The current balance

1. INTRODUCTION

This fundamental experiment denes the unit of electric current: the Ampere. The French physicist Andre Marie Ampere (1777-1863) showed that two parallel currents attract each other if the currents are in the same direction and repel each other if the currents are in opposite directions. The magnitude of force per unit length between two current-carrying wires is given by:

$$\frac{F}{l} = \frac{\mu_o I^2}{2\pi d} \tag{1}$$

where I is the current through each wire, d is the distance between the wires and μ_o is the fundamental physical constant to be determined in this experiment.

Figure 1: The current balance setup

2. EXPERIMENT

In this experiment you will use a current balance in which the upper conductor is free to pivot on knife edges. The upper conductor is balanced so that the wires are a small distance apart. The conductors are wired in series to carry the sam ecurrent but in opposite directions, so that the wires rather repel than attract. The force of repulsion can be measured indirectly by placing weights on the upper conductor pan.

Note that alternating current, rather than direct current, is used in the system. With the alternating current, the transformers can be used to adjust the voltage applied to the circuit, thus changing the current passing through it. There is another reason to use AC, not DC in this experiment: think of the effect of the Earths own magnetic eld on a current-carrying conductor.

Examine the balance. The force between the conductors exerts a torque on the movable frame, which is balanced, by the torque of the unbalanced weight of the frame. The deection of the movable frame is measured indirectly by observing the image of the scale reected by the mirror attached to the frame.

First, be clear how any balance works. Knife edges never have exactly zero radius of curvature. Thus, a balance will come to rest at a continuum of positions, depending on both the loading difference and the mass distribution in the moving arm. Therefore, to obtain precise results, data must be taken at a constant deection.

3. DEFLECTION MEASUREMENTS

In this experiment the deflection of the movable conductor is measured by an optical system. A small mirror is attached to the base of the frame. This mirror is tilted at small angles when the movable frame is deflected due to the magnetic force between two current-carrying wires. The deflection is measured indirectly by the displacement of the rulers scale reflected by the mirror. Figure out how to calculate the distance between the two conductors from the displacement of the image of the ruler observed in the eyepiece. Discuss the procedure with your TA if in doubt. The variable transformer supplies a voltage to the step-down transformer which in turn supplies the input voltage to the current balance circuit.

The Experiment

- 1. When the load is placed on the pan, the two wires should only be separated by a small distance; if the separation is too large, when the weights are removed and/or current is applied, the frame will tip backward. Begin your measurements with the unloaded frame in a tilted position. Plot the deflection of the unloaded frame versus current.
- 2. Plot the deflection of the loaded frame versus current for various values (550 mg) of load on the pan of the moving conductor to obtain the family of curves of deection versus current for various loads. Then take points from these curves to determine the relationship between the load and current at a constant deflection. Since formula (1) is accurate only when the distance between the wires is much larger than their diameter, take points where the distance between the wires is relatively large.
- \rightarrow Python Requirement (PHY224/324 students only): plot deflection of unloaded and loaded frame versus current and do the analysis using Python.

Note that in order to calculate the distance between two wires you also need the reading of the rulers scale in the position when the two wires are touching each other (non-deflected frame). Hold the top wire down against the bottom wire, and read the rulers scale in the eyepiece in this position. Remember that even when they are in contact, the distance between the wires is non-zero (2r) because of the nite thickness of the wires. Conrm that the load is proportional to the square of the current, and extract the value of μ_o from your graph. Check the accuracy of the relationship $F \approx \frac{1}{d}$.

 \rightarrow Python Requirement (PHY224/324 students only): Output μ_o and discuss the goodness of your fit. How does your value of μ_o compares with the accepted value $\mu_o = 4\pi \times 10^{-7}$ T·m/A $\approx 1.26 \times 10^{-6}$ T·m/A?

Technical notes

- In this experiment, relatively large currents are used. If the equipment doesnt work, check fuses.
- Cover the current balance with the protective box during your measurements. The current balance is very sensitive even to the air circulation in the room.
- Never exceed 10 A current, or you may burn out the step-down transformer.

4. DISCUSSION

In fact, if $\mu_o = 4\pi \times 10^{-7}$ T·m/A, the force acting between currents in two parallel wires is the basis for the definition of one of the seven base units of the International System (SI), the Ampere. The unit of electric current (Ampere) can be defined as follows:

If two very long parallel wires one meter apart carry equal currents, the current in each is defined to be one Ampere if the force per unit length on each wire is 2×10^7 Newtons per meter of length.

This definition of the ampere makes the magnetic constant appearing in the Biot-Savart Law $k=\frac{\mu_o}{4\pi}$ exactly equal to 10^{-7} T·m/A. The definition was adopted in 1946. It allows the unit of current, as well as the unit of electric charge, to be determined by a mechanical experiment. In practice, as you already know, the wires are chosen to be much closer together than 1 m so that they do not need to be so long, and the force is large enough to be accurately measured.

This guide sheet has been revised by Ruxandra M. Serbanescu in 2020. Previous versions: amk-1982, ta - 2002.