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Physics-based forecasting of man-made
earthquake hazards in Oklahoma and Kansas
Cornelius Langenbruch 1, Matthew Weingarten1,2 & Mark D. Zoback 1

Reinjection of saltwater, co-produced with oil, triggered thousands of widely felt and several

damaging earthquakes in Oklahoma and Kansas. The future seismic hazard remains uncer-

tain. Here, we present a new methodology to forecast the probability of damaging induced

earthquakes in space and time. In our hybrid physical–statistical model, seismicity is driven by

the rate of injection-induced pressure increases at any given location and spatial variations in

the number and stress state of preexisting basement faults affected by the pressure increase.

If current injection practices continue, earthquake hazards are expected to decrease slowly.

Approximately 190, 130 and 100 widely felt M≥ 3 earthquakes are anticipated in 2018, 2019

and 2020, respectively, with corresponding probabilities of potentially damaging M≥ 5

earthquakes of 32, 24 and 19%. We identify areas where produced-water injection is more

likely to cause seismicity. Our methodology can be used to evaluate future injection scenarios

intended to mitigate seismic hazards.
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Probabilistic seismic hazard analyses (PSHA) has been used
to develop earthquake hazard maps in intraplate areas for
several decades1–4. Traditionally, PSHA is used to develop

maps of the probability of strong ground shaking over relatively
long periods of time. It has been widely used by governments and
industry in applications such as assessing the safety of nuclear
power plants, developing building code requirements and deter-
mining earthquake insurance rates. The methodology assumes
long-term stationarity of seismicity rates resulting from large-
scale geologic processes. Application of these methods to man-
made earthquakes, especially those induced by underground
injection of fluids, is inherently problematic because injection
rates (and thus induced earthquake rates) can vary markedly in
space and time5–7. For example, over the past 6 years, north-
central Oklahoma and southernmost Kansas experienced thou-
sands of widely felt earthquakes (M ≥ 3) resulting from injection
of very large amounts of saltwater that was co-produced with
oil6–9. The seismicity triggered by the fluid injection corresponds
to >2000 years of natural tectonic activity7 and occurred due to
the decrease of frictional resistance to slip on tectonically loaded,
preexisting faults10.

Seismic activity in north-central Oklahoma and southernmost
Kansas peaked in 2015, when 943 widely felt M ≥ 3 (31M ≥ 4)
earthquakes occurred11 in response to the dramatic increase in
produced saltwater injection rates into the basal sedimentary
Arbuckle Group6,7 (Fig. 1a, b). Driven by market forces and
mandated reductions12, injection rates started to decrease rapidly
in mid-2015. Compared to peak injection rates, a reduction of
about 50% was reported through March 2018 (Fig. 1b). The
earthquake rate responded to decreased saltwater injection rates
and reduced by about 80%7,13 (Fig. 1b). While the overall
earthquake rate has decreased markedly over the past 2 years, the
seismic hazard remains high7,13,14. In 2017, 294M ≥ 3 (6M ≥ 4)
earthquakes were recorded11. To date, four induced earthquakes
in the study area exceeded M= 5, including the September 2016
Pawnee M= 5.8 earthquake—the largest in instrumented history
in Oklahoma and Kansas.
While the utilization of PSHA has been questioned, in gen-

eral15, the main problem when being applied to injection-induced
seismicity is that changes of the driving force, and variations of
injection rates in space and time, are not considered. More
recently, a 1-year seismic hazard model has been developed for
Oklahoma and Kansas using last year’s seismicity rates to predict
the seismic hazard14. While a step in the right direction, we argue
here that induced seismic hazard should be forecasted based on a
physical understanding of induced earthquakes.
In the sections below, we outline a physics-based model for

estimating spatial and temporal variations of seismic hazards in
Oklahoma and Kansas. The model has two principal compo-
nents. First, spatial and temporal variations of injection-
induced pressure changes are evaluated utilizing the reported
injection rates and a regional hydrogeologic model. Second,
spatial variations of the seismogenic state are considered, a
proxy for number and stress state of preexisting basement faults
that are affected by the pressure increase. In this regard, the
study reported here departs significantly from our previous
analysis of seismicity rates in Oklahoma7 using a seismogenic
index model16. First, we integrate a regional hydrologic model
into the analysis and second, we assess spatial variability of the
seismic hazard. After combining spatial and temporal varia-
tions of injection-induced pressure changes and spatial varia-
tions of the seismogenic state in a hybrid physics-based
statistical model, we create probabilistic seismic hazard maps

and an estimate of the earthquake probability throughout the
entire region through 2020.

Results
Injection-induced pressure increase at seismogenic depth. To
compute injection-induced pore pressure changes at depth, we
modelled 809 Arbuckle wells injecting at about 2.1-km depth
from Jan 2000 through March 2018 (see Supplementary Fig. 1).
The Arbuckle Group is directly overlying the crystalline basement
and consists of a pervasively fractured, dolomitic carbonate
aquifer with hydraulic continuity over tens to hundreds of kilo-
metres17. Reported permeability ranges from core, outcrop and
field-scale measurements in Oklahoma and Kansas show per-
meability as low as 10−14 m2 and as high as 3 × 10−12 m218–22. As
explained in the Methods section, we represent the major litho-
logic units present across Oklahoma and Kansas with a layered
permeability structure. Due to large vertical offsets and regional
traps for oil and gas, the north-trending Nemaha fault is a low-
permeability barrier to flow across its strike in our model23. At
the large scale of our model (145,000 km2), the best-fit Arbuckle
Group permeability was found to be 10−12 m2, although we tested
models with permeability as low as 10−14 m2 (Supplementary
Table 2). This large-scale bulk permeability honours the obser-
vation that >60% of wells in the region inject fluid at near-zero
wellhead pressure. More importantly, after 6 years of high-
volume injection throughout the region, the fluid pressure
remains sub-hydrostatic, even near wells injecting tens of thou-
sands of m3 day−1. Our modelled Arbuckle permeability predicts
reservoir pore pressure changes mostly within the range between
0.1 and 2MPa (Supplementary Fig. 2).
Because of the high permeability of the Arbuckle Group and

the wide distribution of injection wells, pressure spreads out
quickly and diffuses down into the much lower-permeability
crystalline basement, triggering earthquakes on critically stressed
faults. The earthquakes are observed at depths that typically range
from 4 to 9 km24,25. The vertical diffusion of pore pressure is
controlled by basement permeability and reflected in the
characteristic time delay of several months between changes of
injection and earthquake rates in the region (Fig. 1b).
We initially assumed that the permeability of the fractured

basement is 10−16–10−14m2, a range consistent with direct
measurements, modelling and induced seismicity in the crystal-
line basement at other locations around the world26–28. To test
this, we randomly distributed 25,000 seed points (in the study
area shown in Fig. 1a) at a depth of 6.5 km below the surface.
These points represent potential locations of preexisting base-
ment faults which, if reactivated by injection-induced pressure
increase, produce M ≥ 3 earthquakes. Following the concept that
changes in earthquake activity are caused by changes of the
stressing (pressure) rate29,30, we vary the basement permeability
in our model and compare the rate of pressure increase (averaged
over all points) to the overall observed earthquake rate (M ≥ 3).
We find that the pressure rate at seismogenic depths is most
sensitive to basement permeability (see Supplementary Fig. 3).
Pressure rate (and rate of pressure increase) in this publication
always refers to monthly pressure accumulation at a given point
in space. A basement permeability of 2 × 10−15 m2 results in the
best fit between the shape of observed seismicity rates and
modelled pressure rates (see Fig. 1b), consistent with the value
range cited above.
Our model computes pressure changes in both time and space.

We find that an open-system hydrogeologic model and high
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Arbuckle permeability is essential to relate seismicity rates to
pressure increase. In some local-scale regions in the study area,
earthquake rates and injection rates are completely unrelated and
time lags of up to 10 years between peak injection and peak
seismicity rates are observed (see Supplementary Fig. 4). While
local-scale injection and seismicity is unrelated, the observed peak
seismicity rates occur at peak pressure rates resulting from our
model. Far-field pressurization, caused by high-rate injection
wells outside of the considered areas, dominates and explains the
high time lags between local injection and seismicity.
The map view of the cumulative injection-induced pressure

increase (Jan 2000 through Dec 2017) in the complete study area
shows that earthquakes generally occurred where injection
increased pressure at depth (Fig. 1c). However, we find that the

seismogenic response to a given pressure increase is variable in
space (Fig. 1c and Supplementary Figs. 4, 5). In some areas, a
relatively small pressure increase results in a high number of
earthquakes, while other regions of higher pressure increase show
only a low level of seismicity. Such variations are not unexpected,
because the seismogenic state, the number and stress state of
preexisting basement faults affected by the pressure increase, can
vary from one region to another. Based on our observations, we
consider a spatially variable seismogenic state in our hybrid
physics-based statistical model presented in the next section.
We use the hydrogeologic model to project future pressure

changes assuming constant injection rates after March 2018
(Fig. 1b; dashed grey line). Our diffusion model predicts that,
with an exception of the area east of Oklahoma City, pressure at
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Fig. 1 Saltwater injection, induced earthquakes and pressure increase in Oklahoma and Kansas. a The study area is shown by the dashed line. Black dots
show M≥ 3 earthquakes from Jan 2009 through May 2018. b Total monthly saltwater injection rate (grey), observed earthquake rate (green) and average
modelled rate of pressure increase (red) in the study area. Our diffusion model predicts increasing pressure at depth through 2020 (red). However, the
rate of pressure increase is slowing down to the level observed in 2009, when seismicity began. cMap of injection-induced pressure increase at depth (Jan
2000–Dec 2017). Earthquakes (M≥ 3 grey dots, M≥ 4 yellow stars) generally occurred where injection increased pressure at depth. d Projected future
pressure increase (Jan 2018–Dec 2020). With the exception of a region east of Oklahoma City, the pressure is expected to further increase through 2020.
Note the different range of the colour schemes used in c and d. Mapped faults in the sedimentary cover52 (c and d) are shown as grey lines
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depth continues to increase through 2020 (Fig. 1d). Increasing
pressure will result in further destabilization of faults and
seismicity is expected to continue. However, we expect a
continuously declining earthquake rate through 2020, because
the overall rate of pressure increase (Fig. 1b; red line) is
continuously slowing down to the levels observed in 2009, when
induced seismicity began.

Modified Gutenberg–Richter relation for induced earthquakes.
We set up a model to transfer injection-induced pressure
increases in time and space into seismicity rates by recon-
structing how triggering probabilities of observed earthquakes
are related to modelled pressure rates. High-pressure rates (fast
pressure increases) are driving faults faster towards failure by
reducing the effective normal stress. Compared to low-pressure
rates, more faults are expected to reach the failure stress in a
given time and we expect faster pressure increases to be more
likely associated with earthquakes. The relation between pres-
sure rate and earthquake probability (Fig. 2a) reconstructed
from our model (see Methods for details) confirms the expected
increase of earthquake probabilities with the rate of pressure
increase. Earthquake probabilities in Oklahoma and Kansas are
increasing with the square of the pressure rate (Fig. 2a). Slow
pressure increase is causing a disproportionally low percentage
of seismicity.

To honour our observations of the increase of the earthquake-
triggering probability with the square of the pressure rate (Fig. 2a)
and the spatially variable seismogenic state (Fig. 1c and
Supplementary Figs. 4, 5), we combine our hydrogeologic model
and a modification of the seismogenic index (SI) model7,16. In the
combined model, we describe monthly earthquake rates R≥M(r,t)
of magnitude M and larger at location r and time t according to a
modified Gutenberg–Richter law for induced earthquakes

R�Mðr; tÞ ¼ 10aðr;tÞ�bM ¼ ∂

∂t
Ppðr; tÞ

� �2
10ΣpðrÞ�bM ð1Þ

In Eq. 1, we introduced a space- and time-dependent earthquake

productivity aðr; tÞ ¼ log10
∂
∂t Ppðr; tÞ
h i2� �

þ ΣpðrÞ, which is

determined by the monthly injection-induced pressure rate
∂
∂t Ppðr; tÞ in space and time and the spatially variable SI ΣpðrÞ.
The quantity 10ΣpðrÞ in Eq. (1) is a proxy for number and stress
state of basement faults at location r. The higher the SI at a
location, the higher the earthquake rate caused by a given
pressure increase, because a higher number of (or more critically
stressed) preexisting faults are affected by the pressure increase.
In agreement with the classical Gutenberg–Richter31 law, 10−bM

describes magnitude scaling in our model. The SI and the b-value
can be calibrated based on observed earthquakes and modelled
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pressure rates up to a given time. The calibrated parameters and
modelled future pressure rates can then be used to forecast
expected earthquake rates above a given magnitude in space and
time according to Eq. (1).
Note that the classical SI model16 considers injection rates

instead of pressure rates and is not (directly) applicable to
decreasing injection rates. While Langenbruch and Zoback7

bypassed this problem by considering a modification of Omori’s
law32 to describe the decay rate of seismicity after injection rates
start to decrease, in this study, we replace injection rates by
pressure rates utilizing a hydrologic model to make our model
applicable to arbitrary injection scenarios.

Mapping the seismogenic state. To characterize spatial varia-
bility of the seismogenic state throughout the study area, we
calibrate ΣpðrÞ in local-scale regions of 10-km radius around the
25,000 seed points (Fig. 2b–e) by analyzing pressure changes and
earthquake rates in each area (see Methods for details). Note that
the SI in our model is determined based on observed earthquakes
and modelled pressure increases at the fault seed points and is not
directly comparable to values determined in other studies using
injection volumes7,16.

We find that ΣpðrÞ varies by about two units across the study
area (Fig. 2b–f). This would mean that in areas of the
highest SI, a given pressure increase will cause one hundred
times as many earthquakes as in areas characterized by the lowest
SI. The SI maps (Fig. 2b–f) can be interpreted as a map of
critically stressed faults in the crystalline basement in the areas
affected by pressure changes. The areas of highest SI imply one
hundred times as many preexisting faults than the areas of lowest
SI. Thus, both the local pressure increase and the local
seismogenic state must be combined to determine the local rate
of induced earthquakes.
To test the concept that spatial variations of ΣpðrÞ reflect the

susceptibility of preexisting faults (formed over geologic time) to
pressure changes, we show in Fig. 2b–e that SI maps calibrated
through different time periods show only minor fluctuations. This
suggests that as soon as the local SI can be determined from local
seismicity, Eq. (1) can be used to forecast the expected rate of
earthquakes caused by future pressure increase in the considered
region.

Physics-based seismic hazard maps. Using our model, we pro-
duce 1-year maps of the seismic hazard to assess the probability
of potentially damaging induced earthquakes in Oklahoma and
Kansas from 2015 through 2020. To produce real forecasts based
on knowledge about future injection rates, we only use observed
earthquakes and modelled pressures through the end of a given
year to calibrate the model (SI map and b-value) (Fig. 2b–e and
Supplementary Fig. 7). According to Eq. 1, we then use modelled
pressure rates in the coming year to forecast expected seismicity
throughout the study area.
Note that fluctuations of the b-value calibrated through

different times between Dec 2014 and Dec 2017 are within the
uncertainty of the computation (see Supplementary Fig. 7). A
spatially constant b-value is applied in the complete area, because
b-values computed for small regions, which include a lower
number of earthquakes, would show even larger uncertainties and
have a high likelihood of being artefacts33.

Considering that the occurrence of induced earthquakes is a
Poisson process7,13,16,34 the expected annual number (N≥M) of
earthquakes of magnitude M or larger can be computed
corresponding to Eq. 1 and the probability to exceed magnitude

M per year can be determined according to

PrðMÞ ¼ 1� Prð0;M;N�MÞ ¼ 1� expð�N�MÞ ð2Þ

Prð0;M;N�MÞ ¼ expð�N�MÞ corresponds to the probability
that no earthquake of magnitude M or larger occurs in 1 year, if
N≥M earthquakes of magnitude M or larger are expected.
We choose a magnitude of M= 4, because lower magnitudes

are very unlikely to cause damage. The resulting prospective 1-
year maps of the probability to exceed M= 4 (Fig. 3) show how
the seismic hazard in time and space is changing in response to
spatial and temporal variations of injection rates and spatial
changes of the SI. The probabilities shown in Fig. 3 were
computed in regions of 20-km radius around the 25,000 seed
points. However, the hazard maps can be determined for
arbitrary magnitude thresholds, regions and time scales.
We find that earthquakes observed in the year of the

predictions occur where our model forecasts enhanced excee-
dance probabilities (Fig. 3a–d). In total, 64 of 65M ≥ 4 earth-
quakes recorded from Jan 2015 through May 2018 occurred
where our model predicts annual exceedance probabilities above
10%. In total, 57 of 65M ≥ 4 earthquakes occurred within
contours of 30% exceedance probability.
In response to decreased saltwater injection rates, pressure

increases are slowing down over a wide range of depths
(Supplementary Fig. 8) and our model forecasts a widespread
reduction of the seismic hazard in 2017. Even without additional
injection rate reductions after March 2018, our model predicts a
further decrease of the seismic hazard in 2018, 2019 and 2020.
Note that this decrease is caused by the diffusive nature of the
pressure migration and the disproportionally low probability of
earthquake triggering for slow pressure increases.
East of the Nemaha fault, where injection rates have been

reduced most significantly, the strongest decrease is predicted (see
Fig. 3). In other parts of northern Oklahoma and southernmost
Kansas,M ≥ 4 probabilities remain on a higher level. Our physics-
based maps identify three regions where M ≥ 4 exceedance
probabilities in 2018 remain above 30% (Fig. 3d). Note that most
earthquakes observed in 2018 to date occur in or close to these
regions. Earthquake probabilities in 2018, 2019 and 2020 are
based on the assumption of a constant injection level after March
2018. Further injection rate reductions would accelerate the
probability decrease and our model can be updated as soon as
new injection data become available.
More importantly, a significant advance of our physics-based

method is that it can be used to identify the optimal injection
strategy to mitigate the remaining seismic hazard. Alternative
scenarios for future injection rates in space and time could easily
be considered to evaluate how possible injection regulations
would affect the seismic hazard. Not only further reduction in
total injection volume, but also a redistribution of injection
volumes in the study area could mitigate the seismic hazard.
Moving injection volume away from critical regions of high SI
could lower the injection-induced seismic hazard without
reducing the overall volume of injection.

Retrospective performance evaluation in time and space. To
retrospectively evaluate the performance of our model, we com-
pare the observed seismicity rate (M ≥ 3) in the complete study
area to the forecasted seismicity rate resulting from SI models
calibrated through different temporal endpoints. We select a
magnitude threshold of M= 3, because the model performance
should be tested based on the highest possible number of
observations. Note that while the observed rate of M ≥ 4
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earthquakes falls well within the uncertainty range of our model
(Supplementary Fig. 9), it does not allow us to draw statistically
significant conclusions, because of the high uncertainty caused by
the smaller number of M ≥ 4 observations.
The modelled seismicity rate forecasts of M ≥ 3 (Fig. 4a)

reproduce increase, peak and decrease of the overall observed
earthquake rate. However, some short-term spikes peak out of the
expected range of seismicity. These spikes are caused by
aftershocks of the relatively larger earthquakes such as the M=
5.7 Prague, M= 5.1 Fairview and M= 5.8 Pawnee earthquakes.
In the same way, the slightly under-predicted peak of seismicity
in 2015 consists of various spikes of aftershocks following
earthquakes of moderate magnitudes (Supplementary Figs. 4, 5).
Our model relates long-term trends of produced-water injection
to long-term trends of seismicity and is not designed to forecast
short-term spikes related to aftershocks. We decided not to
remove aftershocks from the catalogue, because declustering
depends on a subjective algorithm35,36 and parameter choices.
Moreover, aftershocks contribute to the seismic hazard. Remov-
ing them from a hazard assessment seems inappropriate15.

Figure 4a demonstrates that changing the temporal endpoint of
the calibration between Dec 2011 and Dec 2017 has no significant
effect on forecasted seismicity rates. Had we only used earthquake
information through Dec 2011 to calibrate the SI, our model
would have successfully predicted the increase, peak and decrease
of the large-scale seismicity rate in response to changes of
injection rates.
Ultimately, the most important application of our model is that

it can be used to predict local-scale seismicity rates, because the SI
is calibrated on the local scale. In Supplementary Fig. 5, we

present seismicity rate forecasts in six local-scale study areas of
25-km radius. The areas are selected to represent the full value
range of the SI identified across the complete study area
(Supplementary Fig. 6). Our results show that our model can
be used to forecast local-scale seismicity rates. However, because
the local-scale SI can vary significantly from the large-scale
average, local-scale model calibration (based on local seismicity
and pressure increase) is required to successfully forecast local-
scale seismicity rates. We find that compared to the purely
observational approach of using last year’s earthquakes to predict
next year’s seismicity, incorporating injection rates and a spatially
variable SI through our physics-based approach significantly
increases the forecasting performance in time and space
(Supplementary Fig. 10).
In Fig. 4a and Supplementary Fig. 5, we compare our results to

a recent paper37 which also considers injection rates to model
seismicity rates in Oklahoma and Kansas based on rate and state
friction38. It considers the Arbuckle group as a closed
hydrogeologic system with equally distributed injection rates
throughout the region. Because no forecast of the seismicity rate
(2018–2020) is presented in the publication, we forecast the
seismicity rate through Dec 2020 based on the rate-and-state
model37 assuming constant injection rates after March 2018 as in
our analysis.
While the large-scale seismicity rates resulting from the rate-

state and the SI models are similar from 2012 through 2015, the
rate-state model significantly under-predicts the decay rate
following reduced injection rates (Fig. 4a). Moreover, as the
rate-and-state model does not consider spatial variability of
model parameters, it is not able to describe onset, increase, peak
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or decay of seismicity in any of the six local-scale regions
presented in Supplementary Fig. 5.

Discussion
Based on a physical understanding of injection-induced earth-
quakes, we developed forecasts of the spatially variable and time-
dependent earthquake hazard in Oklahoma and Kansas. In our
hybrid physical–statistical model, occurrence probabilities of
potentially damaging earthquakes are driven by two factors: (1)
the rate of injection-induced pressure increase at depth resulting
from the locations and injection rates of the saltwater disposal
wells and (2) spatial variations in number and stress state of
preexisting basement faults that are affected by the pressure
increase.

Other studies16,32 observe a direct proportionality between
pressure increase (injection rates) and earthquake probability
during hydraulic stimulation of enhanced geothermal systems
and hydraulic fracturing sites. However, we find that earthquake
probabilities in Oklahoma and Kansas are increasing with the
square of the pressure rate (Fig. 2a). Slow pressure increases cause
a disproportionally low percentage of seismicity. Relatively more
aseismic fault creep could be occurring when there are slow
pressure increases. Moreover, aftershock triggering might con-
tribute to the over-proportional increase of probabilities with the
rate of pressure increase.
Our finding of disproportionally low earthquake probabilities

at slow pressure increases has important implications for hazard
management of induced earthquakes. It underlines the effective-
ness of injection rate reductions, which slow down the rate of
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pressure increase at seismogenic depth. At the current level of
saltwater injection, our model forecasts slowly decreasing earth-
quake probabilities through 2020. As shown in Fig. 4a, about 190,
130 and 100 widely felt M ≥ 3 earthquakes are expected in 2018,
2019 and 2020, respectively. This represents a significant reduc-
tion compared to 943 earthquakes of M ≥ 3 observed in 2015.
When communicating probabilistic seismic hazard forecasts to

decision-makers or the public, it is important to emphasize that
forecasted probabilities strongly depend on the considered scale
in time and space. For instance, the annual probabilities to exceed
M= 5 in 2018, 2019 and 2020 are low (≤5%) in local-scale
regions of 20-km radius (Supplementary Fig. 11). However, the
annual probability that there will be an M ≥ 5 somewhere in the
affected area is as high as 32%, 24% and 19% in 2018, 2019 and
2020, respectively (Fig. 4b).
Also a longer timescale of interest increases the forecasted

probability of earthquake damage. Considering the cumulative
injection-induced pressure increase from 2009 to 2020 results in a
24% chance of a damaging M ≥ 6 (6% of M ≥ 6.5) earthquake
(Fig. 4b). Based on the predicted pressure increase from Jan 2018
through Dec 2020, one additionalM ≥ 5 earthquake is expected to
occur (Supplementary Fig. 12). Seismic activity is expected to
remain elevated in respect to the tectonic background of about
one M ≥ 3 earthquake and a probability of about 1% to exceed
M ≥ 5 per year7 observed in the region prior to 2009. Thus, as
long as earthquakes are induced by saltwater injection in Okla-
homa and Kansas, occurrence of even larger magnitudes (than
those observed to date) cannot be ruled out completely. To fur-
ther mitigate the remaining induced seismic hazard alternative,
future injection scenarios could be used as input to our method to
identify the optimal injection strategy in time and space.

Methods
Injection well data. We specifically analyzed and utilized Oklahoma Corporation
Commission (OCC)39 and Kansas Corporation Commission (KCC) injection data
for Arbuckle Group injection wells operating in the area of interest12 in north-
central Oklahoma as well as Harper and Sumner counties in south-central Kansas.
We obtained injection data for wells in Oklahoma and Kansas going back as far as
January 2000. Only a handful of wells contain injection information back that far,
but we used the most complete dataset of injection data to simulate the largest
possible build-up of pressure in the model.

Monthly injection data for most Kansas wells began to be reported in January
2012. Prior to the reporting of monthly injection data, we assumed that annual
injection was distributed proportionally across all 12 months of the year. Injection
data in Oklahoma and Kansas were collected through March 2018 and December
2016, respectively. All models which project future trends in pressure and
seismicity assume that injection wells operated at constant rates are equal to the
average of the last three reported months of injection data.

Numerical hydrogeologic model. Our numerical model of the hydrogeologic
system of Oklahoma’s deepest sediments and crystalline basement is aimed at
predicting fluid injection-related pore pressure changes at depth in space and time.
Here, we developed a three-dimensional hydrogeologic model which simulates
fluid injection from wells operating in the Arbuckle Group from January 2000
through December 2020. We simulate the diffusion of pore pressure using
MODFLOW, a modular finite difference numerical code developed by the U.S.
Geological Survey40. MODFLOW solves for changes in hydraulic head, which are
directly proportional to pore pressure, using the groundwater flow equation

∂
∂x Kxx

∂h
∂x

� �þ ∂
∂y Kyy

∂h
∂y

� 	
þ ∂

∂z Kzz
∂h
∂z

� �
¼ Ss

∂h
∂t � QiðtÞδðx � xiÞδðy � yiÞδðz � ziÞ;

ð3Þ

where h is the hydraulic head [L], Kij are the principal components of the hydraulic
conductivity tensor [LT−1], Ss is the specific storage coefficient [L−1] and x, y, z
and t are spatial and temporal coordinates. Qi is the fluid source or sink (T−1).
Changes in hydraulic head are directly proportional to changes in pore pressure
when accounting for the specific weight of water (ΔPp ¼ ρgΔh). The hydraulic
conductivity tensor is directly proportional to permeability (k) when accounting
both for the specific weight (ρg) and dynamic viscosity (μ) of the fluid (Kij ¼ kij

ρg
μ ).

The numerical code assumes that injected fluids are of constant density and
dynamic viscosity. The fluid density and fluid dynamic viscosity in the model are
1062 kg m−3 and 0.547 cP, respectively (Supplementary Table 1). To calculate the

fluid density and dynamic viscosity used in the model, we assume a brine TDS of
100,000 ppm41 and a reservoir temperature of 50 °C derived from a standard
geothermal gradient of 25 °C km−1.

Injection in our model occurs into the 2.1-km-deep, 400-m-thick Cambrian-
aged, fractured dolomitic carbonate Arbuckle Group and is assumed to be uniform
across the entire depth of the interface. The Arbuckle Group is underlain across the
entire model domain by a lower-permeability crystalline basement to a depth of
20 km (Supplementary Fig. 13). We explicitly calculate all pressure changes in the
model relative to a uniform, hydrostatic pre-injection baseline. The model domain
stretches 406 km from east to west and 357 km from north to south, as measured
from the model’s northwest corner at UTM 409865 E, 4186546 N Zone 14. All
model boundaries are of Neumann type (no-flow). Model boundaries in x and y
were set intentionally far from the dominant region of injection such that they have
no effect on pressure calculations. The upper boundary is reflective to the confined
condition of the Arbuckle Group reservoir8. The lower boundary of the model
domain is set intentionally very deep so as to have no effect on pressure
calculations at hypocentral depths. Grid discretization in x–y is 500 × 500 m2 with
some variation as the outer edges of the model are approached. The model contains
12 discretization layers in the z-direction to accurately capture the diffusion of pore
pressure in the vertical direction (Supplementary Fig. 13).

Our hydrogeologic model intentionally simplifies and idealizes the three-
dimensional hydrogeologic medium by representing the system’s large-scale bulk
permeability with uniform layered heterogeneity. The initial model
parameterizations are based on the reported range of Arbuckle Group permeability,
10−14–10−12 m2, from core, outcrop and monitoring well tests18–22. While lacking
in direct measurements of crystalline basement permeability in Oklahoma and
southern Kansas, we implemented bulk permeabilities of fractured basement rock
from the literature (10−16–10−14 m2)27,28,42. Due to the inherent uncertainty in
model parameterizations, we tested the sensitivity of model outputs to permeability
by running several combinations of Arbuckle Group and crystalline basement
permeabilities (Supplementary Table 2).

Specific storage in our model is a parameter derived from the porosity, bulk
compressibility of water and bulk compressibility of rock reported in the literature
for the Arbuckle Group and crystalline basement (Supplementary Table 1). Specific
storage combines the bulk compressibility of water (βw), bulk compressibility of
rock (βr), fluid density (ρ) and porosity (Φ) as described below:

Ss ¼ ρgðβwΦþ βrÞ; ð4Þ

We use a fluid density of 1062 kgm−3 reflective of brine with TDS of 100,000 ppm41

at a reservoir temperature of 50 °C. The bulk compressibility of water of 4.4 × 10−10

Pa−1 respects the reservoir temperature. The bulk compressibility and porosity of
the Arbuckle Group is 0.16 × 10−10 Pa−1 and 0.20 derived from direct observations
and core testing20,22,43. The bulk compressibility and porosity of the crystalline
basement is set from literature value to be 0.7 × 10−11 Pa−1 and 0.01, respectively44.
All of our model sensitivities use specific storage of 1 × 10−6 m−1 and 1 × 10−7 m−1

for the Arbuckle Group22,45 and crystalline basement44, respectively.
Beyond the layered heterogeneity represented in our model, a key feature in our

model is the representation of the Nemaha fault as a regional-scale, low-
permeability barrier to cross-fault flow (k= 10−20 m2). The Nemaha fault is a
structural uplift of Pennsylvanian–Permian age which runs roughly north–south
from central Oklahoma through Kansas23. The structural uplift has served as a
regional trap for oil and gas structures such as the Oklahoma City oil field46,47.

Two key baseline datasets constrain the large-scale Arbuckle Group
permeability: (1) the observed hydraulic underpressure for the deepest
hydrostratigraphy in Oklahoma and Kansas, and (2) large-scale trends in reported
daily wellhead pressures for Arbuckle injection wells in Oklahoma. The observed
hydraulic underpressure, or the difference between the ambient fluid pressure and
the land surface elevation, in aquifers of Cambrian–Ordovician–Silurian age in the
U.S. mid-continent is well-known41. We used hydro-potentiometric surface data
for aquifers of Cambrian–Ordovician–Silurian age from Nelson et al. (2015)41,
which were derived from drill-stem tests and calculated hydraulic underpressures
at Arbuckle injection well locations (Supplementary Fig. 2a).

In early 2016, the Oklahoma Corporation Commission began mandating daily
wellhead pressure measurements for Arbuckle injection wells operating within the
area of interest in Oklahoma. Large-scale trends in daily wellhead pressures show
that more than half of all Arbuckle injection wells, even wells operating at rates
>10,000 m3 day−1, operate under gravity-feed injection requiring no wellhead
pressure. Most of the remaining wells (~40%) operate at wellhead pressures
between ~0.3 and 2MPa41, well within the pressure range expected simply from
wellbore friction. These data indicate that the large-scale, bulk permeability of the
Arbuckle Group is likely towards the high end of the reported range.

Injection-induced fault reactivation probability. To compute the probability of
triggering M ≥ 3 earthquakes in our model (Fig. 2a), we divide the histogram of
pressure rates triggering observed earthquakes (Supplementary Fig. 14a) by the
histogram of monthly pressure rates at all 25,000 seed points in the model (Sup-
plementary Fig. 14b). Pressure rates triggering observed earthquakes are extracted
in the month of occurrence and at the epicentre locations of all M ≥ 3 earthquakes
in the catalogue through Dec 2017 (depth is fixed at 6.5 km below the surface).
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The histogram of earthquakes triggered at a given pressure rate (Supplementary
Fig. 14a) does not directly give the probability to trigger an M ≥ 3 earthquake (fault
seed point) in our model. For instance, 90% of all pressure rates in the model are
<1000 Pa month−1, but only 15% of earthquakes are triggered in this range
(Supplementary Fig. 14b).

Our model suggests that injection-induced pressure rates at seismogenic depths
are low. Ninety-nine percent of all pressure rates at the 25,000 fault seed points are
below 3000 Pa month−1 (Supplementary Fig. 14b). While our modelled rates of
pressure increase are low, they fall within the range that has been observed to
trigger natural earthquakes. Inter-seismic Coulomb stressing rates on the San
Andreas Fault48,49, for instance, are found to be on the order of 1000 Pa month−1.

Calibration of the seismogenic index. Before calibrating the SI maps (Fig. 2b–e),
we precondition the pressure rates resulting from the hydrogeologic model based
on the physical understanding of pore pressure changes as the triggering
mechanism of induced earthquakes. (1) Only positive pressure rates (pressure
increases) are considered in our model, because decreasing pressure results in fault
strengthening by increasing the effective normal stress. (2) If the pressure at a given
seed point at a considered time is lower than the maximum observed pressure at
any earlier time, the pressure rate is not considered. We do this to honour the stress
memory effect of rocks (Kaiser effect), describing the necessity to exceed the
previous observed maximum pressure (stress) level before seismicity is
observed50,51. Our results show that including this effect has no large influence on
calibrating the SI in Oklahoma and Kansas but might be important for application
to other areas, where injection rates show a cyclic behaviour.

The following steps are performed to calibrate the SI maps (Fig. 2b–e) by
comparing earthquake and pressure history in circular areas of 10-km radius. (1)
Monthly pressure rates ∂

∂t Ppðrn; tÞ at all n seed points within a radius of 10 km
around a selected seed point up to a given calibration time tc are extracted, squared

and summed up to
P
n

∂
∂t Ppðrn; t � tcÞ
h i2

. (2) The number NM�3ðt � tcÞ of M ≥ 3

earthquakes within 10-km radius around the selected seed point observed up to the
given calibration time is determined. (3) The maximum likelihood estimate of the
b-value is computed using all M ≥ 3 earthquakes recorded through the calibration
time in the complete study area (Supplementary Fig. 7). (4) The SI at location r is
determined according to

ΣpðrÞ ¼ log10 NM�3ðt � tcÞ

 �

� log10
P
n

∂
∂t Pp rn; t � tcð Þ
h i2�� �

þ bðtcÞM:
ð5Þ

We find that as soon as two earthquakes occurred in the local-scale areas of 10-
km radius around a selected seed point, a good estimate of the SI can be obtained.
Note that b-values are determined based on earthquakes in the complete study
area. Where the number of earthquakes is not sufficient (<2 earthquakes) to
directly calibrate the SI based on observed earthquakes and modelled pressure
rates, we apply the following rule to obtain a SI value. If no directly calibrated SI
value exists within 40-km radius around a selected seed point, the SI is set to the
mean value of all directly calibrated SI values. If directly calibrated SI values exist
within 40-km radius, the SI is interpolated (using the griddata function in Matlab).
Dotted areas in Supplementary Fig. 6 show areas where interpolated or averaged SI
values are used to create the seismic hazard maps shown in Fig. 3.

Data and code availability
Earthquake catalogue: http://earthquake.usgs.gov/earthquakes/search/. Injection well
location and saltwater injection data: http://www.occeweb.com/og/ogdatafiles2.html.
Additional data and codes supporting the findings of this manuscript are available from
the corresponding author upon reasonable request.
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