Inductors and Capacitors in AC Circuits

IMPORTANT NOTE: A USB flash drive is needed for the first section of this lab.
Make sure to bring one with you!

Introduction

The goal of this lab is to look at the behaviour of inductors and capacitors - two circuit
components which may be new to you. In AC circuits currents vary in time, therefore we
have to consider variations in the energy stored in electric and magnetic fields of capacitors
and inductors, respectively.

You are already familiar with resistors, where the voltage-current relation is given by
Ohm’s law:

Va(t) = RI(t), (1)

In an inductor, the voltage is proportional to the rate of change of the current. You may
recall the example of a coil of wire, where changing the current changes the magnetic flux,
creating a voltage in the opposite direction (Lenz’s law).

A capacitor is a component where a charge difference builds up across the component.
A simple example of this is a pair of parallel plates separated by a small distance, with a
charge difference between them. The potential difference between the plates depends on
the charge difference Q, which can also be written as the integral over time of the current
flowing into/out of the capacitor.

Inductors and capacitors are characterized by their inductance L and capacitance
C respectively, with the voltage difference across them given by

Vi(t) = L%t), (2)
Vol = 9 = & [ 1w )

1 Transient Behaviour

In this first section, we’ll look at how circuits with these components behave when an
applied DC voltage is switched from one value to another.

1.1 Background

The transient behaviour can be derived by using Kirchhoff’s law and solving the resulting
differential equation. For example, in a circuit with a capacitor and a resistor (known as
an RC circuit), with some constant voltage V' applied, Kirchhoft’s Law is written as:

St =0 (4)
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Figure 1: a), b) RC circuit, ¢) RL circuit

we can add resistor’s and capacitor’s contributions to Kirchhoft’s Law as:
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Integrating from initial current I, at t = 0 to current I at time ¢, we obtain:
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The solution to this equation is Ohm’s Law
V(t) = RI(t) = Ve 7 = V,e7!/7

where V, = RI, and 7 = RC.

You should work out the solutions to circuits with a resistor and inductor (an RL circuit)

and a capacitor and inductor (an LC circuit). The LCR Circuit

The following figure presents the RLC circuit diagram, together with transient voltages

in different damping conditions:

R V(o) vy

Critically Damped

o O\ |0 = ' (A +Af)e
(@l TC © T
I(t=0) =0 00 t t f f t —
v(Y) V(®) Overdamped

Underdamped

ot L
A& cos wt AT+ AR
(b) @ 1

[ W N 0
0\/ t 70 t

Figure 2: a) RLC circuit, b), ¢), d) Transient voltages




The circuit from Figure 2a) can be:
- underdamped (Figure 2b)) when R < 2\/g , when the response function will be a product
of a sinusoidal and an exponential,

- critically damped (Figure 2c)) for R = 2\/g when there is no oscillatory decay response,

- overdamped (Figure 2d)) for R > 2 %, when the transient response is given by the sum
of two decaying exponentials.

1.2 Experiments

Use the oscilloscope to see the voltage changing with time. There are two channels, so
you can measure the applied voltage and the voltage across a component of interest at
the same time. This data can then be saved onto a USB flash drive for analysis on the
computer.

Note: Remember that both of the oscilloscope channels share a common ground. That means that
no matter what, the negative sides (typically the black banana plugs) are connected. If you put them
in different locations in the circuit, that’s like wiring those locations together, and will probably
ruin your data!

1. Experiment 1.
For the first experiment, we’ll use a manual switch to change the applied voltage
between a battery (1.5 V) and no applied voltage (0 V). Construct an RC circuit
using the 1 pF capacitor and the 470 k(2 resistor, as shown in Figure 3. Measure
the applied voltage Vi and the voltage across the capacitor V. Connect the
oscilloscope across the resistance R. You will want to increase the time range of
the oscilloscope so that it goes into scanning mode.
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Figure 3: Setup for studying slow transient voltages

Note: This section of the experiment should be done quickly (in less than 15
minutes). Capacitors and resistors are not labeled; you may need to measure them.

The manual switch works when we have a slowly changing voltage, but for faster
signals it is inconvenient.

Instead, as shown in Figure 4 below, we can use a function generator to switch the
applied voltage Vi between +V and —V, which can switch the voltage faster and
more precisely. With this new method, construct an RC circuit using the 0.022uF
capacitor and any resistor between 1002 and 100k(). Measure the applied voltage
V' and the voltage across the resistor V.

What are the observed time constants? How do these compare with the value of
RC?
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Figure 4: Setup for studying fast transient voltages

- Construct an LR circuit using the smallest resistor available and the coil
provided.L for this coil is between 30 mH and 300 mH. Again measure V and Vi
as a function of time, using the function generator. From the observed time
constant, estimate the inductance of the coil.
Note: The coil is not a pure inductance, but acts as if there were a perfect
inductance in series with a resistance. The effective series resistance is called the
internal resistance of the coil.
- Construct an LC circuit using the 22 nF capacitor. First, measure both V and
V1, then measure both V' and V.
Note: You will have to adjust the oscilloscope sweep frequency and the wave
generator frequency in order to have adequate full display of the voltages being
observed.
Plot and F'it each of these voltages using appropriate models. Compare the fit
parameters between each data set and to those you would expect given how they were
labeled and/or measured using a multimeter.

1.3 Impedance: theoretical background

This section deals with impedance, which extends the concept of resistance to AC
circuits.
In a DC circuit, the current and voltage are constants:

I(t) = I
V(t)=W

If the circuit is linear (meaning changing the current will change the voltage
proportionally) then it can be described by its resistance

Vo
= — 1
R T (10)

In an AC circuit, however, the current and voltage oscillate at an angular frequency w
and thus can also differ by a phase shift:

I(t) = Iysin(wt) (11)
V(t) = Vosin(wt + ¢) (12)



In this case, we need both the ratio of the amplitudes R and the phase shift ¢ to
describe the circuit. These can be combined into a single number using phasors. The
idea here is to write the current and voltage as

I(t) = Ipe'™@ (13)
V(t) = V'@t (14)

Note that since the circuit is assumed to be linear, so we can always recombine these
complex exponential functions back into sine or cosine functions (so that the current
and voltage are real numbers). With this formulation the ratio of voltage to current is
now a complex number that contains both the ratio of amplitudes and the phase shift

7 = Yogio _ peio (15)
Iy
This value Z is what is known as the impedance. Like resistance, it has units of Ohms.
We can find the impedance of a circuit element by putting the phasor expression for I,
equation (10), into the equation for V', equation (11). Note that for a resistor, the
equation is already of this form, so Zg = R. For the inductor, we have
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and so
Z; = 1wl (16)

Similarly, for the capacitor,
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It’s straightforward to see that calculating the equivalent impedance of a circuit follows

the same rules as resistance. Thus, for an LCR circuit (a resistor, inductor and
capacitor in series) the impedance should look like

Zc (17)

Zion =R+ i(wL - %) (18)

w

The phasor representation of equation (18) is presented in Figure 5. Notation from the
figure is j instead of ¢ for the complex number:
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Figure 5: Phasor representation of equation (18)

1.4 Experiment 2

Now, we’ll use our circuits to directly measure the impedance of some circuit elements.
An RC circuit can be built as in Figure 6:
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Figure 6: Setup for measuring impedance for a RC circuit

Note that this circuit compares +V with —Vgi because both voltages are measured
relative to oscilloscope’s ground. Be careful in interpreting observed phase differences!
Useful Note: Instead of using the function generator directly, you should plug it into the
Primary side of the transformer and use the Secondary side to drive the circuit. The
transformer is used to decouple the signal generator from the circuit (it allows AC
signals, but blocks DC and interference effects). It also provides the needed ground for
Figures 6 and 7.

For comparing V' with V3 in the LCR circuit, we use the diagram from Figure 7, where
we have a known resistor R in series with our LC' circuit of interest, with a sinusoidal
driving voltage.

Measuring the voltage across the resistor essentially allows us to measure the current



going into our circuit, since I.rwir = Ir = Vr/R. If we simultaneously measure Vi cyit,
we can get the amplitude and phase difference between V...t and I, which tells us
Zeirewir b this frequency.
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Figure 7: Setup for measuring impedances

Impedance measurements

For C' = 0.022uF and R between 1002 and 100kS2 (Figure 6), measure % in magnitude
and relative phase for several frequencies between 10 Hz and 1.0 MHz. Observe the
phase relation between Vi and Vi (whether Vi leads of lags behind Vi).

Repeat for the RL circuit (Figure 7) using the coil and the resistor with R = 1002.
Cover a selection of frequencies that shows the resonance curve.

Acquiring this data is straightforward using the two channels of the oscilloscope. The
oscilloscope has Measure functions which you can use to read off the amplitude of each
wave and the phase shift between them. By varying the output frequency of the
function generator, you should be able to obtain Z.;...;; across a wide frequency range.
Some other things to note:

e The auxiliary output of the function generator outputs a square wave at the same
frequency as the main output. Plugging this into the external trigger port of the
oscilloscope and using it for triggering can be helpful, as triggering off of a signal
when it is small does not work very well.

e In the Acquire menu of the oscilloscope, you can switch between sample mode and
average mode. You will often want to switch to averaging mode, particularly when
the signal is small and/or noisy.

You should measure the impedance as a function of frequency for the following circuits:
1. The RC circuit with C' = 22nF" capacitor (Figure 6)
2. The RL circuit. A resistor of ~ 50012 is recommended for this.

3. The RCL circuit (C' = 22nF capacitor, inductor and a resistor in series) as in
Figure 7.

Make sure you take data over a sufficiently wide range of frequencies. It may be a good
idea to plot a theoretical curve in Python so that you know what to expect.

You should plot and fit all of impedance data. Plot Z vs. frequency.



¢ is the phase dispacement of volage versus current:

wl — L+
= arctan | ——«< 19
. &= (19)
Plot phase vs. frequency and interpret the graphs.
Note that since the inductor and capacitor are not perfectly ideal, you will likely need to
consider an equivalent circuit of ideal components in place of the non-ideal one in order

to fit the data properly.
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