λ and d that any current in the

antenna is along thez axis and flows only at the surface. Then

A = Az ẑ, and the fields are azimuthally symmetric.

As usual, we work with harmonic potentials.

Because Ez(ρ = a) = 0, this means that on the surface, the z component of eq. (7.3) is:

(

∂2z + k2
)

Az(ρ = a, z) = 0

and the vector potential is harmonic in space on the surface, even when J(x) is not!

We cannot go much further without making more assumptions. As Jackson mentions (section J9.4B),

finding the current flowing through the antenna is a messy affair which depends on the method of

excitation. We cannot even take the current as given since it is modified by the emission of radiation. . .

The next assumption states that:

2) the antenna becomes infinitely thin: a→ 0. Just a≪ d may not be sufficient since significant cor-

rections for a finite antenna cross-section exist even for ratios a/d of the order of one thousandth.

Only with this approximation can the current density be taken as spatially harmonic (or sinusoidal).

Because of the method of excitation, the current density in one half of the antenna is in phase with the

other half, ie. even in the position dependence about the centre:

J(x) = I sin
(

kd/2− k
∣

∣z
∣

∣

)

δ(x) δ(y) ẑ

With this expression, the current vanishes at the ends, and the current at the central gap is I0 =
I sin(kd/2).

We are interested in the far fields. This current density has the particularity that if we insert it in eq.

(7.1), we can solve exactly for the vector potential without making the long-wavelength (kd ≪ 1)

approximation, just by putting R ≈ r − n̂ · x′ = r − z′ cos θ. Dropping the primes, we find:

A = ẑ km I
eikr

r

∫ d/2

−d/2
sin
(

kd/2 − k
∣

∣z′
∣

∣

)

e−ikz′ cos θ dz′

The integral, while “straightforward” (says Jackson), still requires a modicum of care because of the
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absolute value. Notice that the imaginary part vanishes because it is odd in z, leaving:

∫ d/2

−d/2
sin
(

kd/2− k
∣

∣z′
∣

∣

)

e−ikz′ cos θ dz′ = 2

∫ d/2

0
sin
(

kd/2− k z′
)

cos
(

kz′ cos θ) dz′

=

∫ d/2

0

[

sin
[

kd/2 − k (1− cos θ)z
]

dz + sin
[

kd/2− k (1 + cos θ) z
]

]

dz′

The substitutions u = kd/2− k (1± cos θ) z allow for easy integration, and we arrive at:

A = ẑ 2 km I
eikr

kr





cos
(

kd
2 cos θ

)

− cos
(

kd
2

)

sin2 θ



 (7.16)

Of course. this is easier with Maple — except perhaps for how it thinks the left-hand side should be

written:

> Int(sin(k*d/2 -k*abs(z))*exp(-I*k*z*cos(theta)), z=-d/2..d/2):

> %=convert(value(%),trig) assuming d>0;
∫ d/2

−d/2
− sin (−1/2 kd + k |z|) e−ikz cos(θ)dz =

2 cos (1/2 dk cos (θ))− 2 cos (1/2 kd)

(sin (θ))2 k

In the radiation zone, eq. (7.15) leads directly (Z0 = 4πkmc) to the time-averaged angular power

distribution:

dP

dΩ
=

Z0

8π2
I2

∣

∣

∣

∣

∣

∣

cos
(

kd
2 cos θ

)

− cos
(

kd
2

)

sin θ

∣

∣

∣

∣

∣

∣

2

(7.17)

We note that the distribution depends on kd, ie. on the ratio d/λ. The total power is difficult to

find analytically, except in the long wavelength limit. When kd ≪ 1, the numerator in the bracket

expanded to second order is (kd/2)2(sin2 θ)/2, and I0 = I sin(kd/2) ≈ Ikd/2, so that:

dP

dΩ

∣

∣

∣

kd≪1
=

Z0 I
2
0

128π2
(kd)2 sin2 θ (7.18)

which is the pattern emitted by a current I(z) = I0
(

1 − 2|z|/d
)

— the long-wavelength limit of the

sinusoidal current we have used for the exact result — in the dipole approximation (see eq. (7.20)

below). The total power emitted in the long-wavelength limit is then:

P ≈
kd≪1

1

48π
Z0 I

2
0 (kd)

2 (7.19)

So long as the frequency does not increase too much, the power emitted goes like the square of the

frequency.

The dependence of eq. (7.17) on d/λ is well illustrated by comparing two special cases: the half-wave

(d = λ/2) antenna and the full-wave (d = λ) antenna. Here is a comparison, obtained with Maple,

between the exact result (solid line) and dipole approximation (dashed line) for a “half-wave”, for

which d = λ/2. The antenna is represented by the thick rod.
> exactradpattern:=plottools[rotate](plots[polarplot]((cos(Pi*cos(theta)/2))^2/

> (sin(theta))^2,theta=0..2*Pi,color=black,axes=none,tickmarks=[0,0]),Pi/2):
> dipoleradpattern:=plottools[rotate](plots[polarplot]((sin(theta))^2,theta=0..2*Pi,

> color=black,axes=none,linestyle=dash,tickmarks=[0,0]),Pi/2):

> antenna:=plottools[rotate](plot(.000001,x=-0.5..0.5,thickness=5),Pi/2):

> plots[display](exactradpattern, dipoleradpattern, antenna);
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The half-wave antenna’s radiation pattern looks, at least qualitatively, like a dipole pattern. The full-

wave (d = λ) figure-of-8 pattern (fig. J9.7) is much more pinched, however. The difference is the

contribution from higher multipole moments. Actually, including just one extra moment gives an

excellent approximation.

7.2 Electric Dipole Fields from Oscillating Sources

Most often, A cannnot be found in closed form. We shall be using eq. (7.6), keeping only the leading term (l = 0).

Using h
(1)
0 (x) = eix/ix and j0(x) = (sinx)/x, as given in eq. (J9.87), this is:

A(x) ≈ km

[

eikr

r

∫

J(x′)
sin kr′

kr′
d3x′

]

≈
kr′≪1

km

[

eikr

r

∫

J(x′) d3x′
]

(7.20)

With the same integration by parts we performed in section 4.4, the integrand J(x′) is turned into −x′(∇′ ·J).
Then, because of the continuity equation, we find:

Aedip(x) = − i kmω
eikr

r

∫

x′ ρ(x′) d3x′

= − i kmω p
eikr

r
(7.21)

where we have recognised the electric dipole moment† p from chapter 3. The magnetic field is:

Hedip =
1

µ0
∇×Aedip = − i

ω

µ0
km∇×

(

p
eikr

r

)

= − i
c k

4π
n̂ ∂r

(

eikr

r

)

× p

=
c k2

4π
n̂× p

eikr

r

(

1 − 1

i kr

)

(7.22)

To write the second line we have invoked one of the vector identities on Jackson’s front left cover.

The electric field is a little more involved; from one part of the second eq. (7.2) :

Eedip = i
Z0

k
∇×Hedip = i

c k Z0

4π
∇×

[

n̂× p
eikr

r

(

1 − 1

i kr

)]

With

f(r) =
eikr

r

(

1 − 1

i kr

)

†Spherically symmetric sources (monopoles) cannot radiate, because the only time-dependent spherically symmetric solution that sat-

isfies Gauss’s Law is a 1/r2 electric field.
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this has the form:

∇×
[

n̂ f(r)× p
]

= (p ·∇) n̂ f(r) − p
[

∇ ·
(

n̂ f(r)
)]

=
f(r)

r

[

p − n̂ (n̂ · p)
]

+ n̂ (n̂ · p) ∂rf(r) − p

[

2

r
f(r) + ∂rf(r)

]

= n̂ (n̂ · p) r ∂r
(

f(r)

r

)

− p

r
∂r
[

r f(r)
]

= − i k
eikr

r

[

p − n̂ (n̂ · p)
]

− i

k

[

3 n̂ (n̂ · p) − p
]

[

1

r3
− i k

r2

]

eikr

where we have used several identities from that famous front-left cover. Since Z0 = 1/(cǫ0), we finally arrive at:

Eedip = ke

[

k2 (n̂× p)× n̂
eikr

r
+
[

3 n̂ (n̂ · p) − p
]

(

1

r2
− i k

r

)

eikr

r

]

(7.23)

Although they do extend over a short distance, the parts of the fields that fall off faster than 1/r do not carry

energy away to infinity, unlike the 1/r parts. In fact, the dominant part of the electric (or longitudinal) near-field

is just the electrostatic dipole field when kr −→ 0, and the magnetic near-field is a factor kr/Z0 smaller than the

electric field which therefore dominates.

Far from the source, we have the radiation fields emitted by an electric dipole:

H(x, t) =
c k2

4π
n̂× p

ei(kr−ωt)

r
E = Z0 H× n̂ (7.24)

They represent a transverse spherical electromagnetic wave, with n̂ the direction of propagation. Of course, far

enough from the source, the waves are well-approximated by plane waves.

If the components of p all oscillate in phase, so that it has a constant direction, the time-averaged power per

unit area (intensity) carried away by the waves that follows directly from eq. (7.15) reads:

dP

dΩ
=

1

2

k2e
Z0
k4
∣

∣p
∣

∣

2
sin2 θ (7.25)

where θ is the angle between p and the direction of observation. The total power radiated is:

P =
4π

3

k2e
Z0

k4
∣

∣p
∣

∣

2
=

c2 Z0 k
4

12π

∣

∣p
∣

∣

2
(7.26)

7.3 Magnetic Dipole and Quadrupole Fields (section J9.3)

Now we consider the l = 1 term in eq. (7.6). The m sum is given by the Addtion Theorem for spherical harmonics

of eq. (2.9) or (J3.62), converting it to P1(n̂ · x̂′) = n̂ · x̂′. After looking up h
(1)
1 and j1 in eq. (J9.87), we find:

3km
eikr

(kr)2
(1− i kr) k

∫

(

n̂·x̂′
)

J(x′)

(

sin kr′

(kr′)2
− cos kr′

kr′

)

d3x′ ≈
kr′≪1

km
eikr

r2
(1− i kr)

∫

(

n̂·x′
)

J(x′) d3x′

To elucidate the physical meaning of the integral on the right, rewrite the integrand as:

(

n̂ · x′
)

J(x′) =
1

2

[

(n̂ · x′)J + (n̂ · J)x′
]

+
1

2
(x′ × J)× n̂
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7.3.1 Magnetic dipole radiation

We recognise in the integral of the second term the magnetic dipole moment m = 1
2

∫

x′ × Jd3x′ defined in eq.

(4.13), so we immediately interpret this contribution to the vector potential as that of a magnetic dipole:

Amagdip(x) = i km k n̂×m
eikr

r

(

1 − 1

i kr

)

(7.27)

We now notice that if we substitute cp for m, we have from eq. (7.22):

Amagdip = ikm k
4π

k2
Hedip

∣

∣

pc→m

Then:

Hmagdip =
1

4π km
∇×Amagdip = i

1

k
∇×Hedip

∣

∣

pc→m
=

1

Z0
Eedip

∣

∣

pc→m

where we have used Ampère’s Law for harmonic fields: ∇×H = −(ik/Z0)E, to relate Hedip to Eedip. From eq.

(7.23), making the substitution p −→ m/c, we arrive at:

Hmagdip =
1

4π

[

k2 (n̂×m)× n̂
eikr

r
+
[

3 n̂ (n̂ ·m) − m
]

(

1

r3
− i k

r2

)

eikr

]

(7.28)

We could have written down our result simply by substituting Eedip −→ 4πkmcHmagdip = Z0Hmagdip and p −→
m/c in eq. (7.23)!

Similarly, we expect that we should obtain Emagdip by substituting, in eq. (7.22), Hedip −→ −Emagdip/Z0 and

p −→ m/c. Then:

Emagdip = − Z0

4π
k2 n̂×m

eikr

r

(

1 − 1

i kr

)

(7.29)

Since the radiation’s angular dependence goes like |A|2 (eq. (7.13) with its θ = π/2), then |n̂ × m|2 =
|m|2 sin2 θ, the same as for electric dipoles. At a given angle, however, the magnetic dipole radiation is down by

a factor (kr′)2 (EXERCISE), where r′ is the dimension of the source, and kr′ ≪ 1 by assumption. Because its

angular signature is the same as that of electric dipole radiation, magnetic dipole radiation can be very difficult to

observe, except in cases where the electric one vanishes for some reason, such as a selection rule.

The polarisation is also different: it is in the n̂-dipole plane for the electric case, and perpendicular to it in the

magnetic case.

7.3.2 Electric quadrupole radiation

Let us move on to the (x′ × J)× n̂ integral in the l = 1 term of eq. (7.6), which can be written as:

1

2

∫

[

(n̂ · x′)J + (n̂ · J)x′
]

d3x′ = − iω

2

∫

x′ (n̂ · x′) ρ(x′) d3x′

To prove this, we note that:

∫

[

(n̂ · x′)J + (n̂ · J)x′
]

d3x′ ≡
∫

[

(n̂ · x′) (J ·∇′)x′ + x′ (J ·∇′) (n̂ · x′)
]

d3x′ =

∫

(J ·∇′)
[

(n̂ · x′)x′
]

d3x′

Integrating by parts and using the continuity equation ∇ · J = iωρ completes the proof. The electric quadrupole

potential is:

Aequad = − km
2
c k2

eikr

r

(

1 − 1

i kr

)
∫

x′ (n̂ · x′) ρ(x′) d3x′ (7.30)
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To see why we associate this contribution with an electric quadrupole, from the quadrupole tensor Qij defined in

eq. (3.5) construct:

Qi ≡ Qij n
j =

∫

[3x′i n
j x′j − r′

2
ni] ρ(x

′) d3x′

or

Q(n̂) =

∫

[

3x′ (n̂ · x′) − n̂ r′
2]
ρ(x′) d3x′

Then:

Aequad = − 1

6
km c k

2 eikr

r

(

1 − 1

i kr

) [

Q(n̂) + n̂

∫

r′
2
ρ(x′) d3x′

]

The radiation (far) fields are:

Hequad =
i k

4π km
n̂×A = − i

c k3

24π

eikr

r
n̂×Q(n̂)

Eequad = Z0 H× n̂ = − i
cZ0 k

3

24π

eikr

r

[

n̂×Q(n̂)
]

× n̂ (7.31)

The angular power distribution is:

dPequad

dΩ
=

1

2Z0
r2
∣

∣E
∣

∣

2
=

c2 Z0 k
6

1152π2

∣

∣

∣

[

n̂×Q(n̂)
]

× n̂

∣

∣

∣

2
(7.32)

In the important case of azimuthal symmetry, the quadrupole tensor is diagonal, and this expression undergoes con-

siderable simplification. Since this tensor is always traceless, we can write Q33 = Q0, and Q11 = Q22 = −Q0/2.

Then Q = −Q0(n̂− 3ẑ cos θ)/2, and n̂ ·Q = −Q0(1− 3 cos2 θ)/2 = Q0 P2(cos θ). A few straightforward steps

lead to:
∣

∣

∣

[

n̂×Q(n̂)
]

× n̂

∣

∣

∣

2
=
∣

∣Q(n̂)
∣

∣

2 −
∣

∣n̂ ·Q(n̂)
∣

∣

2
=

9

4
Q2

0 cos2 θ sin2 θ

and
dPequad

dΩ
=

c2 Z0 k
6

512π2
Q2

0 cos2 θ sin2 θ (7.33)

Integrating over all solid angles, the total power radiated is found to be:

Pequad =
c2 Z0 k

6

960π
Q2

0 (7.34)

In general, however, quadrupole angular distributions can be rather complicated. Yet the total power radiated

is surprisingly easy to compute. Indeed, we write again
∣

∣

[

n̂×Q
]

× n̂
∣

∣

2
=
∣

∣Q
∣

∣

2 −
∣

∣n̂ ·Q
∣

∣

2
. This is equivalent

to Q∗
ij Qik n

j nk − Q∗
ij Qkl n

i nj nk nl, and has the effect of storing the angular information in the products of

Cartesian components of n̂ and in their index structure.

To integrate the products over all solid angles, we note that nj nk is symmetric in j and k. Also, when j 6= k,

nj nk, the integral over φ vanishes. This means that
∫

njnk dΩ = αδjk. When j = k, we have
∫

njnj dΩ =
∫

dΩ = 4π = αδjj = 3α. Therefore, α = 4π/3, and:

∫

nj nk dΩ =
4π

3
δjk

Similarly, ni nj nk nl is symmetric in all its indices, and the indices must be equal in pairs to avoid an integrand

that is odd under reversal of direction. So its integral must be proportional to δij δkl + δik δjl + δil δkj . We find the

proportionality constant by calculating the easiest integral:
∫

n4z dΩ =
∫

cos4 θ dΩ = 4π/5. Therefore:

∫

ni nj nk nl dΩ =
4π

15
(δij δkl + δik δjl + δil δkj)
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The total angular integral is:

∫

∣

∣

∣

[

n̂×Q(n̂)
]

× n̂

∣

∣

∣

2
dΩ =

4π

3

∣

∣Qij

∣

∣

2 − 4π

15

[

Q∗i
iQ

∗j
j + 2

∣

∣Qij

∣

∣

2
]

The quadrupole tensor being traceless, Qi
i = 0, and:

∫

∣

∣

∣

[

n̂×Q(n̂)
]

× n̂

∣

∣

∣

2
dΩ =

4π

5

∣

∣Qij

∣

∣

2

We obtain for the power radiated:

P =
c2 Z0 k

6

1440π

∣

∣Qij

∣

∣

2
(7.35)

When the source is azimuthally symmetric,
∣

∣Qij

∣

∣

2
= Q2

11 +Q2
22 +Q2

33 = 3Q2
0/2, and we regain eq. (7.34).

At this point we have pretty much reached the limit to the usefulness of eq. (7.8). As we have just seen, the

terms with l > 0 produce expressions in which different electric and magnetic multipole moments are mixed up

in a way that makes them very difficult to disentangle, all the more so when l > 1. We now introduce a different

approach, which has the advantage that multipole moments are kept separated from the beginning,

7.4 Multipole Expansion of Electromagnetic Fields (J9.7, J9.10)

In this approach we work directly with the fields, not the potential. Furthermore, we take their sources to be not

only localised, but also harmonic, in the knowledge that more general time behaviour can always be constructed

with a Fourier superposition. Thus the time dependence is of the form e−iωt. In addition to the charge and current

densities ρ and J, we allow for an intrinsic magnetisation M which we keep separate. Following Jackson, we

write Maxwell’s equations in SI units and in terms of a magnetic field H := B/µ0:

∇ · E = ρ/ǫ0 ∇×H + i
k

Z0
E = J + ∇×M

(7.36)
∇ ·H = 0 ∇×E − i kZ0 H = 0

with k = ω/c. The redefinition E′ = E + iJ/ωǫ0 = E + iZ0J/k results in two independent equations:

∇×E′ − i kZ0 H =
iZ0

k
∇× J ∇×H + i

k

Z0
E′ = ∇×M (7.37)

which guarantee that the divergence of both H amd E′ vanishes.

As usual, taking the curl of each equation and combining with the other yields second-order decoupled

Helmholtz equations:

(∇2 + k2)H = −∇× (J + ∇×M)

(7.38)

(∇2 + k2)E′ = − iZ0k∇×
(

M +
1

k2
∇× J

)

Only one of these needs solving, so long as the vanishng of the divergence of the field is implemented. Then the

other field follows from the appropriate first-order curl equation.

At this point we could follow the same path that leads to (7.6) for the vector potential A, with A replaced by

the fields and J by the right-hand sides of eq. (7.38). But we would encounter the same issues with disentangling

the multipoles, which are rooted in the Helmholtz operator acting on a vector, not a scalar. Instead, like Jackson,
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we follow an approach proposed by Bouwkamp and Casimir† which consists in writing equations for true scalars,

not vector components.

Now project the Helmholtz equations along the radial coordinate by taking a scalar product with r. Thanks to

identities 0.33 and 0.32, we easily obtain the scalar equations sought:

(∇2 + k2) (r ·H) = − iL · (J + ∇×M)

(7.39)

(∇2 + k2) (r ·E′) = Z0kL ·
(

M +
1

k2
∇× J

)

where L := −i r × ∇. There are also links between r · H and the electric field E, and between r · E and H,

provided by the first-order curl equations in eq. (7.36), with the help of identity 0.32:

Z0k r · H = − i r · (∇×E) = L · E
(7.40)

k r · E′ = −Z0 L · (H − M)

In section 5.4, we obtained the inhomogeneous retarded solution (5.18):

Ψ(x, t) =

∫

f(x′, t′ret)

|x− x′| d3x′

for the equation
[

∇2 − (1/c2)∂2t
]

Ψ(x, t) = −4π f(x, t). For harmonic scalar functions and sources of the

form f(x′, t′ret) = f(x′)e−iωt′ret = f(x′)e−iω(t−R/c) = f(x′)e−iωtei ωR/c, the differential equation becomes a

Helmholtz equation: (∇2 + k2)Ψ(x) = −4πf(x′)ei ωR/c, with solution:

Ψ(x) =

∫

f(x′)
ei kR

R
d3x′

where R = |x− x′|. Comparing with eq. (7.39), we immediately write down the inhomogeneous solutions:

r · H(x) =
i

4π

∫

ei kR

R
L′ ·

[

J(x′) + ∇×M(x′)
]

d3x′

(7.41)

r · E′(x) = − Z0k

4π

∫

ei kR

R
L′ ·

[

M(x′) +
1

k2
∇× J(x′)

]

d3x′

with L′ = −i r′ ×∇′. We recognise ei kR/R as the Green function for the Helmholtz operator ∇2 + k2, for whch

an expansion in terms of spherical Bessel functions was obtained earlier in eq. (7.5). For x outside the sources,

where E′ = E, we arrive at expressions very similar to eq. (7.6):

r · H(x) = − k
∑

l,m

h
(1)
l (kr)Ylm(θ, φ)

∫

jl(kr
′)Y ∗

lm(θ′, φ′)L′ ·
[

J(x′) + ∇×M(x′)
]

d3x′

(7.42)

r · E(x) = − iZ0k
2
∑

l,m

h
(1)
l (kr)Ylm(θ, φ)

∫

jl(kr
′)Y ∗

lm(θ′, φ′)L′ ·
[

M(x′) +
1

k2
∇× J(x′)

]

d3x′

In order to make contact witth spherical multipole moments labelled by (l,m), we look at homogeneous solutions

of eq. (7.39). These have been quoted in section 0.8.3 in terms of spherical Bessel functions jl(kr) and nl(kr)
given in eq. (0.49), but often the Hankel functions h1,2l := jl ± inl are preferred. Then, with a radial solution for

†C. JḂouwkamp and H. B. G. Casimir, Physica 20, 539 (1954).
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a given l of the form: fl = A
(1)
l h

(1)
l + A

(2)
l h

(2)
l , the general homogeneous solutions of the Helmholtz equation in

spherical coordinates would read:

r · H(x) =
1

k

∑

l,m

l(l + 1)Blm gl(kr)Ylm(θ, φ)

r · E(x) = − Z0

k

∑

l,m

l(l + 1)Clm fl(kr)Ylm(θ, φ)

where the factors l(l + 1)/k and −Z0 have been extracted from the coefficients Blm and Clm for convenience.

Ultimately, though, we will be concerned with outgoing waves. The functions h
(2)
l (kr) go like e−i kr at large

distance (see eq. (9.89) in Jackson) and correspond to incoming waves. Because of this, we choose A
(2)
l = 0 and

gl = fl = h
(1)
l .

Now, observe that eq. (7.40) must also be satisfied outside sources:

L · E(x) = Z0k r · H(x) = Z0

∑

l,m

l(l + 1)Blm h
(1)
l (kr)Ylm(θ, φ)

L ·H(x) = − k

Z0
r · E(x) =

∑

l,m

l(l + 1)Clm h
(1)
l (kr)Ylm(θ, φ)

where we have used identity (0.32). Recalling that the operator L only acts on the angular dependence of the fields,

we see that for L to yield the same Ylm when acting on a given Ylm in the free-space fields, these must take the

form:

E = Z0

∑

l,m

√

l(l + 1)Blm h
(1)
l (kr)Xlm(θ, φ) H =

∑

l,m

√

l(l + 1)Clm h
(1)
l (kr)Xlm(θ, φ)

where

Xlm := LYlm/
√

l(l + 1) (7.43)

are called vector spherical harmonics. This is because L2Ylm = L ·LYlm = l(l+1)Ylm. Since L is a self-adjoint

operator, we find that the vector spherical harmonics are orthonormal. Indeed:

∫

X∗
l′m′ ·Xlm dΩ =

∫

(LYl′m′)∗ · LYlm
√

l′(l′ + 1)
√

l(l + 1)
dΩ

=

∫

Y ∗
l′m′ L2 Ylm

√

l′(l′ + 1)
√

l(l + 1)
dΩ =

√

l(l + 1)

l′(l′ + 1)

∫

Y ∗
l′m′ Ylm dΩ = δl′l δm′m

In the same way it can be shown (EXERCISE) that
∫

X∗
l′m′ · (r×Xlm)dΩ = 0 ∀ l, l′,m,m′.

Computation of the components of the vector spherical harmonics in spherical coordinates with eq. (0.31) is

quite straightforward:

Xlm = − 1
√

l(l + 1)

(

θ̂
mYlm
sin θ

+ φ̂ i ∂θYlm

)

(7.44)

We see that vector spherical harmonics have no radial component and dependence. This follows directly from the

fact that r · L = 0. It guarantees that our free-space fields are divergenceless, as expected. But it also means that

these fields have no radial component! In fact, we are in the presence of two types of fields: a transverse (to the

radial direction) electric field coupled to a magnetic induction field via Faraday’s law, and a different transverse
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magnetic induction field coupled to an electric field via Ampère’s law in vacuum (see eq. (7.37)):

E = Z0

∑

l,m

√

l(l + 1)Blm h
(1)
l (kr)Xlm(θ, φ) H = − i

1

Z0k
∇×E

H = −Z0

∑

l,m

√

l(l + 1)Clm h
(1)
l (kr)Xlm(θ, φ) E = i

Z0

k
∇×H

Then the general solution of Maxwell’s equations can be written as a linear combintation of the two types. For

instance, the electric field is the sum of the electric contribution in the first line, and the electric contribution in the

second line:

E = Z0

∑

l,m

√

l(l + 1)

[

Blm h
(1)
l (kr)Xlm(θ, φ) +

i

k
Clm∇×

(

h
(1)
l (kr)Xlm(θ, φ)

)

]

(7.45)

H =
∑

l,m

√

l(l + 1)

[

Clm h
(1)
l (kr)Xlm(θ, φ) − i

k
Blm∇×

(

h
(1)
l (kr)Xlm(θ, φ)

)

]

Note that the l sums starts at l = 1; can you see why?

7.4.1 Calculation of the multipole coefficients

With identity (0.32), together with L2Ylm = l(l + 1)Ylm:

r ·E = − Z0

k

∑

l,m

Clm
1

i
r ·∇×

(

h
(1)
l LYlm

)

= − Z0

k

∑

l,m

Clm L
2h

(1)
l Ylm = − Z0

k

∑

l,m

Clm l(l + 1)h
(1)
l Ylm

Similarly, r ·H = 1
k

∑

Blml(l+1)h
(1)
l Ylm. Extracting the coefficients using orthogonality of the Ylm, we finally

obtain the standard forms:

aE
lm :=

√

l(l + 1)Clm = − k
√

l(l + 1)

1

h
(1)
l (kr)

∫

Y ∗
lm(θ, φ) r ·E dΩ

(7.46)

aM
lm :=

√

l(l + 1)Blm =
k

√

l(l + 1)

1

h(1)(kr)

∫

Y ∗
lm(θ, φ) r ·H dΩ

from which we see that knowledge of r · E and r · H from eq. (7.41) determines the fields. From eq. (7.5) the

factor eikR/R in eq. (7.41) is, with r< = r′ and r> = r:

eikR

R
= 4π i k

∞
∑

l=0

jl(kr
′)h

(1)
l (kr)

l
∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ)

When, say, r ·H is inserted into aM
lm, the terms can be rearranged so that, using orthogonality, the integral over all

solid angles picks out one value each of l and m in the expansion, the values in aM
lm :

1

4π

∫

Y ∗
lm(θ, φ)

eikR

R
dΩ = i k h

(1)
l (kr) jl(kr

′)Y ∗
lm(θ′, φ′)

Then eq, (7.41) immediately yields for aM
lm:

aM
lm = − k2

√

l(l + 1)

∫

jl(kr
′)Y ∗

lm(θ′, φ′)L′ ·
[

J(x′) + ∇×M(x′)
]

d3x′ (7.47)
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As for aE
lm, which depends on r ·E, eq. (7.41), with E′ = E since the point of observation lies outside the source,

leads to (EXERCISE):

aE
lm = i

k3
√

l(l + 1)

∫

jl(kr
′)Y ∗

lm(θ′, φ′)L′ ·
[

M(x′) +
1

k2
∇× J(x′)

]

d3x′ (7.48)

There still remains to interpret these coefficients and the fields with which they are associated in eq. (7.45).

To this end we first rewrite the source terms. Inserting identities 0.32 and 0.35: L · V = i∇ · (r × V), and

L ·∇×V = i
[

∇2(r ·V)− 2∇ ·V − (r ·∇)∇ ·V
]

= i
[

∇2(r ·V) − ∂r(r
2 ∇ ·V)/r

]

, in our result for aE
lm,

there comes:

aE
lm = − k3

√

l(l + 1)

∫

jl(kr
′)Y ∗

lm(θ′, φ′)

[

∇
′ · (r′ ×M) +

1

k2
∇′2(r′ · J) − i c

kr′
∂r′((r

′2 ρ)

]

d3x′

where, in the last term, the continuity equation: ∇ · J = −i cρ/k, has been invoked. Note also that, unlike

Jackson, we retain the prime on the integration variables to emphasise that integration is with respect to source

variables. The second integral can be transformed with the help of Green’s second identity 0.7, in which the

surface lies outside the source. Then, since jl(kr
′)Y ∗

lm satisfies a homogeneous Helmholtz equation, the inte-

gral becomes:
∫

jl(kr
′)Y ∗

lm∇′2(r′ · J)d3x′ =
∫

(r′ · J)∇′2
[

jl(kr
′)Y ∗

lm

]

d3x′ = −k2
∫

(r′ · J)jl(kr′)Y ∗
lmd3x.

Furthermore, the term involving the charge density can be integrated by parts:
∫

jlY
∗
lmr

′∂r′(r
′2ρ)dr′dΩ′ =

−
∫

[∂r′(r
′jl)]ρY

∗
lmr

′2dr′dΩ′. Also, from the recurrence relations in eq. (J9.90), ∂r′(r
′jl) = (l + 1)jl − kr′jl+1.

Exactly the same line of argument can be applied (EXERCISE) to aM
lm, leading to the final exact form (no approx-

imation!) for the coefficients:

aE
lm = − i

k2
√

l(l + 1)

∫

d3x′ Y ∗
lm(θ′, φ′)











[

∂r′
(

r′jl(kr
′)
)

ρc + i jl(kr
′) kr′ ·

(

J + ∇′ ×M
)

]

[

jl(kr
′)
[

(l + 1)ρ c + i kr′ ·
(

J + ∇′ ×M
)]

− ρc kr′ jl+1(kr
′)
]

(7.49)

aM
lm =

k2
√

l(l + 1)

∫

Y ∗
lm(θ′, φ′)

[

jl(kr
′)
[

∇
′ · (r′ × J) − k2 r′ ·M

]

+ ∇
′ ·M ∂r′

(

r′ jl(kr
′)
)

]

d3x′

where the identity (0.34) has been invoked on the M in aE
lm, and we have given two equivalent versions of this

coefficient.

Example 7.2. The thin linear centre-fed antenna revisited (section J9.12)

To illustrate how to calculate multipole moments, let us go back to example 7.1, an ultra-thin linear

antenna of length d driven at its centre, in which a current I(z) = I sin(kd/2 − k|z|) is set up that

is harmonic not only in time but also in position. We will need the corresponding current and charge

densities In spherical coordinates:

J(x′) = r̂′
I(r′)

2π r′2
[

δ(cos θ′ − 1) − δ(cos θ′ + 1)
]

ρ(x′) =
∇′ · J

ikc
=

1

ikc

dr′I(r
′)

2π r′2
[

δ(cos θ′ − 1) − δ(cos θ′ + 1)
]

The antenna has no intrinsic magnetisation, and the current density is radial, so that the coefficients

aM
lm all vanish. As for aE

lm, we first take care of the straightforward angular integration in eq. (7.49).

The φ integration gives zero unless m = 0, as expected from the azimuthal symmetry of the source.

The θ integration yields:

2π

∫

√

2l + 1/4πPl(cos θ)
[

δ(cos θ − 1) − δ(cos θ + 1)
]

d(cos θ) =
√

π(2l + 1)
(

Pl(0) − Pl(π)
)

=
√

π(2l + 1)
(

1− (−1)l
)
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Then, according to the first line for aE
lm in eq. (7.49), there comes:

aE
l0 =

k2

2π

√

π(2l + 1)

l(l + 1)

(

1− (−1)l
)

∫ d/2

0

[

kr′ jl(kr
′) I(r′) − 1

k
dr′I(r

′)dr′
(

r′ jl(kr
′)
)

]

dr′

=
1

2π

√

π(2l + 1)

l(l + 1)

(

1− (−1)l
)

∫ d/2

0

[

− dr′
(

kr′ jl(kr
′) dr′I

)

+ kr′ jl(kr
′)
(

✘✘✘✘✘✘✿0
d2r′I + k2I

)

]

dr′

= − 1

2π

√

π(2l + 1)

l(l + 1)

(

1− (−1)l
)

kr′ jl(kr
′) dr′I(r

′)
∣

∣

∣

d/2

0

=
I

πd

√

π(2l + 1)

l(l + 1)

(

1− (−1)l
)

(

kd

2

)2

jl(kd/2) (7.50)

where in the second line the harmonic dependence of the current on position has been used to simplify

the result, and where drI(r) = −kI cos(kd/2 − kr). This result holds at all distances and for all

wavelengths.

The source terms in the integrands on eq. (7.49) justify the names electric multipole coefficient for aE
lm and

electric multipole field for the associated contributions to E and H in eq. (7.45). Also, we call aM
lm a magnetic

multipole coefficient and its asssociated field a magnetic multipole field.

We can find clearer evidence for this interpretation in the long-wavelength approximation, kr′ ≪ 1, appropriate

to radiation from atoms and nuclei (see section J9.11 for a detailed discussion). In that limit, the leading term of

jl(kr
′) as given in eq. (J9.88) is (kr′)l/(2l+1)!!, where (2l+1)!! := (2l+1)(2l− 1)(2l− 3) · · · . Then the term

with J and M in aE
lm is down by kr′ compared to the first ρ term in the second expression for aE

lm in eq. (7.49),

and the second ρ term is down by (kr′)2. In that limit, then, the electric coefficient is:

aE
lm = − i

kl+2 c

(2l + 1)!!

√

l + 1

l
(Qlm + Q̃lm) (7.51)

with electric multipole moments:

Qlm =

∫

r′l ρ Y ∗
lm d3x′ Q̃lm =

i

(l + 1) c

∫

r′l kr′ ·
[

J+∇
′ ×M

]

Y ∗
lm d3x′ (7.52)

The Qlm are exactly the electrostatic moments introduced in eq. (3.2)!

For aM
lm the long-wavelength approximation means that the r ·M term in eq. (7.49) is much smaller than the

two others, leading to:

aM
lm = i

kl+2 c

(2l + 1)!!

√

l + 1

l
(Mlm + M̃lm) (7.53)

with magnetic multipole moments:

Mlm =
1

l + 1

∫

r′l ∇′ · (r′ × J)Y ∗
lm d3x′ M̃lm =

∫

r′l Y ∗
lm∇′ ·Md3x′ (7.54)

We recognise in the integrand of Mlm/2 the magnetic dipole moment density, (r× J)/2, defined in eq. (4.13).
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For the sake of completeness we give the final expressions for the electric and magnetic fields:

E = Z0

∑

l,m

[

aM
lm h

(1)
l (kr)Xlm(θ, φ) +

i

k
aE
lm∇×

(

h
(1)
l (kr)Xlm(θ, φ)

)]

H =
∑

l,m

[

aE
lm h

(1)
l (kr)Xlm(θ, φ) − i

k
aM
lm∇×

(

h
(1)
l (kr)Xlm(θ, φ)

)]

(7.55)

=
∑

l,m

[(

aE
lmXlm(θ, φ) − i

k
aM
lm∇×Xlm(θ, φ)

)

h
(1)
l (kr) − i

k
aM
lm∇h

(1)
l (kr)×Xlm(θ, φ)

]

where the coefficients (or moments) are given by eq. (7.49). These expressions exhibit the manifest separation of

the electic and magnetic contributions at all orders lm. It is important to observe (EXERCISE) that in each field

the electric contribution is transverse to the magnetic one.

7.4.2 Multipole radiation fields and angular power distribution

The benefits of the multipole expansion of the fields over the potential approach are most evident in the treatment

of radiation, ie. when taking kr ≫ 1 in eq. (7.55). First, focus on the ∇ × Xlm term that occurs in both fields

and is explicit in the second line for H. Invoking identity (0.36), it is proportional to: i∇ × LYlm(θ, φ) =
r∇2Ylm −∇Ylm. Both terms go like 1/r, and the terms in which the curl appears go like 1/kr; thus, the curl can

always be neglected in the radiation zone. Also, from eq. (J9.89), h
(1)
l (kr) → (−i)l+1ei kr/kr. We keep only the

leading order from the gradient of this function, leading to:

H(x, t) =
ei (kr−ωt)

kr

∑

l,m

(−i)l+1
[

aE
lmXlm(θ, φ) + aM

lm n̂×Xlm(θ, φ)
]

(7.56)
E(x, t) = Z0H× n̂

where the electric field has been found in eq. (7.12). The fields exhibit the characteristic form of a spherical wave.

Recall that the time-averaged Poynting vector is: n̂·< S >= 1
2ℜ
[

n̂ · (E×H∗)
]

= 1
2Z0ℜ

[

n̂ · [(H× n̂)×H∗]
]

=
1
2Z0

∣

∣H× n̂
∣

∣

2
using the triple-product rule. Then, from definition (7.14), the angular power distribution is:

dP

dΩ
= < S · n̂ > r2 =

Z0

2k2

∣

∣

∣

∣

∣

∣

∑

l,m

(−i)l+1
[

aE
lmXlm(θ, φ) × n̂ + aM

lmXlm(θ, φ)
]

∣

∣

∣

∣

∣

∣

2

(7.57)

where n̂ · Xlm = 0 in the far-zone. We see that the electric and magnetic contributions for a given order (lm)
have the same angular dependence, and can only be distinguished by their polarisations which are perpendicular.

Earlier we found that this was true for dipoles, but now we know that its is a feature of all multipoles.

Example 7.3. Going back to our centre-fed antenna for which we derived multipole moments in

example 7.2, the calculation of the angular power distribution is simplified by the azimuthal symmetry

and the vanishing of the magnetic moments. Then, using (X∗
l′m′ × n̂) · (Xlm × n̂) = X∗

l′m′Xm, plus

eq. (7.44) with m = 0, we find:

dP

dΩ
=

Z0

8πk2

∣

∣

∣

∣

∣

∑

l

√

2l + 1

l(l + 1)
(−i)l aE

l0 dθPl

∣

∣

∣

∣

∣

2

(7.58)

As discussed in section J9.12, including just l = 1 and l = 3 multipoles results in an excellent match

to the exact distribution; this is the case even when the long-wavelength approximation, which is

invalid here, is used to calculate the multipole coefficients. When the emitters are atoms or nuclei

(see sections J9.9 and J9.10), the approximation is usually perfectly valid, and expressions (7.51) and

(7.53) for the coefficients can be used.
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8 Introduction to Relativity

A Digression on Units

Important note: in what follows, Gaussian units will be used so as to be consistent with the textbook. Do not

confuse these with electrostatic (esu) units, in which ke = 1 and km = 1/c2), and which were used in the second

edition! The whole subject of units is a bit of a dog’s breakfast. But the textbook does have a clear discussion of

this vexed topic in its appendix.

A few quick transposition rules from SI to Gaussian units. First, in a SI equation, make the following transfor-

mations:

Sources: q, ρ,J, I,P →
√
4πǫ0 (q, ρ,J, I,P) =

1√
ke

(q, ρ,J, I,P), M →
√

4π/µ0 M =
1√
km

M

(8.1)

Fields: E −→ E√
4πǫ0

=
√

ke E, D −→
√

ǫ0
4π

D =
D

4π
√
ke

B −→
√

µ0
4π

B =
√

km B H −→ H√
4πµ0

=
H

4π
√
km

(8.2)

Many times, there will be no ǫ0 or µ0 left. If there are, either they will be in the combination
√
ǫ0µ0, in which case

put it equal to 1/c, as in Faraday’s Law for instance. Or if they should occur alone, put them equal to 1.

8.1 A Mathematical Digression on Tensors

I have already mentioned in the preamble that to characterise a vector by the fact that it has a magnitude and a

direction is unsatisfactory. Physics is full of quantities which have magnitude and direction, but are not vectors:

angular displacement, electric current, flux, etc. A more sophisticated approach classifies mathematical objects

according to how they behave under certain transformations. For instance, take the three numbers, (x1, x2, x3) =
(x, y, z), that specify a displacement in a Cartesian coordinate basis. If this displacement is with respect to the

origin, we can call it a position.

As stated in the mathematical preamble to these notes (section 0), the position vector (and in fact any vector)

can be written in terms of a coordinate basis (or system) {ei} (i = 1 to 3):

x = xi ei

where the xi are called contravariant components. But to the same vector can be associated a companion, called

a covector, or 1-form χ, which itself has covariant components xi in a cobasis {ωi}:

χ = xi ω
i

A basis and its cobasis are related very simply: ωi(ej) = δij , that is, a cobasis vector is perpendicular to all the

basis vectors with a different label. Although, strictly speaking, a vector and its covector live in different spaces, it

is quite usual to identify them and to put them on the same plot. Here is a two-dimensional example with a general

vector v:
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e1

e2

ω1

ω2

α

v

v1

v2

v1

v2

α

With respect to standard orthogonal axes, e1 has

components

(

1
0

)

and e2 components

(

cosα
sinα

)

.

This is an oblique basis, such as might be found in

cristallography.

Consider the rectangle triangle with side v1 and |v|
as its hypotenuse.The third side is also a side of

the triangle with hypothenuse of length v2, together

with one apex at the tip of v, like the first trian-

gle, and another apex at the point labelled v1. Then

Pythagoras’ theorem gives:

|v|2 = (v1)
2 +

[

(v2)2 − (v1 − v1)2
]

= (v2)2 − (v1)2 + 2 v1 v
1

Consider the triangle with one apex at the origin, another at point labelled v2, and the third at the tip of v. A similar

argument yields (EXERCISE) another expression for |v|2 in terms of v2 v
2. Adding the two, there comes:

|v|2 = v1 v
1 + v2 v

2

We conclude that the length squared of a vector is: vivi, not (v1)2+(v2)2+ . . ., as many believe. This error arises

from the fact that when a Cartesian basis is orthonormal, its cobasis merges with it on the same plot, and vi = vi.

Now rotate an orthogonal basis by an angle θ counterclockwise around the x axis. The components of the vec-

tor, (x′, y′, z′), in the rotated system are given by (see section 1.1.5 of Griffiths’ Introduction to Electrodynamics):





x′

y′

z′



 =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ









x
y
z



 (8.3)

or, in index notation:

x′
i
= Ri

j(θ)x
j (8.4)

where the Ri
j(θ) are the coefficients of the rotation matrix. As one might expect, rotations around an arbitrary

axis have a much more complicated rotation matrix; fortunately, we shall pretty much always be able to choose

the x-axis (or some other Cartesian axis) to be the rotation axis. The above transformation is an example of a

homogeneous linear transformation.

The set of all rotational transformations form a group, in the sense that:

1. it contains the identity matrix (rotation by zero angle);

2. there is an inverse transformation, R−1(θ) = R(−θ): xk = (R−1)ki x
′i, where (R−1)kiR

i
j x

j = δkjx
j;

3. two successive rotations are equivalent to a rotation:

x′′
k
= (R1)

k
i(φ) (R2)

i
j(θ)x

′j = Rk
j (θ + φ)xj

The components xi in the cobasis should transform as x′i = Si
kxk, with S a matrix to be determined. Then:

x′
i
x′i = Ri

j Si
k xjxk = xkxk = δkjx

jxk

so that (Ri
jSi

k − δkj)x
jxk = 0. Since there is no restriction on xj and xk, we must have Si

kRi
j = δkj , or:

Si
k = (R−1)ki
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so that the xi must transform as:

x′i = xk (R
−1)ki (8.5)

EXERCISE: Show how to obtain the inverse transformation xi = x′kR
k
i.

And now for some definitions:

Definition 8.1. A 3-tensor of rank 0 (scalar) is a one-component object that remains invariant (keeps

the same numerical value) under a rotation of a coordinate system. Examples: magnitude of a vector,

scalar product of two vectors, mass, temperature, etc.

A contravariant 3-tensor of rank 1 in three dimensions (3-vector), u, is an object whose three com-

ponents transform like those of position under a rotation of a coordinate system:

u′
i
= Ri

j u
j

A contravariant 3-tensor of rank 2 in three dimensions, T, is an object whose nine components

transform in the following way:

T ′ij = Ri
k R

j
l T

kl = Ri
k T

klRj
l = Ri

k T
klRT

l
j ⇐⇒ T′ = RTRT = RTR−1

where the last equality holds because the inverse of the rotation matrix is its transpose. This would

not necessarily be true for other transformations.

The entries of the 3 × 3 matrix T—the components T ij of the tensor—depend on the choice of

coordinate basis.

Until further notice, when we speak of a tensor, we mean a 3-tensor according to the above definitions.

These definitions can be extended to a rank-n tensor (ie. a tensor with n indices) in a straightforward manner.

All that one has to remember is that the transformation contains n applications of the same rotation matrix:

T ′ij...
kl... = (Rk

nRl
sRi

mR
j
t · · · )Tmt...

ns... = (R−1)nk (R
−1)slR

j
t · · ·Tmt...

ns... (8.6)

Note that tensor components are generally not scalars (invariant under rotations), and neither are numbers con-

structed from them! It does happen sometimes that they are, but this must be established properly.

The transformation rules can always be used to determine whether an object is a rank-n tensor. In many cases,

however, there is a short cut.

An object is a tensor if it is constructed from other tensors by addition or multiplication by a scalar: if T

and Q are tensors of the same rank, αT+ βQ (α, β scalars) is also a tensor of the same rank.

The tensor product of two vectors, u⊗v, is a rank-2 tensor with components uivj . Beware though: any rank-2

tensor is not necessarily a tensor product of two vectors!

For constructing new tensors, it is useful to have a library of known tensors. For instance, the Kronecker delta

is a rank-2 tensor. Indeed:

δ′
i
j = Ri

k (R
−1)nj δ

k
n = Ri

k (R
−1)kj = δij

Here we learn that there is something more to the Kronecker delta than just being a tensor: its components remain

the same under rotations, ie. whatever the basis used! The same is true of the Levi-Civita epsilon: in Cartesian

bases, it is a rank-3 tensor whose components themselves do not change under rotations of the bases; in curvilinear

bases, however, it is a tensor only if each component is multiplied by a factor (the square root of the absolute value

of the determinant of the metric, for the experts) that depends on the coordinates.

There is another way of constructing other tensors from tensors of rank 2 and higher. Start with a tensor T with

components T i
j . Now contract over i and j, ie. make the two indices the same letter to get, say, T i

i. The object

we obtain is called the trace of T, Tr T in coordinate-free notation. We have reduced the rank of the original
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rank-2 tensor by 2 to get a scalar equal to the sum of the diagonal coefficients of the matrix representing T. By the

same process of contracting over two indices, always one contravariant and one covariant, one can always reduce

the rank of a tensor of rank n > 2 to one of rank n− 2.

Finally, it is quite often useful to decompose rank-2 tensors into their symmetric and antisymmetric parts. In

index notation:

T ij =
1

2
(T ij + T ji) +

1

2
(T ij − T ji) ≡ T (ij) + T [ij]

Clearly, a rank-2 tensor T is symmetric if T ji = T ij , and it is antisymmetric if T ji = −T ij .

Strictly speaking, all operations on tensors are understood to be performed at one point. It does not really make

sense to add tensors at different points. (Yes, this rule is blatantly violated by differentiation, which involves taking

the difference between the values of a tensor at two infinitesimally close points. The fact is that one can get away

with this in flat Euclidean space—and even spacetime—but not in general curved spaces, such as the ones General

Relativity deals with. Then differentiation must be redefined.)

A field is simply the collection of all the values of a tensor over all space, given by continuous functions of

position x. Fields can be scalar (density ρ(x)), vector (velocity v), etc.

How do fields transform? A scalar field f(x) will change to f ′(x′) = f(x′). All one has to do is transform the

position. In terms of the new coordinates, the functional form f ′ will be different from f , but the number one gets

when f ′ is evaluated at x′ will be the same as f(x). Tensor fields of rank 1 and higher need more careful treatment.

Again, one must transform the coordinates of x to those of x′. But one must also transform the components of the

tensor themselves!

8.2 Galilean Relativity

First, introduce a few definitions.

Definition 8.2. An event is characterised by its occurrence at a spacetime point P. The position in

spacetime can be specified by three spatial coordinates and one time (we assume that spacetime is

four-dimensional). These are given in a reference frame which is a set of axes in space and a set of

identical, synchronised clocks, one at each point in space. Warning: do not confuse a reference frame

with a coordinate basis! You can change coordinate basis while remaining in the same frame. In this

chapter we generally use Cartesian spatial coordinates.

Reference frames—frames for short—can be in relative translational and rotational motion with re-

spect to one another. Of all possible frames, we restrict ourselves to inertial frames, ie. unaccelerated

frames in which no force of any kind is experienced. A rotating frame is not inertial. Consequently,

two inertial frames are either at rest or in uniform translational motion with respect to each other.

Now that we have set the stage, we ask the following. Let an event occur at point P, specified in a frame S by

spacetime coordinates (x, y, z, t). What are the coordinates (x′, y′, z′, t′) of this event (or of P) as observed in a

frame S′ ?

In Newtonian mechanics, the relation between (x, t) and (x′, t′) is given by the Galilean transformations:

• Space and time translations:

δx = α ∈ R
3 δt = η ∈ R

Invariance under these is a manifestation of the assumed homogeneity of space and time.

• Spatial rotations: x′
i
= Ri

j(φ)x
j ⇐⇒





x′

y′

z′



 =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1









x
y
z





Invariance under these is a manifestation of the assumed isotropy of space (no preferred direction).
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• Boosts:

δx = −vt, δt = 0 (8.7)

where S′ is moving at velocity v with respect to S. From these one immediately derives the velocity

transformations:

δu = d(δx)/dt′ = d(δx)/dt = −v (8.8)

• Parity, Time-reversal: x −→ −x, t −→ − t

All these can be combined into the group of generalised Galilean transformations:

x′
i
= aij x

j + ǫ vi t + αi (i = 1, 2, 3)
(8.9)

x′ = ±x t′ = ±t + η

What is the geometry of spacetime consistent with the Galilean transformations? By geometry, we mean a

measure of the distance between two spacetime points, known as the line element. Here, the geometry is given by

the absolute infinitesimal length, dl2 = dx2 + dy2 +dz2 = dx′2 + dy′2 + dz′2, and by the absolute infinitesimal

time interval, dt = dt′. Thus, observers in different inertial frames measure the same spatial distance and the same

time intervals between any two events. Space and time are not related: there are two line elements.

The Galilean relativity principle restricted to Newtonian mechanics asserts that the laws of Newtonian me-

chanics hold in all inertial frames, in the sense that their form is invariant under Galilean transformations. Thus,

for instance, the laws of conservation of momentum and kinetic energy:





∑

j

mjuj





initial

=





∑

j

mjuj





final

becomes





∑

j

mju
′
j





initial

=





∑

j

mju
′
j





final




∑

j

1

2
mju

2
j





initial

=





∑

j

1

2
mju

2
j





final

becomes





∑

j

1

2
mju

′2
j





initial

=





∑

j

1

2
mju

′2
j





final

(8.10)

provided
∑

imi is invariant (mass is conserved) under the transformations.

The Galilean relativity principle precludes the existence of an absolute state of rest, as well as of an ab-

solute, universal, preferred frame. But not every equation in Newtonian mechanics satisfies this principle.

Indeed, the classical wave equation for a scalar field f(x, t) is not invariant under Galilean transformations:

(∂2t − v2∇2)f(x, t) = 0 6= (∂2t′ − v′2∇′2)f ′(x′, t′), where v is the wave speed. Should we get upset about

this? Not at all, because in mechanics wave propagation takes place in a medium whose rest-frame is a preferred

frame. For instance, it is easy to tell if we are moving with respect to a stationary sound source in air or water, and

in order to determine the frequency of the sound from the observed frequency, we must correct for our motion by

using the Doppler shift equation.

8.3 Einstein’s Relativity

8.3.1 The need for a new relativity principle

Do electrical phenomena satisfy the Galilean relativity principle? No. Oscillating electric fields involved in light

obey a wave equation that is not form-invariant under Galilean transformations. Of course, as in mechanics, this

could mean that there exists a preferred frame (often called the ether). Two arguments can be brought against this

possibility, however. The first is a theoretical one, put forth by Einstein in his classic paper On the Electrodynamics

of Moving Bodies: if the vacuum is in fact an ether, one should be able to transform to a frame in which light is at

rest. To an observer at rest in this frame, there would be a static electric field oscillating as a function of position.
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But there is no such static oscillating solution to the Laplace equation, because it does not admit solutions with

local extrema.

The other argument rests on experiment: if a preferred frame existed, the speed of light (and therefore of the

electric wave) would depend on the speed of the observer with respect to this preferred frame. There would be a

sort of “ether wind” for which experimental results must be corrected. But this is not supported by experiment.

Starting with the Michelson-Morley experiment in the mid-1880’s, ever smaller limits have been put on this wind

speed. A very nice experiment [Jaseja, Javan, Murray, Townes, Physical Review 133, A 1221 (1964)] uses two

laser beams which are allowed to interfere after one has travelled along the direction of motion of the Earth and

the other perpendicular to it. The results are compared with measurements made six months later, when the Earth

is moving in the opposite direction with a relative speed of about 60 km/s. The absence of any observed change in

that experiment puts an upper limit of about 1 km/s on the speed of the ether wind. More recent experiments give

an upper limit † of one part in 1017.

If there is no preferred frame for the electric field, and if we believe that Maxwell’s equations are correct, only

one option is left: to modify the relativity principle itself so as to (1) make it universal, applying to all fundamental

laws of physics, while (2) postulating that the speed of light is absolute, with the same value in all inertial frames.

Not only is this consistent with the lack of experimental evidence for an ether, but it also defuses the first argument

since it makes it impossible to transform to a frame in which light is at rest.

8.3.2 Spacetime interval

To the new relativity principle (let’s call it the Einstein principle) must correspond new transformation laws be-

tween frames. There are a number of ways of deriving them. Historically, Lorentz did it first, by asking which

transformations left the form of Maxwell’s wave equations invariant. Here, we will proceed via a route (see

problem J11.1) that assumes that the speed of light is absolute and that spacetime is homogeneous and isotropic,

meaning that there is no special point or direction in spacetime. These assumptions will allow us first to answer

the following question: what is the geometry imposed on spacetime in Einstein’s relativity theory? In other words,

is there an invariant (frame-independent) measure of distance between spacetime points?

Consider two events infinitesimally close in space and time in some frame S, and such that the spatial distance

dl and time interval dt between them satisfies dl = ±c l̂dt, where c is the speed of light. Form the object

ds2 = c2dt2 − dl2. Clearly, for our two events, ds2 = 0. Equally clearly, since c is the same in another frame S′,

dl′/dt′ = ±ĉl, or dl′ = ±ĉl′ dt′, and we have ds′2 = 0. In this case, ds2 = ds′2 for any inertial frame S′.

But what if dl 6= ±ĉldt? Certainly ds2 is no longer zero. What is ds′2 in terms of ds2, then? To find it, let

the two events lie along the x-axis to simplify the formalism. Even without the exact form of the transformations

between (x, t) and (x′, t′), we expect them to be be homogeneous and linear. Then, quite generally:

c2dt′
2 − dx′

2
= A(x, t) c2 dt2 + B(x, t) dx2 + C(x, t) dxd(ct)

But this must be true also for the case we just considered, with dx = ±cdt and dx′ = ±cdt′. Inserting this, we

have:

0 = A(x, t)c2 dt2 + B(x, t) dx2 ± C(x, t)dx2

= c2 dt2 − dx2

Thus, C(x, t) = 0 and B(x, t) = −A(x, t) in general, since there is no restriction on x and t. We obtain

ds′2 = A(x, t)ds2.

†Eisele, Ch.; Nevsky, A. Yu.; Schiller, S. (2009), Laboratory Test of the Isotropy of Light Propagation at the 10−17 level, Phys. Rev.

Lett. 103 (9): 090401;

Herrmann, S., Senger, A., Möhle, K. Nagel, M. Kovalchuk, E. V. Peters, A. (2009), Rotating optical cavity experiment testing Lorentz

invariance at the 10−17 level, Phys. Rev. D 80 (100): 105011.
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Now A(x, t) must be a constant, A; otherwise, one could use it to make a fundamental distinction between

spacetime points. The only parameter on which A could depend and which distinguishes between the frames is

their relative velocity. Because we have assumed that there is no preferred direction (isotropy), A can only depend

on the relative speed, and ds′2 = A(|v|)ds2. The whole argument can be run in reverse, starting from S′, to yield

ds2 = A(| − v|)ds′2. Combining, we get ds2 = A2(v)ds2, so that A = 1. A = −1 is ruled out, otherwise you

could imagine a third frame S′′ moving at velocity v′ with respect to S′ and at at velocity v′′ with respect to S.

Then we would be able to write: ds′′2 = A(v′)ds′2 = A(v′)A(v)ds2 = ds2, while ds′′2 = A(v′′)ds2 = −ds2.

This shows that although dl and dt are expected to change under the transformations, ds2 = c2dt2 − dl2 is

an invariant. It is the meaningful measure of spacetime distance, otherwise known as the spacetime interval or

line element. No longer do we have two separate geometries as in Newtonian mechanics; there is one unified

four-dimensional geometry.

8.4 Lorentz transformations (section J11.3)

We can now use the invariance of the line-element ds2 to derive the so-called boost transformations between

frames. Demand that these be linear and homogeneous, so as to be single-valued and not single out the origin as a

special point. The transformations must be consistent with the invariant nature of the speed of light and leave the

wave equation invariant. They must have an inverse, obtained by: v −→ −v.

Write (for relative motion in the x direction):

x′ = Ax + B(ct) ct′ = F (ct) + Gx

Insert this into (ct′)2 − x′2 = (ct)2 − x2. Since there is no restriction on (x, t) or (x′, t′), the following must hold:

AB − FG = 0, A2 −G2 = 1, F 2 −B2 = 1

Re-parameterise the constants:

A = cosh ψ G = − sinh ψ F = cosh θ B = − sinh θ

so that the second and third relations are automatically satisfied, whereas the first yields tanh θ = tanhψ. Since

then θ = ψ, A = F and B = G.

To find θ, notice that tanh θ = −B/A. Then consider the motion of the origin of S′, x′ = 0, in S with its

position given by x = vt = βct, where the dimensionless quantity β ≡ v/c is the relative speed in units of the

speed of light. Since 0 = x− βct, one has B/A = −β, so that x′ = A(x− βct), tanh θ = β. The parameter θ is

called the rapidity and it ranges from 0 to ∞, as β ranges from 0 to 1; it is also additive. Our boost transformations

are:

x′ = γ (x − β ct) ct′ = γ (ct − β x) y′ = y z′ = z

(8.11)
x = γ (x′ + β ct′) ct = γ (ct′ + β x′) y = y′ z = z′

These are the famous Lorentz transformations parametrised in terms of β. They can be generalised to the case

where v is in an arbitrary direction:

ct′ = γ (ct − β · x) x′ = x +
γ − 1

β2
(β · x)β − γ β ct (8.12)

According to this expression, the projection of x on β̂ transforms as β̂ · x′ = γ[β̂ · x − β ct], as expected. The

projection perpendicular to β̂ transforms as x′ − (β̂ · x′)β̂ = x− (β̂ · x)β̂ and therefore does not change.
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The Lorentz transformations go over to the Galilean transformations in the so-called nonrelativistic limit,

β ≪ 1, or γ ≈ 1. Simultaneous events in S, say at (x, t) = (0, 0) and (d, 0), are transformed to (x′, t′) = (0, 0)
and (γd,−γβd) in S′, illustrating the relativity of simultaneity. Also, an array of synchronised clocks at rest in S′

and observed, say at t = 0, by an observer at rest in S, are not synchronised in S. Indeed, in S they are observed

to read t′ = −γvx, x being their position in S.

If the S observer observes a single clock at rest in S′, then ∆t = γ∆t′, since ∆x′ = 0. Calling the rest-frame

of the clock its proper frame (here S′), and ∆τ = ∆t′ the proper time, we have ∆t = γ∆τ ≥ ∆τ . Moving

clocks run slow, by a factor γ. On the other hand, if at time t our S observer measures a stick at rest in S′ which

has length ∆x′ in that frame, (s)he will find ∆x = L0/γ, where L0 ≡ ∆x′ is the proper length of the stick (the

length in its own rest-frame). Here we have length contraction since ∆x ≤ L0.

The proper time of a particle is closely related to the line element, ds2. Indeed:

ds2 = c2 dt2 − dl2 = c2 dt2

[

1 −
(

dl

d(ct)

)2
]

= c2 dt2 (1 − β2) =
1

γ2
c2 dt2 (8.13)

where β is the speed of the particle. Then ds = cdt/γ = cdτ , and we find that proper time is also Lorentz-

invariant.

Suppose one is observing a particle moving at speed β, where β is not necessarily constant. Then dτ is the

infinitesimal proper time element of this particle (the time in its rest-frame), and dt is the observer’s infinitesimal

time element (observer time). One can then relate macroscopic observer time to macroscopic proper time of the

particle:

∆τ =

∫ ∆t

0

√

1− β2(t′) dt′, ∆t =

∫ ∆τ

0
γ(τ ′) dτ ′ (8.14)

Note that time dilation is no longer symmetrical when there is acceleration! This is the solution to the “twin

paradox”.

8.4.1 Addition of Velocities (section J11.4)

The Lorentz velocity transformations are rather complicated, reflecting the fact that the usual velocity is no longer

the best way to describe the rate of change of position. Let βu = dctx = u/c. Its components transform as:

β′ux =
dx′

d(ct′)
=

γ [dx − β d(ct)]

γ[d(ct) − β dx]
=

dx/d(ct) − β

1 − β dx/d(ct)
=

βux − β

1− ββux

β′uy =
dy′

d(ct′)
=

1

γ

dy

d(ct) − β dx
=

1

γ

dy/d(ct)

1 − β dx/d(ct)
=

1

γ

βuy
1 − ββux

β′uz =
dz′

d(ct′)
=

1

γ

βuz
1 − β βux

(8.15)

These automatically preserve the speed of light: if βux = 1, β′ux = 1. Warning: These expressions assume

that β is in the positive x direction. If it is in the negative x direction, all the signs in front of terms containing β
must be reversed. Moreover, the sign of u is implicit and must be put in.

Another, more compact, formulation for the velocity transformations is:

β′u‖ =
βu‖ − β

1 − β · βu

β′
u⊥ =

βu⊥

γv
(

1 − β · βu

) (8.16)
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The inverse transformations are easily obtained by interchanging primed and unprimed u and reversing the

sign of β.

As an EXERCISE, derive the Lorentz transformations for acceleration.

Advice: When solving problems that involve length, distance, or time interval comparisons between frames, it is

often best to list all the Lorentz transformations, from S to S′ and backward, and scan them to find the one(s)

leading to the solution with the least amount of calculations. Also, although which frame you call S and which S′

is a purely arbitrary matter, the proper frame appropriate to the problem isn’t! It is a good idea to identify it first;

the other frame will be the observer frame. When using the time dilation and length contraction equations, check

that you do indeed get the right relative sizes. If you get the opposite, you have probably misidentified the proper

frame.

Finally, we rewrite Lorentz boosts in the x direction in a more compact form, in preparation for the four-vector

formalism that we will introduce shortly: x′µ = Λµ
νx

ν , where the indices µand ν run from 0 to 3, and we have

used the summation convention over repeated indices. More explicitly, with tanh θ = β:









ct′

x′

y′

z′
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γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

















ct
x
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cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

















ct
x
y
z









(8.17)

8.4.2 Causal structure

The importance of the line element cannot be overstated. Indeed, take any spacetime point and put the origin at

that point. Plot a two-dimensional cut in the x-ct plane for purposes of illustration, showing also the spacetime

trajectories that light can follow from this point.

x

ct

future

past

worldline

lightline

The two lightlines mark the intersection of the light-cone with the x − ct plane. The light-cone divides

spacetime into two regions: one in which spacetime points can be connected to the event at the origin by signals

that travel slower than light (that’s the interior of the light-cone, closest to the ct axis), and the other in which

points can only be connected to the origin by faster-than-light signals. Also shown is the worldline of a particle,

giving its position x as a function of ct.

Now look at:

(∆s)2 = (ct)2 − x2 = (ct′)2 − x′
2
= (∆s′)2
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If (∆s)2 = 0, the interval is said to be null or lightlike. Notice that the light-cone is absolute, frame-independent!

The spacetime region for which (∆s)2 > 0 (timelike interval) lies inside the light-cone of the event at the

origin. For any spacetime point inside the light-cone, it is always possible to find a frame S′ in which the events

occur at the same spatial position: x′2 = 0. No event inside the light-cone is simultaneous with the event at the

origin, and it is impossible to find a frame in which it is.

The spacetime region for which (∆s)2 < 0 (spacelike interval) lies outside the light-cone. For any spacetime

point in that region, it is always possible to find a frame S′ in which it is simultaneous with the event at the origin.

In fact, there exist frames in which their time ordering is reversed.

The implications are clear: if causality is to make sense, ie. if time ordering is to remain invariant under a

change of frame, the event at the origin can only influence or be influenced by events that lie inside its light-cone.

This region is the only one to be causally connected to the origin. Each point in spacetime thus has an absolute

future, its forward light-cone made of all the spacetime points it can influence, and an absolute past, its backward

light-cone containing all the spacetime points which could have influenced it. In other words, the spacetime interval

between causally connected events is always timelike.

8.5 Four-dimensional Tensors: the Four-vector Formalism (section J11.6)

The most general Lorentz transformations combine a boost and a spatial rotation; they have a determinant equal

to 1: ‖Λµ
ν‖ = 1. Here we shall focus on boosts in the x direction only. Recall how we wrote such Lorentz

transformations:

x′
µ

= Λµ
νx

ν (µ, ν = 0, 1, 2, 3)

where x0 = ct, x1 = x, x2 = y, x3 = z, and:

Λµ
ν =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









γ =
1

√

1− β2
, β = x̂ v/c

In analogy with the 3-vectors at the beginning of the chapter, we introduce the coordinate-free notation x for

the spacetime position with coordinates xµ. We give ourselves four basis 4-vectors, e(µ), for our four-dimensional

spacetime, where µ runs from 0 to 3. From now on we use Greek for spacetime indices and Roman for spatial

indices (1, 2, 3). Some authors do the reverse, and you may come across older books in which spacetime indices

run from 1 to 4, with 4 corresponding to the time index; but it is quite standard these days to use 0 for the time

index. Note that the index µ on e(µ) says which basis 4-vector, not which component! In a basis e(µ), then,

x = xµe(µ). As before, repeated indices must be summed over.

We take the transformation of the position 4-vector x as defining all 4-vectors:

Definition 8.3. A Lorentz 4-vector a is any object whose components, aµ, transform as a′µ = Λµ
νa

ν

under a Lorentz transformation Λ.

8.5.1 Minkowski metric

A Lorentz scalar is invariant under a Lorentz transformation. We already know one such scalar: the line element:

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

= ηµνdx
µdxν (8.18)
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where, in a Cartesian basis:

ηµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(8.19)

η is known as the Minkowski tensor, or metric tensor for flat spacetime; that it is a tensor will be shown

below. Also, in Cartesian coordinates only, its compnents are themselves invariant under Lorentz boosts. The

overall sign of η is a matter of convention; I have been consistent with Jackson’s (rather unfortunate!) choice.

Here, we see one of the two important jobs of a metric tensor: to define distances on a space.

8.5.2 Relation between covariant and contravariant components of a 4-tensor

The components aµ of a 4-vector a, where a = aµe(µ), are said to be contravariant. But it is also useful to form

the set aµ = ηµνa
ν , which are called the covariant components of the same 4-vector a.

Clearly, in Cartesian coordinates, a0 = a0, and ai = −ai. Thus, unlike in three-dimensional space, covariant

and contravariant components in spacetime are in general different, and it is crucial to keep track of them! This is

due, of course, to the fact that η00 always has its sign opposite to the sign of ηii. Because of this, mathematicians

say that the metric of flat spacetime is pseudo-Euclidean (not Euclidean as would be the case if all the diagonal

elements had the same sign, like in three-dimensional space). In the curved spacetimes of Einstein’s theory of

gravitation, contravariant and covariant components differ by much more than a sign. Even in flat (non-curved)

Minkowski spacetime, using curvilinear cooridnates brings in a Minkowski tensor with space-space diagonal com-

ponents different from 1,

The Minkowski tensor, with covariant components ηµν , defines the spacetime distance; it also provides a link

between not only the contravariant and covariant compoents of a vector, as we have just seen, but also those of

a general tensor of any rank. covariant and contravariant. The operation that obtains covariant components from

contravariant ones is often called lowering an index. The contravariant components of a tensor of rank r can also

be lowered to yield its covariant components. Take for instance a rank-2 tensor. Then: Tµν = ηµαηνβT
αβ . Or

only one index can be lowered to produce mixed components: T µ
α = ηαβT

µβ , Tα
ν = ηαβT

βν . Rank-n tensors

can have lots of components of different type!

Needless to say, if indices can be lowered, they can also be raised. That is, given covariant components, one

can obtain their contravariant counterparts:

aµ = ηµνaν = ηµνηνρa
ρ (8.20)

But aµ = δµρa
ρ, where δµρ is the Kronecker delta in four dimensions. Comparing, we have that ηµνηνρ = δµρ,

which means that ηµν is the inverse of ηνρ, and the contravariant and covariant Cartesian components of η are

identical. This is also consistent with the fact that ηµν = ηµαηνβηαβ . Conclusion: we raise indices with ηµν and

lower them with ηµν . For a rank-n tensor, we simply apply as many times η as the number of indices that we want

to raise or lower, being careful to implement all the rules about repeated and free indices that we introduced in

three dimensions and which still hold in four.

The norm of a 4-vector a is simply a ·a, or aνaν = (a0)2−a2 since we often write a = (a0,~a). It is a Lorentz

invariant (or scalar). So ds2 = ηµνdx
µdxν = dxνdxν is the norm of dx.

As could have been gathered from the transformation law that we wrote earlier for a tensor of rank r, covariant

and contravariant indices do not transform in quite the same way. How do the covariant components of a 4-vector

transform then? Well, certainly we must write (formally) a′µ = aβL
β
µ, but what is Lβ

µ? We invoke the Lorentz

invariance of aµaµ:

a′µa
′µ = aβL

β
µΛ

µ
νa

ν = aβaβ = δβνa
νaβ

which we rewrite: (Lβ
µΛ

µ
ν − δβν) a

νaβ = 0. Therefore, Lβ
µΛ

µ
ν = δβν , so that L = Λ−1.
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This can also be used to write the inverse Lorentz transformation in the 4-vector formalism. I claim that

aν = (Λ−1)νµa
′µ. Indeed, since a′µ = Λµ

ρa
ρ, we have:

aν = (Λ−1)νµΛ
µ
ρa

ρ = δνρa
ρ = aν

Just as in three-dimensional space, we can extend the transformation law to define Lorentz tensors T of higher

rank, whose components must transform like:

T ′µν...
λρ... = (Λ−1)αλ(Λ

−1)βρΛ
µ
γΛ

ν
σ T

γσ...
αβ... (8.21)

where one Lorentz matrix or its inverse must be applied for each index.

8.5.3 Constructing Lorentz tensors

Like all tensors, Lorentz tensors can be constructed from other Lorentz tensors. For instance, the trace of a tensor

T of rank 2 is T µ
µ = Tν

ν . And if T = a ⊗ b, then T ν
ν = aνbν = aνb

ν , the scalar (inner) product a · b of two

4-vectors. Note that:

aµbµ = a0b0 + a1b1 + a2b2 + a3b3

= ηµνa
µbν = a0b0 − a1b1 − a2b2 − a3b3

The generalisation of the vector product of two 3-vectors is called the exterior product of two covectors: a∧b,

which is an antisymmetric rank-2 tensor (or 2-form) with components aµbν − aνbµ. This is valid in any basis! If

we insist on writing it in terms of the components of the associated vectors, however, we must first raise the indices

on both aµ and bµ with the metric tensor. The same is true in three dimensions: only in a Cartesian basis are the

contravariant and covariant components the same. The rank-2 covariant tensor with components Tij = aibj −ajbi
can then be converted to those of a vector via the operation 1

2ǫ
ijkTjk, which is an example of a Hodge dual..

Here is a property that can be useful when one wishes to establish the tensor character of an object: if T µνaµbν
is a scalar for any 4-vectors a and b, thenT is a tensor. Moreover, if T µνaµ is a 4-vector for any 4-vector a, then

T is a tensor.

Example 8.1. Under a Lorentz transformation:

ds′2 = dx′νdx
′ν = η′µνdx

′µdx′
ν

= η′µνΛ
µ
αΛ

ν
β dx

αdxβ

But ds′2 = ds2 = ηαβdx
αdxβ . Comparing with the last line gives:

dxαdxβ(η′µνΛ
µ
αΛ

ν
β − ηαβ) = 0

Therefore, ηαβ = η′µνΛ
µ
αΛ

ν
β , so that η is, as claimed before, a rank-2 covariant Lorentz tensor.

Before putting the four-vector formalism to good use, one may well ask why all this fuss about tensors. Why

do we bother with them? The reason lies in the transformation laws for a Lorentz tensor T. Being homogeneous,

they ensure that if T = 0 in some inertial frame, T = 0 in any other frame. In other words, if you can show that

all the components of a tensor vanish in some frame, you have shown that they vanish in all frames. Now, any

equation can be put in the form: something is equal to zero. If that something is a tensor, then the equation holds

in all frames! By building the fundamental equations of physics out of Lorentz tensors, we guarantee that they

satisfy the Einstein relativity principle.

If T(x) is a tensor field of rank r, the equation T(x) = 0 contains in fact 4r equations, one for each component

T µνλ.... This is similar to what happens in three-dimensional space, where T(x) = 0 contains 3r equations. Each
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equation is automatically satisfied in all frames when properly transformed, even if it may not look that way. Only

T(x) = 0 itself satisfies the relativity principle in a manifest way. Many people say that the tensor equation

is Lorentz-covariant, but I don’t want to use this terminology because the word “covariant” has already been

assigned a different meaning. Instead, I will speak of form-invariant expressions, meaning that the form of the

expression does not change under Lorentz transformations.

8.6 Differential Operators in the Four-vector Formalism

Form the object with components ∂µ = ∂/∂xµ =
(

∂ct, ∂i
)

. How does it behave under Lorentz transformations?

This can be established easily from the chain rule for partial differentiation:

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν

But since xν = (Λ−1)ναx
′α (inverse Lorentz transformation):

∂xν

∂x′µ
= (Λ−1)να

∂x′α

∂x′µ
= (Λ−1)να δ

α
µ = (Λ−1)νµ

Therefore:
∂

∂x′µ
= (Λ−1)νµ

∂

∂xν
(8.22)

which is the Lorentz transformation for the covariant components of a 4-vector—more precisely, the compoenents

of a 4-covector. The object we have constructed is the 4-gradient operator,∇, with naturally covariant components

∂µ = (∂ct, ∂i) and whose contravariant components read: ∂µ = ∂/∂xµ = ηµν∂ν = (∂ct, −∂i).
We construct first derivatives of Lorentz tensors:

• The 4-gradient of a scalar field f(x), the covector or 1-form ∇f , with components ∂µf . Note that df =
(∇f) · dx = (∂µf)dx

µ.

• The divergence of a 4-vector field a(x), ∇ · a, a Lorentz scalar; in index notation, this is written ∂µa
µ =

∂µaµ = ∂cta
0 +∇(3) · a, where ∇(3) is the 3-dim gradient operator..

• The exterior derivative of a 4-dim 1-form field, c = ∇ ∧ a, which is an antisymmetric covariant tensor of

rank 2. (In three dimensions, the exterior derivative of a covector is also a rank-2 covariant tensor whose

form is basis-independent; it is converted to a 3-vector with the Levi-Civita symbol.) The matrix form of the

components cµν = ∂µaν − ∂νaµ, with ai = −ai the components of a 3-vector a, is:















0 −(∂ctax + ∂xa0) −(∂ctay + ∂ya0) −(∂ctaz + ∂za0)

∂ctax + ∂xa0 0 −(∇(3) × a)z (∇(3) × a)y

∂ctay + ∂ya0 (∇(3) × a)z 0 −(∇(3) × a)x

∂ctaz + ∂za0 −(∇(3) × a)y (∇(3) × a)x 0















(8.23)

• The curl of a 2-form, or covariant antisymmetric tensor field T(x) of rank 2, ∇ ∧T, is a covariant antisym-

metric tensor of rank 3, a 3-form. In index notation, its components are written as:

∂ρTµν + ∂νTρµ + ∂µTνρ (8.24)

A (p+1)-form can always be constructed by taking the exterior derivative of a completely antisymmetric

covariant tensor (aka p-form), but when p is also the dimension of the space in which these objects live, the

result must vanish (WHY?). So, in four dimensions, only p-forms up to p = 4 can exist, with 4-forms being

of the form: f(x)ǫµνρλ, in which the index structure is entirely carried by the Levi-Civita symbol.
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Among tensors formed from double partial derivatives, only the d’Alembertian is nontrivial: ≡ ∂µ∂
µ =

∂2ct −∇(3)2. (Note that some authors use the notation 2 for the d’Alembertian.) The classical wave equation for

a scalar wave propagating in vacuum at the speed of light is:

✷ f(x) ≡ ∇ ·∇f ≡ ∂µ∂
µf =

(

1

c2
∂2t −∇(3)2

)

f = 0 (8.25)

Its general solution has the form f(k ·x), where k is called the wave 4-vector, with k0 = ω/c and k = (2π/λ)k̂, k̂

giving the direction of propagation; ω is the angular frequency and λ the wavelength of the wave. Then the phase

k · x = kµx
µ = ωt− k · x, and consistency with the wave equation imposes k · k = 0, or (ω/c)2 − (2π/λ)2 = 0,

which gives, as expected, c = ω/k.

It should be stressed that care must be exercised with the spatial derivatives if a non-Cartesian basis is used,

because of those pesky unit vectors or, equivalently, the metric coefficients that inevitably contribute when raising

indices of components, plus
√

|g| factors that come from taking Hodge duals. It is safer to stick to Cartesian bases,

as we will do, especially when dealing with the d’Alembertian of tensors of rank ≥ 1, like ✷ aµ, or ✷T µν .

What about identities on these objects? There is only one, but it is of utmost importance: the famous Poincaré

lemma, which says that the exterior derivative applied twice on any p-form vanishes identically, and of which

∇×∇f = 0 and ∇ ·∇× a = 0 are just two 3-dim examples. It follows that if the exterior derivative of a 1-form

is zero everywhere, this 1-form is the 4-gradient of some scalar field (assuming a simply connected space).

8.7 Relativistic Kinematics and Dynamics

8.7.1 4-velocity and 4-acceleration

Having introduced the spacetime position 4-vector, we seek to define a velocity that transforms the right way under

Lorentz transformations, ie. as a 4- vector. We could try U = dx/dt, an object with four components. But because

dt does not transform as a Lorentz tensor, dx/dt is not a Lorentz tensor. If we could find a time that behaves as

a scalar in replacement of dt, we could construct a tensor. But we do have such a beast at hand: the proper time

dτ = dt/γ. So:

U =
dx

dτ
(8.26)

is a 4-vector. How is this 4-velocity related to the usual velocity dx/dt? We write in index notation:

Uµ =
dxµ

dτ
= γ

dxµ

dt
=

(

γ
dx0

dt
, γ u

)

= γ (c,u) (8.27)

where u = dx/dt, and γ = 1/
√

1− β2 with β = u/c. Note that the components of u must be multiplied by γ
to obtain the spatial components U j of U! The 4-velocity transforms properly : U ′µ = Λµ

νU
ν , unlike u whose

transformation laws are much more complicated because of the dt in the denominator.

The covariant components of u are immediately obtained as: Uµ = γ(c,−u), and its norm is UνUν = c2.

While we’re at it, we might as well construct the 4-acceleration Γ = dU/dτ . EXERCISE: Find the compo-

nents Γµ in terms of u and a, where a = du/dt is the Newtonian 3-acceleration. Then also find the norm of Γ in

terms of u and a, and show that UµΓµ = 0 (hint: take the proper time derivative of the norm of U).

8.7.2 Energy-momentum four-vector (section J11.5)

Consider the object P = mU, where m is mass. Now P · P = m2U · U = (mc)2, so that we can take m to be

a Lorentz scalar and therefore P a Lorentz 4-vector. The spatial components P i = mU i are interpreted as the
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components of relativistic momentum: p = γmu, where u = dx/dt and γ = 1/
√

1− β2u. They go over to the

Newtonian definition of momentum in the nonrelativistic limit γ ≈ 1.

What makes momentum so interesting a quantity is the fact that it is conserved in processes during which no

external force acts: the total momentum of an isolated system remains constant, ie. the same after and before the

process. This conservation law should obey the relativity principle. But Newtonian momentum does not satisfy

the Einstein relativity principle, only the Galilean one. This destroys its usefulness since conservation becomes

frame-dependent. By contrast, thanks to its tensor nature, the 4-momentum P is conserved whatever the Lorentz

frame in which we work. Moreover, since P is a 4-vector, we get a conservation law not only for relativistic

momentum p, but for the 0-component of P. For a process involving two bodies, we write this as:

(

γ1m1c
2 + γ2m2c

2
)

initial
=
(

γ1m1c
2 + γ2m2c

2
)

final

We interpret γmc2 = P 0c as the total energy of a body. This explains why P is often called the energy-momentum

4-vector instead of 4-momentum. The contravariant components of P are thus Pµ = (E/c,p), and its covariant

components Pµ = (E/c,−p), where once again p is the relativistic 3-momentum γmu.

If E = γmc2 is the total energy of a body, what kind of energies contribute to it? Notice first that for a body

at rest E = E0 = mc2, which means that a body has energy merely by virtue of having a mass. Now:

E −E0 = (γ − 1)mc2 −→
γ→1

[

1 +
1

2

u2

c2
+ . . . − 1

]

mc2 =
1

2
mu2 (8.28)

Thus, E−E0 goes over to the Newtonian kinetic energy in the limit γ ≈ 1 and can be interpreted as the relativistic

kinetic energy. So we find that E contains the rest-energy of a body and its kinetic energy, but not any potential

energy it may have as a result of sitting in some field.

Writing the norm of P explicitly in terms of energy and momentum yields a very important and useful relation

between E and p = γmu:

E2 = (pc)2 + (mc2)2 (8.29)

It is also clear that we can regard γ as the total energy of a body in units of its rest-energy; the total energy

is often a better parameter of the motion than the velocity u, because of the complicated nonlinear dependence

of γ on u. In real life—inasmuch as the word can apply to high-energy physics experiments at accelerators—all

particles move at speeds so close to the speed of light that speed is no longer a useful parameter; motion is usually

characterized by the energy of the particle.

Relativity allows the existence of particles with zero rest-energy (or zero mass), as long as they move at the

speed of light, such as the photon. In this case, the expression E = γmc2 does not hold since it gives 0/0,

but E2 = (pc)2 + (mc2)2 yields E = pc. Usually, it is the energy of the zero-mass particle which is known

experimentally, and one can then deduce its momentum via p = E/c. Note that for zero-mass particles, p 6= γmu,

again because γm is indeterminate in that case.

There is another useful criterion for deciding whether an object’s motion is relativistic. If the energy quoted

is smaller than the rest-energy E0, it obviously refers to kinetic energy. If that is much smaller than E0, the non-

relativistic approximation, ie. the usual Newtonian expressions for all quantities, may be used. If not, relativistic

expressions must be used, as also when the energy quoted is larger than E0, in which case it should be specified

whether this is the total or kinetic energy.

If the energy given is much larger than E0, one can make the ultrarelativistic approximation which consists

in ignoring E0, treating the particle as if it were massless. Then E ≈ pc. (Aside: when you calculate an energy,

it is quite permissible to make one of the two approximations if you suspect that it is justified. If your answer is

consistent with your approximation, you were right; if not, you must use the full relativistic expressions.)
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8.7.3 Relativistic dynamics

Having introduced the 4-acceleration Γ, it is but a short step to construct a 4-force, the Minkowski force K = mΓ.

Let us take a closer look at its components:

K0 = m
dU0

dτ
=

1

c

d(γ mc2)

dτ
=

1

c

dE

dτ
(8.30)

K0 therefore measures the proper rate at which energy is being transferred to or from the particle by a force acting

on it. Which force? Well:

Ki = m
dU i

dτ
=

dP i

dτ
= γ

dpi

dt
(8.31)

So we can still use the usual definition of the force, F = dp/dt, but with p the relativistic 3-momentum: p =
γmu. So the Ki are not the components of F, although they are related to them: Ki = γF i.

Next, work out the invariant K ·U:

KνUν =

(

1

c
γ
dE

dt

)

(γ c) − (γ F) · (γu)

But we already know that K ·U = 0 since Γ ·U = 0. Thus:

dE

dt
= F · u (8.32)

whose form is then Lorentz-invariant, although not manifestly so. Integrating both sides, we arrive at the work-

energy theorem ∆E =
∫

F ·dl, the work done by F. The form of the theorem is the same as in Newtonian physics,

but with E = γ mc2 and F = d(γmu)/dt.

The vanishing of K · U has another interesting consequence: it means that at least one component of K must

depend on U. Assuming that it is linear, the dependence should be written so as to satisfy the relativity principle.

The only possible form is K = λX · U, where X is a rank-2 tensor and λ is some Lorentz-invariant constant that

matches the units on both sides. In index notation, Kµ = λXµνUν . By writing K · U in component notation, we

immediately show that since U is arbitrary, the symmetric part of X must vanish, and X is an antisymmetric rank-2

tensor.

The relativistic generalisation of the Newtonian expression Fc = mu2/R for the centripetal force keeping a

body in uniform motion at speed u on a circular trajectory of radius R is Fc = γmu2/R.

Relativistic Electrodynamics

8.8 Current-density 4-vector

It seems appropriate to start with the source of the electric field, the charge density ρ = nq, where n is the number

density of particles all carrying charge q. If all of these move with a common velocity u, there is a current density

j = ρu = nqu. Now, calling n0 the proper number density (density in the rest-frame of the charges), we have

n = γn0 from length contraction. Then, since it is an experimental fact that q is a Lorentz invariant (see p. J554),

the object J with contravariant components:

Jµ = (ρc, j) = n0 q (γc, γu) = n0 q U
µ (8.33)

is postulated to be a 4-vector.

We also know that ρ and j satisfy a conservation law, called the continuity equation, ∂tρ+∇(3) · j = 0, which

does obey the relativity principle, but not manifestly so. Indeed:

∇ · J = ∂µJ
µ = ∂ct(ρc) + ∇(3) · j = 0
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We say that J is a conserved 4-current density (we often omit “density”...). Note that the word “conservation”

here does not refer to states before and after a process! The conservation of J, like all conservation laws taken in

that specific sense (continuity), is expressed in the 4-vector formalism by the vanishing of its 4-divergence, which

is a manifestly form-invariant statement.

8.9 4-vector Potential

Recall the Poisson equation for the electrostatic potential: ∇2Φ = −4πρ (in Gaussian units!). It is certainly not

manifestly form-invariant under Lorentz boosts, although it is under spatial rotations. Indeed, time derivatives

arise from the transformation of the Laplacian although one might think that “static” should be a Lorentz-invariant

property. Moreover, the charge density, ρ, which behaves as a scalar (a 3-tensor) under spatial rotations, becomes

in spacetime the 0th component of a 4-vector. This means that if, as we should, we write our theory in terms of

Lorentz tensors, the Poisson equation will be the 0th component of a more general tensor equation taken in the

static limit.

Rewrite the Poisson equation in the equivalent form ∇2Φ = −4πρ = −4πJ0/c. The spatial part of the tensor

equation of which the Poisson equation will be the 0th component should contain derivatives of a 3-vector potential,

A, and a right-hand side proportional to j. Therefore, define the 4-dim potential as a 1-form A with components

Aµ = (Φ, −A) (this is more natural than a vector).

The differential tensor equation we seek for A must have 4-vector character since its right-hand side is a 4-

vector (J). It must be linear in A so as to reduce correctly to the Poisson equation. And it must contain second-order

space and time derivatives. The most general equation which meets these criteria is:

∇ ·∇A + a∇(∇ · A) + bA = d J

where a, b, and d are constants to be determined. A possible constant in front of the first term can always be

absorbed in the other ones. In index notation:

∂µ∂
µAν + a ∂ν(∂

µAµ) + bAν = d Jν

Consider the static case: ∂tA = 0. The 0th component (ν = 0) of the tensor equation is −∇2Φ+ bΦ = d J0. Then

consistency with the Poisson equation imposes b = 0 and d = 4π/c.

[Aside: if b 6= 0, the solution of the resulting equation is Φ(r) = e−αr/r in vacuum in the spherically-symmetric

case, where α2 = −b. (EXERCISE: check this.) This is not the Coulomb potential, but the short-range potential

associated with a massive photon.]

Now take the divergence of the tensor equation to obtain:

∇ ·∇(∇ · A) + a∇ ·∇(∇ ·A) =
4π

c
∇ · J

that is, (1 + a)✷ (∇ · A) = 0, since ∇ · J = 0. Thus, conservation of J implies that a = −1. (If instead

✷ (∇ · A) = 0, ∇ · A would be sourceless; also, A0 would obey a wave equation; it can be shown that if A0

propagates, this leads to unacceptable behaviour since A0 would propagate negative energy to infinity.)

We end up with:

∇ ·∇A − ∇(∇ · A) =
4π

c
J (8.34)

or

∂µ∂µAν − ∂ν(∂
µAµ) =

4π

c
Jν (8.35)

in terms of covariant components.
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8.10 Faraday-Maxwell Field Tensor and Maxwell’s Equations (section J11.9)

Since we can interchange the partial derivatives in the second term (in flat spacetime only!), we can write:

∂µ(∂µAν − ∂νAµ) =
4π

c
Jν

which becomes:

∂µFµν =
4π

c
Jν (8.36)

(note the order of the indices!), or, if we define F ≡ ∇ ∧A:

∇ · F =
4π

c
J (8.37)

Clearly, being constructed from 4-vectors, F is a 2-form (rank-2 covariant tensor) with components Fµν = ∂µAν−
∂νAµ, so that F is antisymmetric. Its contravariant components are F 0i = −F0i, and F ij = Fij .

Since F is the exterior derivative of a 1-form, its exterior derivative must be identically zero, by Poincaré’s

lemma: ∇ ∧ F = 0. In index notation:

∂ρFµν + ∂νFρµ + ∂µFνρ = 0.

Now we must give a physical interpretation for F. As the first derivative of a potential, it is a field (in the

physical sense of the word) and should somehow contain the electric field. Since Aµ = (Φ, Ai) = (Φ, −Ai), we

have:

F0i = ∂0Ai − ∂iA0 = − (∇(3)Φ + ∂ctA) (8.38)

Seeing that this reduces to E in the static case, we identify the time-space components of F, F0i, with Ei.

The three other independent components of F, Fij , are equivalent to the components of the 3-dim curl of

A in eq. (8.23). The three non-zero independent space-space components of F then form a new 3-dim field

B ≡ ∇(3) ×A which we call the magnetic induction field. The matrix form of the covariant and contravariant

components of the Faraday-Maxwell electromagnetic field tensor, F, reads:

Fµν =













0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0













Fµν =













0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0













(8.39)

In three-dimensional space, E and B are perfectly good -tensors (vectors); in spacetime, however, their true

nature is revealed: their components are together the components of a covariant, antisymmetric tensor of rank 2,

the electromagnetic Faraday-Maxwell field.

Let us now write the two equations for F, the source equation ∇ · F = 4πJ/c, and ∇ ∧ F = 0, explicitly in

terms of time and space derivatives (3 + 1 formalism).

First:

∂iFi0 = ∂iF
i0 =

4π

c
J0

=⇒ ∂iE
i =

4π

c
ρ c

=⇒ ∇
(3) ·E = 4π ρ Gauss (8.40)

and then, considering the spatial components of ∂µF
µν = 4π

c J
ν :
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∂0F
0j + ∂iF

ij = − 1

c
∂tE

j + ∂iǫ
ijkBk =

4π

c
J j

=⇒ ∇
(3) ×B − 1

c
∂tE =

4π

c
j Ampère (8.41)

where we have used† F ij = ǫijkBk. These are the inhomogeneous Maxwell equations in 3 + 1 form (Gaussian

units!) .

The other equation, ∇ ∧ F = 0, is somewhat easier to handle if we first introduce the dual of F: ⋆⋆ F. Now,

instead of this more standard notation, we shall put F ≡ ⋆⋆ F in order to be consistent with the textbook. In index

notation:

Fµν :=
1

2
ǫµναβFαβ (8.42)

where ǫ is the skew-symmetric Levi-Civita 4-tensor of rank 4 (Cartesian coordinates!), with properties analogous to

those of the 3-dim Levi-Civita symbol and ǫ0123 = +1. Thus, F and its dual contain exactly the same information,

but rearranged: time-space components become space-space components (up to a sign), and vice-versa. Indeed:

F
0i =

1

2
ǫ0ijk Fjk =

1

2
ǫijk (∂jAk − ∂kAj) = ǫijk ∂jAk = −Bi

F ij =
1

2
ǫijαβ Fαβ =

1

2
(ǫij0k F0k + ǫijk0 Fk0) = ǫij0k F0k = ǫ0ijk F0k = ǫijk Ek (8.43)

The advantage of F is that because of the way it depends on the potentials, it satisfies a differential identity:

∂µF
µν =

1

2
ǫµναβ ∂µ(∂αAβ − ∂βAα) ≡ 0 (8.44)

which is equivalent to ∇ ∧ F = 0 but is easier to expand into components (four instead of 64!):

∂iF
i0 = ∂iB

i = ∇
(3) ·B = 0 Gauss (8.45)

∂0F
0j + ∂iF ij = −

(

1

c
∂tB

j + ǫjik∂iEk

)

= 0

=⇒ ∇(3) ×E +
1

c
∂tB = 0 Faraday (8.46)

These are the homogeneous Maxwell equations, again in Gaussian units. One may object that since they are

identities, it should be impossible to retrieve any information from them. But ∇∧F = 0 (or ∇ ·F = 0) becomes

an identity only when one writes F in terms of the potential A. It does not contain any information about A, but if

one works only with the electromagnetic field, F, it can (and must) be used to solve for E and B.

In Lorentz-tensor form, Maxwell’s equations are then:

∇ · F =
4π

c
J, ∇ ·F = 0 (8.47)

or:

∂µF
µν =

4π

c
Jν ∂µF

µν = 0

Because F and F are both antisymmetric, the left-hand sides of Maxwell’s equations have identically vanishing

divergence: ∂µ∂νF
µν ≡ 0, from which ∂νJ

ν = 0, or ∇ · J = 0. We see that Maxwell’s equations incorporate

†We will be consistent the unusual convention implied by eq. J11.139: ǫ123 = 1, ǫ123 = −1. We also have: ǫijkǫilm = −(δj
lδk

m −
δj

mδk
l) (note the overall minus sign that comes from Jackson’s choice ηii = −1!). Other useful expressions: Bi = −ǫijk∂jAk =

− 1

2
ǫijkFjk, and (∇×B)i = −ǫijk∂jBk.
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conservation of the source current as an identity on the field equations. This is a general feature of field theories

with conserved sources.

If one chooses to work with the electromagnetic potential A, there is but one Maxwell equation (instead of the

two for F), and we have already found it:

✷A − ∇(∇ · A) =
4π

c
J (8.48)

Once A is known, F = ∇ ∧ A yields the electromagnetic field tensor.

By taking the curl of Maxwell’s equation (8.48) for A, we obtain, invoking the Poincaré lemma:

✷ (∇ ∧ A) −
✘✘✘✘✘✘✘✘✿0
∇ ∧ ∇(∇ · A) = ✷F =

4π

c
∇ ∧ J (8.49)

or:

✷Fµν =
4π

c
(∂µJν − ∂νJµ)

which is a classical wave equation for F.

8.11 Lorentz Transformations of the Faraday Field Tensor (section J11.10)

Since F is a rank-2 tensor, its contravariant components transform as:

F ′µν = Λµ
αΛ

ν
βF

αβ (8.50)

We would like to multiply the three terms on the right hand-side in their matrix form. Before, though, this right-

hand side must be rewritten so that it looks like a product of matrices, ie. F ′µν = Λµ
αF

αβΛ̃ ν
β , where Λ̃ ν

β is

the transpose (rows and columns interchanged) of Λν
β . In other words, F′ = ΛFΛ̃. For a Lorentz boost in the x

direction, this is fairly simple:












0 −E′
x −E′

y −E′
z

E′
x 0 −B′

z B′
y

E′
y B′

z 0 −B′
x

E′
z −B′

y B′
x 0













is equivalent to:












γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

























0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

























γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1













This yields immediately:

E′
x = Ex B′

x = Bx

E′
y = γ (Ey − β Bz) B′

y = γ (By + β Ez)

E′
z = γ (Ez + β By) B′

z = γ (Bz − β Ey) (8.51)

Here are the transformed electromagnetic components for a general Lorentz boost β. They naturally split into

components longitudinal (‖) and transverse (⊥) to the motion:

E′
‖ = E‖, E′

⊥ = γ [E⊥ + β ×B]

(8.52)

B′
‖ = B‖, B′

⊥ = γ [B⊥ − β ×E]
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See also eq. (J11.149) for a very useful equivalent form. It is now clear that what we call electric or magnetic fields

are frame-dependent objects; the two transform into one another. Notice that, unlike 4-vectors, whose transverse

components are unaffected, the longitudinal components of rank-2 tensors do not change and the transverse ones

do. We immediately see that if one can transform to a frame where B′ = 0, the second line forces the boost to be

perpendicular to both B and E, and its magnitude to satisfy B = β ×E, ie., β = B/E < 1.

Indeed, whenever E or B vanish in some frame, the transformations are very simple and can be used to

solve problems which otherwise would be rather complicated. Take the electromagnetic field of a point-charge in

uniform motion. In the rest-frame of the charge, B′ = 0 and E′ = q/r′2. Without loss of generality, put the charge

at the origin of its rest-frame S′ and let S′ move along the x axis of S at speed v; locate the observation point P in

the x′-y′ plane at (x′, y′, 0) in the charge’s frame. Then the electric field has one longitudinal component, E′
x′ , and

two transverse components, E′
y′ and E′

z′ . The electric components in S (lab-frame) are obtained from the ones in

S′ via the Lorentz transformations, using Ey′ = γ (E′
y′ + β B′

z′) and Ez′ = γ (E′
z′ − β B′

y′):

Ex′ = E′
x′ = qx′/r′

3
Ey′ = γ E′

y′ = γ qy′/r′
3

Ez′ = γ E′
z′ = γ qz′/r′

3
(8.53)

These are the fields in the S frame expressed in terms of S′ coordinates. To complete the transformation, we must

also transform the coordinates of the point of observation P from S′ to S. Referring to fig. J11.8, but without

choosing any special location in the x = 0 plane (transverse to the direction of motion) for the observation point

P , we have
√

y′2 + z′2 =
√

y2 + z2 = r sinψ, and x′ = γ(x−βct) = γrx = −γr cosψ, where r is the distance

from the charge’s present position to the observation point, and ψ is the angle between r = rn̂ and the x axis.

Therefore:

r′
2
= x′2 + y′2 + z′2 = r2

(

γ2 cos2 ψ + sin2 ψ
)

= γ2 r2
(

1− β2 sin2 ψ
)

Combining everything gives the field in terms of the charge’s present position:

E = q
1

γ2
1

(1− β2 sin2 ψ)3/2
1

r2
n̂ (8.54)

The electric field points away from the instantaneous position of the charge, ie. the point where it is at the time of

observation if it always moves at speed v. One could well ask what happened to causality here. Clearly, the field

registered at P at time t must be the one generated by q at time t − r/c, the so-called retarded time (see chapter

6). The fact is that the direction of the field at time t does not say that the charge must be at the point where the

field is pointing from at that time. If the charge changes direction or speed after t− r/c, the “news” of this won’t

be known at P until the resulting change in the field, propagating at the speed of light, reaches P .

We can gain further insight by writing eq. (8.53) as a function of time. For the sake of simplicity, we now

choose P to lie at (x, y) = (0, b), as in fig. J11.8). Then x′ = −γvt, y′ = b, r′2 = b2 + (vt′)2 = b2 + (γvt)2, and

there comes:

E(x) =
γ q

(

b2 + γ2v2t2
)3/2

(−vt i + b j) (8.55)

Plotted against vt, the transverse component Ey looks like a pulse of width b/γ, whereas the longitudinal compo-

nent Ex is positive for t < 0 and negative for t > 0, and is appreciable also only for a time interval b/γ. This

means that at high γ, only the transverse component is readily observable.

The magnetic field of the point-charge in the lab-frame is easily obtained from B = β ×E:

B =
q

γ2
1

(1− β2 sin2 ψ)3/2
β × n̂

r2
(8.56)

With the geometry of fig. J11.8, this means that the only component of B is Bz = βEy .

In the nonrelativistic limit, β ≪ 1, this reduces to the Biot-Savart form:

B =
q

c

v × n̂

r2
(8.57)
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It is easy to see that B is down by a factor β compared to E. Also, it is perpendicular both to the electric field and

to the direction of motion of the source charge.

In the ultrarelativistic case (γ ≫ 1), on the other hand, the electric and magnetic fields of a point-charge look

more and more like that of a pulse of linearly polarised radiation propagating in the x direction.

Electromagnetic invariants can be formed from the Maxwell field tensor and its dual; this is left as an EXER-

CISE (problem J11.14). The sign of these invariants tells us which of the electric or the magnetic components can

be transformed away by performing a Lorentz boost to some other frame.

8.12 Gauge Invariance of Maxwell’s Theory

The most important property of Maxwell’s equations—apart from manifestly obeying the Einstein relativity principle—

is their invariance under a completely different type of transformation.

Add to A the 4-gradient of an arbitrary scalar field f : A → A + ∇f , or δA = ∇f . Then F is manifestly

invariant under this transformation: F → ∇ ∧ (A +∇f) = F +∇ ∧∇f = F, or δF = 0, since the 4-curl of a

4-gradient is identically zero.

On the other hand, Maxwell’s equation (8.48) for A changes by:

(δA) − ∇(∇ · δA) = (∇f) − ∇ ( f) ≡ 0 (8.58)

We conclude that Maxwell’s theory, whether expressed in terms of fields or of potentials, is invariant under the

gauge transformation δA = ∇f , where the gauge function f is an arbitrary, differentiable scalar function of

position and time. These transformations are now seen to lie at the origin of the arbitrariness in Maxwell’s theory

discussed in section 5.2.

. This arbitrariness cancels out of F = ∇ ∧ A, but not of ∇ · A which changes by f under a gauge

transformation. We can remove the arbitrariness by imposing so-called gauge conditions, of which there are many

in use. They can formally be shown, sometimes laboriously, to be accessible via some gauge function. Usually,

though, a gauge condition (or just gauge) is set directly, without exhibiting the gauge transformation that sends A

into something that satisfies the condition.

One very useful and popular gauge choice is the Lorenz gauge condition (do not confuse Lorenz with

Lorentz!), ∇ · A = 0. It has the advantage of being fully consistent with Relativity—or Lorentz covariant.

Also, our 4-potential equation now assumes the simple form:

A =
4π

c
J (8.59)

as we found in chapter 5 of these notes, but this time in Gaussian units. Because it is one relation between the four

components of A, the Lorenz condition brings the number of independent degrees of freedom down to three.

It is important to note, however, that there is still some arbitrariness left, since ∇ · A is invariant under a

restricted gauge transformation with any gauge function satisfying f = 0. When all arbitrariness has been

removed (see example below), only two independent degrees of freedom are left, as expected.

Although it is possible to find formal wave solutions for A0, as in Griffiths’ book, for instance, we recall that

the propagation of A0 is an artefact the arbitrary Lorenz gauge choice. In fact, A0 is really relevant only in static

solutions. Its real nature is revealed by working out the zero-component of eq. (8.48) without any gauge choice.

We see that the second-order time derivatives cancel out, so A0 does not really satisfy a wave equation.

Working instead in the Coulomb gauge, ∇(3) ·A = 0, we have shown in our chapter 5 that A0 and the

longitudinal component of A are not propagating degrees of freedom, leaving only two propagating (or dynamical)

degrees of freedom. The Coulomb gauge belongs to the class of so-called non-covariant gauges because it is not

form-invariant under Lorentz transformations. Consequently, it must be reimposed “by hand” every time one

changes frame. By contrast, the Lorenz condition belongs to the class of covariant gauge choices since it is
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manifestly form-invariant. This does not mean that non-covariant gauges must be shunned, simply that one should

use them only when Lorentz form-invariance is not important for what we’re doing.

Example 8.2. As noted above, it is possible to prove that Maxwell’s theory contains only two dynami-

cal degrees of freedom if one works with the Lorenz condition. First, consider plane-wave solutions to

✷A = 0: A = e eik·x, where e is a constant 4-vector not determined by the wave equation. Inserting

this back into the wave equation gives k · k = 0. We also have P = ~k, which gives P ·P = 0. So the

plane-wave solutions correspond to massless particles, called photons, travelling at the speed of light

with 4-momentum P.

Unlike the inhomogeneous solution of section 5.5, consistency of honogeneous solutions with ∇·A =
0 is not automatic. Imposing it leads to: k·A = 0. Taking the x axis along the direction of propagation,

this becomes k0A
0 + kxAx = 0, while k · k = 0 becomes k0k

0 + k2x = 0, or k0 = ±kx ≡ k, so that

A0 = ±Ax.

Now, as pointed out above, imposing ∇ · A = 0 does not completely remove the arbitrariness in

A. The gauge function f = f0 eik·x, which satisfies f = 0, provides a further transformation that

removes what is left of the arbitrariness. Indeed, Ax → (ex + ikf0)e
ik·x, and since f0 is an arbitrary

constant, simply take f0 = −iex/k, which removes the longitudinal component of the transformed

A, as well as A0 since A0 = ±Ax still holds after this last gauge transformation. Again, only the two

transverse components of A survive. Here, we had to resort to actual solutions in order to establish

this, contrary to the reasoning in the Coulomb gauge.

More sophisticated methods to be discussed in the next chapter confirm, without fixing the gauge, that only

two of the four quantities (Φ,A) can really propagate energy, in the sense that they—the transverse components

of A—are insensitive to any gauge transformation on A. By contrast, both Φ and the longitudinal component of

A change under gauge transformations, so that any wave character they may possess with one choice of gauge can

be made to disappear with a different choice.

8.12.1 Are electromagnetic fields more fundamental than potentials?

In classical electromagnetism, the equation of motion for charges (aka the Lorentz force law) contains fields but

no potentials. In fact, there is nothing in classical electromagnetism that cannot be derived also from the fields.

Thus, for a long time after they were introduced, potentials were considered useful to simplify some calculations,

but non-physical. One very often quoted argument held that potentials could not be physical because, unlike the

fields, they were not gauge-invariant. But now we see from the IVP analysis of Maxwell’s theory that it is possible

to set consistent initial data for the transverse part of the vector potential, which could not be true if they were

gauge-variant

In a seminal paper published in 1959, Aharonov and Bohm† proposed experiments, one of which involved

two beams of electrons travelling on opposite sides of a very long, very thin solenoid. When a current flows in

the solenoid, the magnetic field outside is strictly zero, but there exists a vector potential A so as to match the

potential inside where there is a magnetic field B. The circulation
∮

A · d l around and outside the solenoid is

the flux
∫

B · dS of the interior field through the cross-sectional area of the solenoid. Classically, however, this

exterior vector potential cannot be observed: no field, so no Lorentz force.

The authors noted that electrons do not really obey the Lorentz force law (except in the classical limit), but

instead Schrödinger’s equation, which involves the potentials, not the fields. The wave-functions of the electrons

would interfere and switching the magnetic field on and off ought to perturb the interference pattern, even though

no force acted on the electrons. The effect that they (and others before) discussed was soon observed experimen-

tally. Interestingly enough, however, in the final section of the paper the authors are still a bit confused about the

gauge objection, since they think that it could be raised against them:
†
http://link.aps.org/doi/10.1103/PhysRev.115.485.
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“ The main objection that could be raised against the above suggestion is grounded in the gauge

invariance of the theory. In other words, if the potentials are subject to the transformation Aµ →
A′

µ = Aµ + ∂ψ/∂xµ, where ψ is a continuous scalar function, then all the known physical quantities

are left unchanged. As a result, the same physical behavior is obtained from any two potentials,

Aµ(x) and A′
µ(x), related by the above transformation. This means that insofar as the potentials are

richer in properties than the fields, there is no way to reveal this additional richness. It was therefore

concluded that the potentials cannot have any meaning, except insofar as they are used mathematically,

to calculate the fields.”

They are reduced to say that the objection is wrong because counter-examples can be produced. In fact,
∮

A·d l
is gauge-invariant because

∮

(∇f) · dl = 0. Since the transverse A is itself gauge-invariant, only the longitudinal

component AL varies, and it is really
∮

AL · dl that is unaffected by gauge transformations. Moreover, the high

degree of symmetry makes knowledge of the curl sufficient to determine A everywhere in cylindrical coordinates:

Aout = (BR2/2ρ)φ̂, and Ain = (Bρ/2)φ̂, where B is the magnitude of the field inside and R the radius of the

solenoid. The divergence of A vanishes everywhere, which ensures that A is transverse. This does not contradict

the fact that ∇×A = 0 outside the solenoid. For A to be pure longitudinal there, the curl must vanish everywhere

in a simply connected space, ie., a space where every closed loop in the space can be contracted to a point, which

is certainly not the case here for loops around the solenoid. What is important is that electrons in the quantum-

mechanical regime are described by a wave-function, with a phase that can be shown to depend on A. Phase

differences, of course, are responsible for interference, and when the beams go through a region of zero magnetic

field but non-zero potential on topologically distinct paths (paths which cannot deformed into one another while

leaving their ends fixed), A disturbs the interference pattern of the beams. (Strictly speaking, the word “path”

is not so appropriate, though: in quantum mechanics paths are not well-defined, and this why there can be an

interference effect.)

So we must conclude that electromagnetic potentials (or, more precisely, their transverse part) are physical,

and that they contain more information than fields. Only in the quantum-mechanical regime, however, can this

information be retrieved.

8.13 Duality Properties of Maxwell’s Theory (J6.11)

Let us form the complex combination of the Faraday 2-form field strength and its dual: F = F + iF . Likewise,

define the 3-dim complex vector field E = E+ iB. Therefore, the complexified Faraday 2-form has components:

Fµν =









0 Ex Ey Ez
−Ex 0 i Ez − i Ey
−Ey −i Ez 0 i Ex
−Ez i Ey −i Ex 0









(8.60)

Maxwell’s equations can then be written in a very compact way:

∂µF
µν =

4π

c
Jν

e (8.61)

or, in 3 + 1 form:

∇ · E = 4π ρe ∇× E − i ∂ctE = i
4π

c
je (8.62)

In this form, it is easy to see that, in vacuum, Maxwell’s equations are invariant under the duality rotation:

F −→ eiφ
F, E −→ eiφ

E (8.63)

with φ any real constant. Choosing φ = π/2 gives E −→ −B and B −→ E. This unsuspected symmetry

is the reason for the similarity between the electric and magnetic fields from sources with the same geometrical

configuration..
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When sources are put in, however, eq. (8.61) is no longer invariant under duality rotations. Invariance can only

be restored by including a magnetic charge density ρm and a magnetic current density jm so that now:

∇ · E = 4πρ ∇× E − i ∂ctE = i
4π

c
J (8.64)

where now ρ = ρe + i ρm and J = je + i jm. when both electric and magnetic sources are included, the duality

transformation with φ = π/2 exchanges not only the fields, but also the electric and magnetic charges.

If instead one chooses tanφ = −ρm/ρe, the magnetic charge and current densities are transformed to zero,

and this, without changing the physical content of the theory! So, if all particles have the same universal ratio of

magnetic to electric charge, we may not be able to tell whether magnetic charge exists.

As Jackson points out in his section 6.11, if a magnetic charge g exists, one can define a magnetic fine-

structure constant αm = (g/4π)2/(km~c) analogous to the electric one kee
2/~c ≈ 1/137. Dirac has shown that

αm ≈ O(1/αe), which means that the magnetic coupling is very strong.

Now, in field theory, one often expands in powers of a small coupling constant, but this is impossible for

a large coupling constant like αm. The previous considerations suggest that electromagnetic duality is in fact a

weak-coupling/strong-coupling duality. There are theories such as quantum chromodynamics which have strong

couplings. It might be possible, using this idea of duality, to transform to a weak equivalent of the theory and infer

some information that remains valid in the strong-coupling regime. These ideas feature prominently in some of

the current research on Yang-Mills theories (QCD) and string theories, which have been discovered to be related to

each other by analogous duality transformations.

9 Dynamics of Charged Particles and Electromagnetic Fields

9.1 From the Minkowski Force to the Lorentz Force

We make use of the general expression derived earlier that relates the Minkowski force to the 4-velocity of a body

on which that force acts: K = λX · U, where X is some antisymmetric rank-2 tensor that contains the physics,

and λ is a constant that normalises for the right units. In our case, one available antisymmetric rank-2 tensor is the

Faraday field tensor, F. This means that λ must be equal to charge q/c for correct units. Therefore:

Kµ = dtP
µ =

q

c
Fµν Uν (9.1)

where Uµ = γ(c, −u). The spatial components of K are:

Ki =
q

c

(

F i0 U0 + F ijUj

)

= q
[

Ei γ − ǫijkBk (γ uj/c)
]

= γ F i

Then, with β = u/c, we can write the components F i of the 3-force as:

F = q(E + β ×B) (9.2)

which is the Lorentz force equation. For a charge distribution, multiply Kµ = q FµνUν/c by the observer-frame

number density n = γn0. The charge density is ρ = qn, and, with J = ρU, nK is a force density with components

FµνJν/c.

As an EXERCISE, work out the meaning of the 0th component of the electromagnetic Minkowski-force equa-

tion.

Note: We have not really derived the equation of motion (9.1)! After all, F could also have been used. . . We

will now show that it can be obtained from a Lagrangian, using the principle of least action.
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9.2 Very Short Review of Classical Lagrangian Formalism

Consider a system with a finite number N of degrees of freedom, qn(t) (1 ≤ n ≤ N ). We assume that the

dynamics is described by the action integral:

S :=

∫ tf

ti

L(qn, q̇n) dt (9.3)

where the functional L is called the Lagrangian of the system, and the velocities q̇n are taken to be independent

of the qn. In other words, to any trajectory qn(t) in Rn that takes the initial value qni := qn(ti) and the final value

qnf := qn(tf), we associate the number S given by the integral.

Time evolution of the system is obtained from the principle of least action: classical trajectories qn(t) are those

for which the action is stationary, that is, arbitrary small variations δqn(t) lead to δS = 0. When we have found

the trajectories that minimise S in that way, small deviations from these trajectories do not result in a change in S.

Now, according to the calculus of variations, a variation of L(qn, q̇n) is written as:

δL =
∂L

∂qn
δqn +

∂L

∂q̇n
δq̇n (summation over n)

where δqn = ǫfn(t) and δq̇n = ǫḟn(t), with ǫ a small parameter and fn(t) arbitrary functions. Inserting into

δS =
∫

δLdt, ǫ cancels out and there comes:

∫ tf

ti

[

∂L

∂qn
fn +

∂L

∂q̇n
ḟn

]

dt = 0 (9.4)

Integrating the second term by parts and setting fn(ti) = fn(tf) = 0 (to keep the end-points of the trajectories

fixed), we arrive at:
∫ tf

ti

[

∂L

∂qn
− d

dt

∂L

∂q̇n

]

fn dt = 0 (9.5)

Since the fn are arbitrary functions of time, the expression in the square bracket must itself vanish if it is continuous

in time, and we have the Euler-Lagrange equations of motion:

∂nL − dtπn = 0 (9.6)

where the generalised momenta conjugate to qn, πn = ∂L/∂q̇n, have been introduced.

Now the total time-derivative in the Euler-Lagrange equations can be rewritten as:

π̇n = q̈m
∂πn
∂q̇m

+ q̇m
∂πn
∂qm

This yields an interesting, more detailed form of the Euler-Lagrange equations:

q̈m
∂2L

∂q̇m∂q̇n
+ q̇m

∂2L

∂qm∂q̇n
− ∂nL = q̈m

∂πn
∂q̇m

+ q̇m
∂πn
∂qm

− ∂nL = 0 (9.7)

Because this is a system of second-order differential equations, people speak of it as the second-order formalism.

That the Hessian matrix ∂2L/∂q̇m∂q̇n = ∂πn/∂q̇m of L has non-zero determinant is a necesssary and sufficient

condition for the equations, and thus the accelerations, to be linearly independent. If the determinant vanishes,

we say that the system is singular, in the sense that the matrix is not invertible, and the velocities as functions of

the coordinates and the monenta are themselves not invertible. The system is also said to be constrained, because

there exist relations of the type φ(q, π) = 0 that make manifest the fact that the momenta are not all independent,

In addition, q̈n is not uniquely determined by the coordinates and velocities at any given time, and the solution to

the equations of motion contains arbitrary functions of time.
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Example 9.1. A simple example will help illustrate this. Consider the Lagrangian L = (q̇1 − q̇2)
2/2,

with conjugate momenta π1 = q̇1−q̇2 and π2 = q̇2−q̇1. The two momenta are not linearly independent

since π1 + π2 = 0. As a result of this constraint, the whole velocity space q̇1-q̇2 is mapped to the line

π2 = −π1 in momentum space. Each point accessible to the system in momentum space maps back

to a straight line defined by q̇2 − q̇1 = constant. At the level of the equations of motion, eq. (9.7)

contains only one independent equation: q̈2 − q̈1 = 0.

9.3 Motion of a Charged Particle in an Electromagnetic Field from a Covariant Lagrangian (sec-

tion J12.1)

We want a Lagrangian L that yields the equation of motion (9.1) and its 3-dim version, the Lorentz force law, eq.

(9.2), for a particle of mass m and charge q. It must be a Lorentz scalar built from available 4-vectors, in this case

the 4-potential A and the 4-veloocity U (dependence on the 4-position x would break translation invariance which

is the foundation of the conservation of energy and momentum).

Now Lagrangians are not unique: for instance, we will not use Jackson’s Lagrangian in eq. (J12.31). The

reason lies outside the scope of our treatment; let us just say that his L leads to a Hamiltonian (not introduced here)

that is not manifestly positive-definite. We take:

L =
1

2
mUµUµ − q

c
UνAν =

1

2
mηµνU

µUν +
q

c
UνAν (9.8)

Remember that UµUµ = c2. But this constraint is not to be implemented at this stage, unless a Lagrange-multiplier

term is added to L:

L =
1

2
mc2 − q

c
UνAν + λ(UβUβ − c2)

The covariant form of the Euler-Lagrange equations is: ∂αL − dτ (∂L/∂U
α) = 0, with ∂α = ∂/∂xα. Because

the kinetic term in L has no xα dependence, only the electromagnetic term contributes:

∂αL =
q

c
Uβ ∂αAβ

On the other hand, the components of the conjugate momentum are:

πα =
∂L

∂Uα
=

m

2
ηµν

∂L

∂Uα
(UµUν) +

q

c
δα

βAβ

=
m

2
ηµν (δα

µUν + Uµδα
ν) +

q

c
Aα

= mUα +
q

c
Aα (9.9)

With the definition for the 4-momentum of the particle, P = mU, we see that cπ0 = mU0 + qA0 = γmc2 + qA0

is its total energy, and that π = p+ qA/c, justifying the often-used term “generalised momentum” .

Differentiating the conjugate momentum components with respect to proper time yields:

d

dτ

(

∂L

∂Uα

)

= dτPα +
q

c
dτx

β ∂βAα = dτPα +
q

c
Uβ ∂βAα

where we have used the chain rule in the first equality. From this we reconstruct the Euler-Lagrange equations:

dτPα − q

c
(∂αAβ − ∂βAα) = 0

which is indeed eq. (9.1).
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Neither our Lagrangian nor Jackson’s are manifestly gauge-invariant. Under a gauge transformation δA = ∂αf ,

the Lagrangian changes by:

δL =
q

c

dxα

dτ
∂αf =

q

c

df

dτ

This extra term, however, does not change (EXERCISE) the Euler-Lagrange equations. Also, notice that eq. (9.1)

depends on the potential through the magic combination ∂αAβ − ∂βAα, which is gauge-independent.

9.4 Some Solutions of the Equation of Motion for a Charged Particle

We consider solutions of eq. (9.1), Kµ = dτP
µ/m = (q/mc)FµνUν , for various cases.

In section 8.7.3 the zeroth component of the Minkowski force on a particle was shown to be:

K0 = m
dU0

dτ
=

1

c

dE

dτ
=

γ

c

dE

dt

where E = γmc2 is the energy of the particle. Now, using Ui = −γui, we have in the electromagnetic: K0 =
γ(q/c)F 0iui = γ(q/c)u ·E, where u is the 3-velocity of the particle, and we are left with:

dE

dt
= q u ·E (9.10)

9.4.1 Uniform, static magnetic field (section J12.2)

Without any electric field, the energy of the particle does not change with time, and therefore neither does γ.

With the dot denoting differentiation with respect to observer time, the Lorentz force equation is:

F = γmu̇ =
q

c
u×B

or

u̇ = u× ω ω :=
qB

γmc
(9.11)

Writing this equation of motion as u̇i = ǫijku
jωk, we see that it couples the velocity components to each other.

If we set the three coordinate axes so that the unit vector e3 is aligned with ω, ie., with the magnetic field, the u3

component remains constantt, and the linear combinations u1 + iu2 obeys a decoupled equation:

dt(u
1 + iu2) = − i (u1 + iu2)ωB ω = ωB e3

which has as solution:

u1 + iu2 = (u10 + i u20) e−iω
B
t. (9.12)

Define the velocity transverse to the direction of the magnetic field: u⊥ = u1e1 + u2e2. A cursory inspection

of the solution shows that u⊥ is the constant length of a vector that rotates at angular velocity ωB, as it remains

tangent to a circle of radius a = u⊥/ωB, called the radius of gyration. Write ui0 = ωBab
i, with (b1)2 + (b2)2 = 1.

Choosing b1 = 1, b2 = 0, we obtain: u⊥ = ℜ
[

ωBa(e1 − i e2)e
−iω

B
t
]

, which gives for the velocity:

u = u3e3 + ℜ
[

ωBa(e1 − i e2)e
−iω

B
t
]

(9.13)

and for the position:

x = u3t e3 + ℜ
[

i a(e1 − i e2)e
−iω

B
t
]

(9.14)

This is a helix of radius a and pitch tan−1(u3/u⊥).

132



Lecture Notes on Graduate Electrodynamics 2020

9.4.2 Combined uniform, static electric and magnetic fields (section J12.3)

In the lab frame, a particle is moving at velocity u in static, uniform electric and magnetic fields. The problem can

be simplified by boosting to a frame in which one of the fields is zero, with eq. (8.52) given here for convenience:

E′
‖ = E‖, E′

⊥ = γ [E⊥ + β ×B]

B′
‖ = B‖, B′

⊥ = γ [B⊥ − β ×E]

where β is the boost (not the particle’s!) dimensionless velocity, There are two possibilities:

(1) E < B

SinceB2−E2 is Lorentz-invariant, we can transform E away: E′ = 0. From the top line of equations it is clear

that β must be perpendicular to E (this is not a choice, contrary to what Jackson says). The transformations

on the right only involve B⊥; the top one gives β × E⊥ = β2B⊥ which, when inserted in the bottom one,

leads to a weaker field in the transformed frame: B′
⊥ = B⊥/γ or, since β = E⊥/B⊥,

B′
⊥ =

√

1 − E2/B2 B⊥

At this point we can choose B to be (1) perpendicular to β, which remains true in the transformed frame, and

(2) perpendicular to E. Then we can write Jackson’s expression (12.43):

β =
E×B

B2

In the transformed frame, then, the situation is identical to that discussed in the last section. In the observer

frame, the orbit of the particle does not close, even when its velocity has no component along the magnetic

field; instead, the orbit drifts in the boost direction, perpendicular to the plane of the crossed fields.

The crossed-fields arrangement also allows an interesting application, best understood from the Lorentz force

equation (9.2): when E = −β×B, where β is the dimensionless velocity of the particle, the net force vanishes

and there is no deflection. This occurs for a particle velocity β = (E×B)/B2, or β = E/B. Such a velocity

selector can then be used to remove from a beam all particles with a velocity different from β given above,

whatever their charge and mass.

(2) E > B

This time, we can transform to a frame where the magnetic field B′ = 0. The symmetry of the transfor-

mations (8.52), with a boost velocity β = (E × B)/E2, leads to a transformed electric field E′ = E/γ =
√

1−B2/E2E.

If we align the x axis along the boost velocity and the y axis along the electric field, solving the equations of

motion (9.1) yields (EXERCISE) the trajectory:

y′ =
γ0c

ω

(

cosh
ωx′

γ0β0c
− 1

)

where β0 is the initial speed of the particle assumed to be at the origin at t = 0, and ω := qE/mc.

9.4.3 Motion parallel to the magnetic flux lines — adiabatic invariants (section J12.5)

As our final example, we consider what happens to the component of the velocity parallel to the magnetic field

lines, u‖, when those field lines are not parallel to each other.

In classical mechanics, we learn that a periodic coordinate qi of a system gives rise to the action integral

Ji :=
∮

πi dqi, where the integral is over a period of the motion, and πi is the momentum conjugate to qi. If the

133



Lecture Notes on Graduate Electrodynamics 2020

system experiences changes in its physical parameters that are slow (adiabatic) on the scale set by the period, then

Ji is a constant of the motion.

Now, in a uniform, static magnetic field B, we do have periodic motion transverse to the field. Inserting the

conjugate momenta found in eq. (9.9) leads to:

J =

∮

π⊥ · dl =

∮

γmu⊥ · dl +
q

c

∮

A · dl

We choose the direction of integration to be counterclockwise as viewed in the direction of B.

The first integral on the right is simply:

2πγmωBa
2 = 2

q

c
B πa2

with, as before, u⊥ = ωBa uniform. The second integral becomes the magnetic flux through the surface enclosed

by the circular orbit, with a minus sign coming from the normal to the surface being opposite to B, because of the

chosen direction of integration. Combining the two terms gives:

J =
q

c
B πa2 = πγmωBa

2 =
πc

q

p2⊥
B

(9.15)

From these expressions we can say, equivalently, that the magnetic flux is invariant, or that p2⊥/B is invariant, if B

deviates significantly from uniformity only over distances large with respect to the size of the orbit.

The energy of the particle remains constant since B does no work on it. At low speeds (u≪ c), with velocity

u0 = u⊥ +u‖ at some initial position, this translates into: u20 = u20⊥ + u20‖ = u2⊥ +u2‖. Also, γ remains constant,

and the invariance of J can be written as: u2⊥/B = u20⊥/B0

Now take B to be along the z axis, with its field lines becoming ever more pinched as z increases. If this

pinch effect is gradual enough over distance, invariance of the kinetic energy and of J can be combined, and there

comes:

u2‖ = u20 − u20⊥
B(z)

B0
(9.16)

As the parallel component of u decreases, its transverse component increases; translational energy is converted

into rotational energy. From the point of view of flux conservation, as the field intemsity increases with z, the

radius of the particle’s orbits must decrease. Its trajectory is a spiral that tightens with distance along z. The

particle may even stop and be reflected. As shown on pp. J594-595, the same result can be obtained by expanding

the equations of motion to first order in the change in B.

This effect has been extensively used in plasma confinement and to construct magnetic traps.

9.5 Electromagnetic Field Lagrangian and Maxwell’s Equations (section J12.7)

Continuous fields can also be discussed in the context of the prnciple of least action, and Euler-Lagrange equations

derived for them. The action is still defined as S =
∫

L dt, but since each degree of freedom now depends

on position as well as on time, the basic object is a function, the Lagrangian density L, not only of the field

components φi, but of the components ∂µφ
i of their 4-gradient, which gives the Lagrangian:

L =
∑

i

∫

L(φi, ∂µφi) d3x

A derivation completely analogous to that in section 9.2 yields the Euler-Lagrange equations for each field com-

ponent:

∂µ

(

∂L
∂(∂µφi)

)

− ∂L
∂φi

= 0 (9.17)
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We require that L be a Lorentz scalar invariant under spatial inversions, and we expect that it should contain

terms quadratic in the velocities, ie., in the derivatives of the 4-vector potential A. The only available object that

satisfies these criteria is FµνFµν , which is entirely constructed from velocities. A term proportional to AµA
µ is

also allowed, but since it corresponds to the photon being massive, we will leave it out in what follows — see

Jackson’s section 12.8 for a short discussion.

A coupling, or interaction, term containing the current density is also needed, and something proportional to

JµAµ fits the purpose. Notice, however, that whereas the field term is manifestly gauge-invariant, the coupling

term is not. Indeed, under a transformation δA = ∇f , δ(JµAµ) = Jµ∂µf . Yet integration by parts of the

gauge-induced term gives −(∂µJ
µ)f , plus a total divergence which does not contribute when integrated. Then we

can think of f as a Lagrange multiplier that enforces the conservation law ∂µJ
µ = 0. Or we can decide to live

with an action that is not gauge-invariant, so long as gauge invariance holds “on-shell”, ie., at the level of the field

equations resulting from minimising the action. Our Lagrangian density is:

L = −1

4
FαβFαβ − 4π

c
JµAµ (9.18)

In the so-called second-order formalism, the field term is rewritten (EXERCISE) as: 1
2 (η

αληβρ−ηαρηβλ)(∂ρAλ)(∂αAβ).
Each term is symmetric under interchange of a pair of αβ indices with a a ρλ pair. Then we can immediately write:

∂L
∂(∂νAµ)

= (ηαληβρ − ηαρηβλ) δνα δ
µ
β ∂ρAλ = ∂µAν − ∂νAµ = Fµν (9.19)

The resulting field equations are:

∂ν

(

∂L
∂(∂νAµ)

)

− ∂L
∂Aµ

= ∂νF
µν +

4π

c
Jµ = 0 (9.20)

which is identical to eq. (8.36), as expected. Not only is the conservation law ∂νJ
ν = 0 implicit as an identity on

the field equations, but the equations are manifestly gauge-invariant.

The generalised-momentum components conjugate to Aµ are found simply by setting ν = 0 in eq. (9.19):

πµ = Fµ0 = F0µ. Thus, π0 = 0 and π = E = −Ȧ−∇A0, the electric field. Whereas the transformation from Ȧ

to π is invertible, that from Ȧ0 to π0 is not. There are only three non-zero momenta for the six field components,

so at most three degrees of freedom can propagate, and A0 will never be one of them, even when a mass term for

the photon is added to L. Because π0 = 0, the determinant of the Hessian matrix of L also vanishes, and there

is some arbitrariness in the time evolution. On the other hand, the vanishing of the Hessian yields a constraint

equation on the πi which leaves us with the expected two propagating degrees of freedom.

To understand the role of A0, it is instructive to express the field term in L in 3+1 form:

Lfield =
1

2
(E2 − B2) =

1

2

[

π2i − B ·∇(3) ×A
]

=
1

2

[

π2i − A ·∇(3) ×B
]

(9.21)

The last equality is up to a total divergence, which we ignore as usual. While Ampère’s law is easily retrieved as

an Euler-Lagrange equation, we may well wonder what happened to Gauss’s law. If it is does not turn up as a field

equation, what is it? To find out, we rewrite Lfield in yet another equivalent form, suggested by Schwinger:

Lfield = − 1

2
[Fµν (∂µAν − ∂νAµ) − 1

2
FµνFµν ]

where F and A are taken to be independent, that is, we do not assume that F = ∇ ∧ A; but the components of F

are still written in terms of E and B as in eq. (8.39). Since only first-order derivatives are explicitly present, this is

known as the first-order formalism.

Already we can see that it is the variation with respect to F that will yield F = ∇ ∧ A. Specifically:

Lfield = −F 0i (∂0Ai − ∂iA0) − F ij (∂iAj − ∂j Ai) − 1

2
(E2 − B2) i < j

= E · (−∇A0 − Ȧ) − B ·∇×A− 1

2
(E2 − B2)
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Varying with respect to E and B does yield E = −∇A0 − Ȧ and B = ∇×A.

Before varying with respect to A, we note that, up to total divergences, Lfield is also:

Lfield = A0 ∇ · E − E · Ȧ − A ·∇×B− 1

2
(E2 − B2)

We recover Ampère’s law by varying with respect to A, but now we can see that A0 acts as a Lagrange multiplier

enforcing Gauss’s law, ∇ ·E = ∇ ·π = 0, which is revealed to be the constraint on the πi momenta that we knew

must exist.

9.6 Energy-Momentum in Electromagnetism (section J12.10)

We are now ready to discuss energy in electromagnetism making use of the 4-vector formalism; this will lead to

a truly unified treatment and will simplify some derivations. Consider the manifestly symmetric rank-2 tensor T

with contravariant components:

T µν =
1

4π

(

Fµ
ρF

ρν +
1

4
ηµνFαβFαβ

)

(9.22)

9.6.1 Explicit components of the electromagnetic energy-momentum tensor

Calculate T in terms of the electric and magnetic components of the Faraday tensor F.

The invariant FαβFαβ is already known to be −2(E2 −B2). Therefore:

T 00 =
1

4π

[

F 0
iF

i0 − 1

2
η00(E2 − B2)

]

=
1

4π

[

E2 − 1

2
(E2 − B2)

]

=
1

8π

(

E2 +B2
)

(9.23)

and T i0 =
1

4π
F i

j F
j0 = − 1

4π
EjǫijkBk =

1

4π
(E×B)i

Finally (see the note at the bottom of p. 114) in section 8.10):

4π T ij = F i
0F

0j + F i
kF

kj − 1

2
ηij(E2 − B2)

= −EiEj + ǫiklǫ
jkmBlBm +

1

2
δij(E2 − B2)

= −EiEj − (δi
jδl

m − δi
mδl

j)BlBm +
1

2
δij(E2 − B2)

= −
(

EiEj − 1

2
δijE2

)

−
(

BiBj − 1

2
δijB2

)

(9.24)

9.6.2 Energy-momentum tensor and conservation laws

It is not at all obvious at this stage why T might be interesting. Its form is derived from Lagrangian and Hamil-

tonian field theory (see Jackson for a detailed discussion). Here, we shall discover its physical interpretation by

investigating one of its properties: we shall calculate its divergence, ∇ ·T:

4π ∂µT
µν = F ρν ∂µF

µ
ρ + Fµ

ρ∂µF
ρν +

1

2
Fαβ∂νFαβ

We now proceed to show that the last two terms cancel each other. Subtract zero in the form of a term containing

∇ ∧ F, thus:

Fµρ∂
µF ρν +

✘✘✘✘✘✘✘1

2
Fαβ∂νFαβ − 1

2
Fαβ (✘✘✘✘

∂νFαβ + ∂βF να + ∂αF βν)
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The -last two terms.are equal, and their sum cancels the first term. Therefore:

∂µT
µν =

1

4π
F ρν∂µFµρ = − 1

c
F νρ Jρ (9.25)

where we have used the inhomogeneous first-order equation for F.

We recognise F νρJρ/c as the components of the force density f = nK introduced at the end of section 9.1:

f0 =
1

c
F 0iJi = − 1

c
EiJi =

1

c
E · J

(9.26)
f i =

1

c
F i0J0 +

1

c
F ikJk = Eiρ +

1

c
(ǫikjBj)Jk

Indeed, f = ρE + J × B/c is the electromagnetic force density acting on the charges, ie. the rate of change

of mechanical momentum per unit volume (momentum density), dtpmech, of these particles. Moreover, u · f =
ρu · E = J ·E = cf0,

Now, examine more closely fµ + ∂νT
µν = 0 by splitting it into its component equations. First, c f0 =

−∂tT 00−c∂iT 0i. Define Ufield ≡ T 00 and take c T 0i to be the components of a 3-vector S. Then, since c f0 = u·f ,

we have:

u · f = − ∂tUfield − ∇ · S
Integrate this over the volume of the source and use the divergence theorem to obtain:

d

dt
Wmech = − d

dt
Wfield −

∮

surface

S · da (9.27)

where we have defined Wfield ≡
∫

Ufield d
3x, and dWmech/dt ≡

∫

u · f d3x =
∫

J · E d3x is the rate of change of

the mechanical (kinetic, potential) energy of the whole charge distribution. Then:

d

dt
(Wfield +Wmech) = −

∮

surface

S · da (9.28)

Obviously, this is a statement of energy conservation which we recognise from eq. (5.31) as Poynting’s theo-

rem. Ufield represents the energy density stored in the electromagnetic field, and S, the Poynting vector, is the flux

of this energy per unit time per unit area, ie. the electromagnetic energy flux density.

Turn now to the spatial components of fµ + ∂νT
µν = 0. The force per unit volume acting on the charge

distribution (or mechanical momentum density of the distribution) has components:

f i = − ∂0T
i0 − ∂jT

ij = − 1

c2
∂tS

i − ∂jT
ij

Integrate over the volume containing the charges, use the divergence theorem, and rearrange:

d

dt
(Pmech + Pfield) = −

∮

surface

T ijni da (9.29)

where Pmech is the total mechanical momentum of the charges, and Pfield =
∫

pfield d
3x, with pfield = S/c2). The

unit vector n̂ in the surface integral is perpendicular to the surface.

This is identical to the law of conservation of momentum, eq. (5.33), obtained in section 5.7.2, with T ij the

components of the Maxwell stress tensor.

Let us review what has been achieved. We have introduced an object, the energy-momentum tensor, Tfield,

which contains all the information about the energy and momentum of the fields:
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• T 00 is the energy density stored in the fields.

• c T 0i are the components of the energy flux density, or Poynting vector S; T 0i/c are the components of

momentum density, pfield.

• T ij corrrespond to momentum flux density, and −T ij the stress (pressure or shear) exerted by the fields.

There is even more! f = −∇ · Tfield controls how the field exchanges energy and momentum with matter.

In fact, starting with Tfield, we can derive the force acting on matter. We can even think of f as the divergence

of a mechanical energy-momentum tensor, Tmech, for matter itself. Then the total energy-momentum tensor,

T = Tmech + Tfield, obeys ∇ · T = 0, which is the conservation law in differential form for the total energy-

momentum of the system, including matter and fields.

Another important point is that this discussion applies equally well to other fields that interact with matter. All

that is required is to know the relevant Tfield. Its components will have exactly the same physical interpretation,

and ∇ ·T = 0 will yield the force exerted by that field on matter or, equivalently, conservation laws for the transfer

of energy and momentum between matter and fields.
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10 Electromagnetic Fields of, and Radiation from, Relativistic Point-charges

10.1 Potentials of a Point-Charge in Arbitrary Motion (section J14.1)

In section 8.11, we made clever use of the Lorentz transformations of the electromagnetic fields to find the fields of

a point-charge in uniform motion. Here we present a brief outline of a derivation of the electromagnetic potential

A and Faraday field tensor F for a point-charge q in arbitrary motion, whose position in an inertial frame S is given

by r(t), and whose instantaneous 3-velocity in S is v(t) = dtr. The charge’s position 4-vector x in S thus has

components
(

ct, r(t)
)

, and its 4-velocity U has components Uµ = γ(c,v).

10.1.1 Lorentz form-invariant expression for the point-source

The charge density ρ and 3-current density j associated with the point charge are easily expressed as:

ρ(x, t) = q δ(3)
(

x− r(t)
)

, j(x, t) = qv(t) δ(3)
(

x− r(t)
)

These, however, do not transform properly under Lorentz transformations. We know that they should be written

as the components of the 4-current density J written in terms of manifestly form-invariant objects. Jackson (eq.

J12.139) gives the following expression:

Jµ(x) = q c

∫

dτ Uµ(τ) δ(4)
(

x− r(τ)
)

(10.1)

where δ(4)
(

x− r(τ)
)

= δ(ct− cτ)δ(3)
(

x− r(τ)
)

= (1/c)δ(t − τ)δ(3)
(

x− r(τ)
)

.

10.1.2 Lorentz form-invariant expressions for the Green functions of the d’Alembertian (section J12.11)

In section 5.4 we obtained the general Green functions (without specified boundary or initial conditions) for the

d’Alembertian operator involved in an equation of the type: Ψ(x, t) = 4π f(x, t). These Green functions,

which satisfy the defining equation: xG(x, t;x
′, t′) = δ(x− x′) δ(t − t′), are:

G(±)(x, t;x′, t′) =
1

4πR
δ
(

t′ − [t∓R/c]
)

whereR = |x−x′|, and +/− correspond to retarded/advanced functions. In the 4-vector formalism, this becomes:

G(±)(x− x
′) =

1

4πR
θ
(

± (x0 − x′0)
)

δ(x0 − x′0 ±R) (10.2)

where the step-function θ ensures that source time is earlier than observation time in the retarded case, and later in

the advanced case.

Our Green functions are not manifestly form-invariant under Lorentz transformations.. To make the form-

invariance manifest, note that x · x is invariant, and write:

δ(∆x ·∆x) = δ
[

(∆x0)
2 − R2

]

= δ
[

(∆x0 −R)(∆x0 +R)
]

Now we use the following identity (not given in the preamble) for the δ-function:

∫

dy g(y) δ[f(y)] =

∫

df
g(y)

df/dy
δ(f) =

∑

i

∣

∣

∣

∣

∣

g(y)

df/dy

∣

∣

∣

∣

∣

f(yi)

where f(yi) = 0. Without the integrals, this is equivalent to:

g(y) δ[f(y)] =
∑

i

∣

∣

∣

∣

∣

g(y)

df/dy

∣

∣

∣

∣

∣

yi

δ(y − yi) (10.3)
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Now take g(y) = 1, y = ∆x0, and f(y) = (∆x0 −R)(∆x0 +R), which vanishes at ∆x0 = ±R. Then:

δ(∆x ·∆x) =
1

2R

[

δ(∆x0 −R) + δ(∆x0 +R)
]

(10.4)

leading to:

G(±)(x− x
′) =

1

2π
θ
(

± (x0 − x′0)
)

δ(∆x ·∆x) (10.5)

It should be clear that the retarded Green functions must live on the light-come: ∆x ·∆x = 0, with the retarded one

restricted to the forward light-cone with respect to the source point. The step-function is now seen to be needed so

as to distinguish between x0 > x′0 and x0 < x′0, which the invariant form of the δ function no longer does. Also,

the ste-function is invariant when restricted by the δ function.

10.1.3 Lorentz form-invariant expression for the 4-potential (section J14.1)

The form-invariant inhomogeneous retarded solution of the wave equation for the Cartesian components of A takes

the form:

Aµ(x) =
4π

c

∫

d4x′G+(x− x′)Jµ(x
′)

= 2q

∫

dτ

∫

d4x′ δ(∆x ·∆x) θ(x0 − x′0) δ
(4)
(

x′ − r(τ)
)

Uµ(τ)

= 2q

∫

dτ δ(∆x ·∆x) θ
(

x0 − r0(τ)
)

Uµ(τ) (10.6)

where now, because of the 4-dim δ-function, ∆x = x − r(τ). Again, as expected, the only contribution to the

integral comes from the backward light-cone of x, at τ = τ0 defined by
[

x−r(τ0)
]2

=
(

x−r(τ0)
)

·
(

x−r(τ0)
)

= 0,

with x0 > r0(τ0).

In the integral form of identity (10.3), put y = τ , f(y) = ∆x ·∆x, and g(y) = Uµ(τ). Then, since:

dτ
[

(x−r(τ))·(x−r(τ))
]

= 2
(

xµ− rµ(τ)
)

dτ
(

xµ− rµ(τ)
)

= − 2
(

xµ− rµ(τ)
)

dτr
µ(τ) = −2

(

xµ− rµ(τ)
)

Uµ(τ)

eq. (10.6) becomes:

Aµ(x) =
q Uµ(τ)

U ·
(

x− r(τ)
)

∣

∣

∣

∣

∣

τ
0

(10.7)

which are called the manifestly form-invariant Liénard-Wiechert potentials of a point-charge in arbitrary motion.

with the light-cone condition
[

x − r(τ0)
]2

= 0, or
(

x0 − r0(τ0)
)2

= c2(t − τ0)
2 = R2 and

(

x0 − r0(τ0)
)2

=
(

x− r(τ0)
)2

= R ·R, the denominator can be rewritten (EXERCISE) as U · R = γcR(1− β · n̂), where n̂ is in

the direction from the source point at τ0 to the observation point at retarded time, and Rµ = (R,R) = (R,Rn̂).
With Uµ = γ(c,−v), the usual expressions for the Liénard-Wiechert potentials are recovered:

Φ(x, t) =
q

R(1− β · n̂) , A(x, t) =
q β

R(1− β · n̂) (10.8)

where it is understood that the right-hand sides must be evaluated at retarded time.

Without doing the detailed calculation, it is not hard to see that when the vector potential is differentiated

with respect to time, the leading term will go like β̇/R, so that the radiation fields is expected to depend on the

acceleration of the charge. If the charges does not accelerate, the leading dependence will go like 1/R2 or β/R2,

as we discovered in section 8.11, and there can be no radiation from the charge.
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10.2 Lorentz form-invariant Expressions for the Fields of a Point-Charge(section J14.1)

To derive the form-invariant fields, we find it convenient to differentiate eq. (10.6)—instead of eq. (10.7)—with

respect to the coordinates x of the observation point:

∂µAν = 2q

∫

dτ Uν(τ) θ
(

x0 − r0(τ)
)

∂µδ
(

∆x ·∆x
)

Another term with ∂0θ
(

x0−r0(τ)
)

= δ
(

x0−r0(τ)
)

vanishes since observation time cannot be the same as source

time.

Writing f = [x− r(τ)] · [x− r(τ)] to minimise clutter, the chain rule gives ∂µδ(f) = (dτf)
−1dτδ(f)∂µf . In

the last section we already calculated dτf to be −2(x− r) ·U. Also, ∂µf = 2(xα − rα)δµα, and there comes:

∂µδ(f) = − xµ − rµ
(x− r) ·U dτδ(f)

Now insert this into our expression for ∂µAν and integrate by parts, noting once again that the τ derivative of the

step-function vanishes:

∂µAν = 2q

∫

dτ θ
(

x0 − r0(τ)
)

δ
(

∆x ·∆x
)

dτ

[

Uν(xµ − rµ)

U ·
(

x− r(τ)
)

]

Comparing with eq. (10.6) reveals that the two expressions have exactly the same form, with the potential replaced

by its derivative, and Uµ by the τ derivative. Accordingly, we can make these same substitutions in the form-

invariant expression (10.7), and we arrive at an intermediate result for the components of the Faraday tensor:

Fµν = ∂µAν − ∂νAµ =
q

U ·
(

x− r(τ)
) dτ

[

(x− r)µUν − (x− r)νUµ

U ·
(

x− r(τ)
)

]

τ
0

(10.9)

Incidentally, as a by-product of the above expression for ∂µAν , we immediately confirm that A satisfies the Lorenz

condition ∂µA
µ = 0, as we know it must from arguments in section 5.5.

There remains to evaluate the τ derivative, for which we now use the dot notation, eg., dτU ≡ U̇. We have:

dτ (x− r)µ = −Uµ and dτ
[

U · (x− r)
]

= U̇ · (x− r)−U · U = U̇ · (x− r)− c2. Then:

Fµν =
q

U · (x− r)

[

✘✘✘✘−UµUν + (x− r)µU̇ν +✟
✟
✟UνUµ − (x− r)νU̇µ

U · (x− r)
− [(x − r)µUν − (x− r)νUµ][U̇ ·

(

x− r)− c2]

[U ·
(

x− r)]2

]

τ0

As we did for the Liénard-Wiechert potential, we write x − r = R with contravariant components (R,R) so that

the components of the Faraday tensor may be expressed in terms of the distance 4-vector between the retarded

spacetime position of the charge and the observation point:

Fµν = qc2
[

RµUν − RνUµ

(U · R)3
]

τ
0

+ q

[

RµU̇ν −RνU̇µ

(U · R)2 − (RµUν − RνUµ)R · U̇
(U · R)3

]

τ
0

(10.10)

The first term has a 1/R2 dependence, whereas the second one goes like 1/R. The first is velocity-dependent, the

second acceleration-dependent. We have obtained a (form-invariant!) decomposition of the field-tensor compo-

nents into near-fields and far-fields. As claimed before, the latter—the radiation fields—exist only when the charge

is accelerating. The near-fields have no acceleration dependence.

From our form-invariant equation for the Faraday components, we can calculate the electric and magnetic

fields.
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Example 10.1. Let us derive the electric near-field components for the point-charge:

Ei
near = F near

0i = qc2
[

R0Ui − RiU0

(U · R)3
]

τ
0

where R0 = R, Ri = −Ri, U0 = γc, and Ui = −γβic. Also, U · R was given in section 10.1.3 as:

γcR(1− n̂ · β), with β the instantaneous velocity of the charge. Putting all this together yields:

Enear =
q

γ2R2

n̂ − β

(1− n̂ · β)3

∣

∣

∣

∣

∣

τ
0

n̂ =
R̂

R
(10.11)

When β is constant, this is the whole electric field and should be identical to the result we derived

(with much less work!) in section 8.11 via a Lorentz transformation:

E = q
1

γ2
1

(1− β2 sin2 ψ)3/2
1

r2
n̂

The expressions look somewhat different, especially since, in eq. (10.11), n̂ points from the source

at retarded time and R is the distance between the charge and the point of observation, x, also at

retarded time, whereas in our previous result the unit vector and the distance referred to the position

of the charge at observation time.

Showing the equivalence is left as an EXERCISE. Here are the main milestones. First, write eq.

(10.11) as:

Enear =
q

γ2R2

R − βR

(R −R · β)3

∣

∣

∣

∣

∣

τ
0

Then calculate the retarded time τ0 as a function of observer time t, starting from the definition:

R = c(t− τ0) = |x− cβτ0|:

τ0 =
γ2

c

[

r −
√

r̃2 + (1− β2)(x2 − c2t2)
]

where x2 = x · x, and r̃ = ct− β · x. Then, again using the definitions of R and R, show that:

(R−R · β)
∣

∣

∣

τ
0

= r̃ − cτ0
γ2

=
√

r̃2 + (1− β2)(x2 − c2t2)

Next, expanding the argument of the square root, show that it can be written as r2−β2r2+(β ·r)2 =
r2 − β2r2 sin2 ψ, where r = x − βct, the distance vector between the charge and the observer at

present time. Finally, evaluating the numerator in eq. (10.11) at retarded time, show that the result is

indeed what we obtained with the Lorentz transformation, with now n̂ = r/r. Perhaps now you can

appreciate how useful the Lorentz transformation can be in the right circumstances!

We are much more interested in the far-field components of the electric field as given by eq. (10.10):

Ei
far = F far

0i = q

[

R0 dτUi −Ri dτU0

(U · R)2 − (R0 Ui − Ri U0)R · dτU
(U · R)3

]

τ
0

We still have: U · R = γcR(1− n̂ · β). There only remains to calculate:

dτUi = dt(γcβi) dτ t = − cγ2
[

β̇i + γ2βi(β · β̇)
]

dτU0 = dt(γc) dτ t = γ4cβ · β̇
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where we have used dτ t = γ and dtγ = γ̇ = γ3β · β̇. (Notation alert! The dot now denotes differentiation with

respect to observer time.) From this we find:

R · dτU = γ2c
[

γ2Rβ · β̇ − β̇ ·R− γ2(β ·R)(β · β̇)
]

= −γ2cR
[

β̇ · n̂− γ2(1− n̂ · β)(β · β̇)
]

Putting everything together, there comes:

Efar = − q

c

[

β̇ +✭✭✭✭✭✭✭✭✭
γ2(β − n̂)(β · β̇)
R (1− n̂ · β)2 +

β − n̂

R(1− n̂ · β)3
[

β̇ · n̂ −
✭✭✭✭✭✭✭✭✭✭

γ2(1− n̂ · β)(β · β̇)
]

]

τ
0

=
q

c

[

(n̂− β)(n̂ · β̇) − β̇(1 − n̂ · β)
R(1− n̂ · β)3

]

τ
0

=
q

c

[

n̂×
[

(n̂− β)× β̇
]

R(1− n̂ · β)3

]

τ
0

(10.12)

Which of the two expressions on the last line to use depends on ease of calculation.

As is always the case for far-fields, the magnetic induction field is given by B = n̂ × E, with n̂ evaluated at

retarded time.

10.3 Power Radiated by a Point-Charge (section J14.2)

Since the components of the Poynting vector are related to components of the energy-momentum tensor by Si =
cT 0i, we see from eq. (9.23) that in Gaussian units S = (c/4π)E × B. Now in the radiation (far) zone Bfar =
n×Efar, and Efar × (n̂×Efar) = E2

farn̂−Efar(n̂ ·Efar). Using eq. (10.12) and keeping only 1/R2 contributions

leaves us with:

S · n̂ =
c

4π
E2

far =
q2

4πc

[

n̂×
[

(n̂− β)× β̇
]

]2

R2(1− n̂ · β)6

where the right-hand side is evaluated at retarded time, with n̂ pointing from the retarded position of the charge to

the observation point. Note that S · n̂ is the energy per unit area per unit of observer time.

The angular power distribution is:

dP

dΩ
= S · n̂R2 =

q2

4πc

[

n̂×
[

(n̂− β)× β̇
]

]2

(1− n̂ · β)6 (10.13)

The energy per unit time (power) per unit solid angle detected at the point of observation is:

dE

dΩdt
=

dP

dΩ
= |S · r̂|R2

An often more relevant question is: how much power is emitted by the charge per unit of its time? We will need to

know the derivatives of t′ = t−R/c. First:

∂tt
′ = 1− 1

c
∂t
√
R ·R = 1− 1

2Rc
∂t(x− r′)2

= 1 +
1

c

x− r′

R
· ∂t′r′(t′) ∂tt′

= 1 + n̂ · β′ ∂tt
′

where we have written R =
√
R ·R to deal with the absolute value in R = |x− r′|. Solving for ∂tt

′ yields:

∂tt
′ =

1

1 − β · n̂ (10.14)
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There comes:
dPr

dΩ
=

dE

dΩdt′
=

dE

dΩdt

dt

dt′
=

dP

dΩ
(1 − β · r̂)

where dPr/dΩ is the power radiated per unit solid angle.

Instead of integrating eq. (10.13) for the observed angular power distribution, or even the radiated one, it is

easier to compute the power directly. This is a bit of a guess, and Jackson presents plausible arguments for such

a guess. The result should go over to the expression calculated from the non-relativistic approximation, to eq.

(10.13), which is not too hard to integrate.

We will take as our relativistic expression for the power:

P =
2

3

q2

m2 c3
dτP

µ dτPµ =
2

3

q2

m2 c3

[

− 1

c2

(

dE

dτ

)2

+

(

dp

dτ

)2
]

(10.15)

where P is the energy-momentum 4-vector. This would mean that power is a relativistic invariant, which can

actually be proved independently. Now, with dt = γdτ and E = γmc2:

dτE = mc2 dτγ =
1

2
mc2 dtγ

2 = mc2 γ4 (β · β̇)

and

dτp = mcγ2 β̇ + mcγ4 β (β · β̇)
Then (EXERCISE):

− (dτE/c)
2 + (dτp)

2 = m2c2 γ6
[

β̇2 − (β × β̇)2
]

P =
2

3

q2

c
γ6
[

β̇2 − (β × β̇)2
]

=
2

3

q2

c
γ6
[

β̇2
‖ +

1

γ2
β̇2
⊥

]

(10.16)

where β̇‖ and β̇⊥ are the components of the acceleration parallel and transverse to the velocity, respectively. The

left equality is known as Liénard’s formula, and it reduces to the correct nonrelativistic expression, as it should.

It might be tempting to conclude that acceleration in the same direction as velocity results in γ2 more power being

radiated than with transverse acceleration. But this conclusion is a little hasty! In particle accelerators, for instance,

the centripetal acceleration β̇⊥ is determined by the velocity and does not change the energy, whereas β̇‖ is linked

to the rate at which the energy changes, so to the power applied to the charge to increase its energy.

To see how to think about this the useful way, we must rewrite the collinear term. In the parallel direction, the

above expression for dτp becomes mcγ2β̇(1 + γ2β2) = mcγ4β̇.

The collinear power contribution to eq. (10.16) becomes the relativistic version of the Larmor formula:

P
‖
rad =

2

3

q2

m2 c3

(

1

γ
dτp

)2

=
2

3

q2

m2 c3
ṗ2 (10.17)

where p is the relativistic momentum of the charge at retarded time. Since p = γmcβ, an d E = γmc2, then

ṗ = dct(Eβ) which can be written as ṗ = βdx(Eβ). This is especially useful in the case of ultrarelativistic

motion, for then ṗ ≈ dxE. We obtain an expression for the power radiated away in terms of the change in the

energy per unit length of the charge:

P
‖
rad ≈ 2

3

q2

m2 c3

(

dE

dx

)2

But dE/dx results from the application of an external force on the charge. The power P
‖
in fed in by this force is

Pin = dtE = βcdxE ≈ cdxE, and we find the useful ratio:

P
‖
rad

Pin

=
2

3

q2/mc2

mc2
dE

dx
(10.18)
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This ratio is of order 1 if the external force can impart an energy mc2 over a distance q2/mc2. That would mean

a force capable of increasing an electron’s energy by about 108 TeV/m, vastly beyond what is possible now and in

the foreseeable future. Therefore, radiation losses are completely negligible in linear electron accelerators. And

they are even more negligible when accelerating protons which are 2 000 times more massive.

Is the situation different for a charge moving in a circular orbit of radius r0? Let us ignore any acceleration

due to the driving force and focus on the centripetal acceleration. Here we can use the Liénard formula as is, and

there comes:

Prad =
2

3

q2

c
γ4 β̇2 =

2

3

q2 c

r20
(γβ)4

where we have used the relation between centripetal acceleration and speed: β̇ = β2c/r0. The energy radiated per

revolution is:

∆E =
2πr0
βc

Prad =
4π

3

q2 γ4 β3

r0

In ultrarelativistic motion:

∆Erad ≈ 4π

3

q2 γ4

r0
=

4π

3

q2

(mc2)4
E4

r0

A useful numerical version of this result for electrons and positrons is:

∆Erad[MeV] = 8.85 × 10−2 E
4[GeV]

r0

At the Large Electron-Positron (LEP) accelerator, the CERN machine of radius 5.5 km which collided electrons with

positrons at 100 GeV until the end of the second millennium, 1.6 GeV was lost to radiation for each revolution,

and therefore would have had to be fed in just to keep the beam circulating at 100 GeV! Clearly, linear accelerators

are immensely less wasteful than circular ones for electrons or positrons. At the Large Hadron Collider, where

protons are now accelerated to 7 TeV in the same tunnel where LEP operated, ∆Erad is a much more reasonable

(if still non negligible!) 3 keV per revolution. That inverse fourth power of the mass works in favour of protons in

circular accelerators.

Finally, for arbitrary motion, the radiation is a superposition of contributions from a‖ and a⊥. When comparing

the two, the Liénard formula gives a misleading impression. Instead, as we did in the collinear case, ask what is

the power emitted for a given input from an external force. In circular motion, the power emitted is:

P⊥
rad =

2

3

q2

m2c3
(dτp)

2 =
2

3

q2

m2c3
γ2 ṗ2

The factor ṗ2 depends on the external force; thus, for the same external force, the power radiated by the perpen-

dicular contribution is γ2 larger than the power radiated by the collinear contribution, eq. (10.17), which can then

be ignored in the ultrarelativistic regime. We conclude that in ultrarelativistic motion, the power emitted by an

accelerated charged particle is the same as if the particle were moving (instantaneously!) at constant speed on a

circular trajectory.
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