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Motion in fluids

� Introduction

In swimming bacteria or diffusing proteins, viscous rather than inertial forces dominate the

dynamics of motion. A common measure of the ratio of the inertial to viscous forces is

known as the Reynolds number:

Re =
ρ`v

η
(1)

Where ρ is the fluid density, v is the velocity of the object, ` is a characteristic length of the

object, and η is the fluid viscosity.

Our everyday experience is mostly with high Reynolds number environments where inertial

forces dominate. Swimming, for example, is a high Reynolds number activity. We propel

ourselves through the water by accelerating the fluid behind us; the inertial force from a

single stroke lets us glide meters before we come to a stop. Low Reynolds number activities

are less common, but stirring a jar of honey with a spoon is one example. It is the viscosity

of the honey and not the mass of the honey that makes the stirring difficult. When you let

go of the spoon, does it continue to swirl around the jar? No, the spoon stops moving fairly

quickly. The viscous force dominates the inertial force.

Swimming can be a low Reynolds number activity when the length scale of the swimmer is

small. Microorganisms fit this category. A bacterium such as E. coli , is about one micron

(10−6 meters) in diameter and travels around 20µm per second, so swimming bacteria have

a Reynolds number much less than one and the viscous forces dominate inertial forces. To

us, this is a very alien hydrodynamic world. For you to swim at an equivalent Reynolds

number, you would need to ”swim” in something viscous like honey, at speeds of about a

foot a day, while cycling our arms at about 1 stroke per hour.

� Theoretical background

F = ma forces are familiar, but what are viscous forces? Imagine you have a fluid between

two plates. Intuitively you know that as the viscosity of the fluid increases, it requires more

force to slide the plates apart (think water versus honey). Now assume that the bottom

plate is fixed while the top plate, at some distance `, is free to move parallel to the fixed

plate (see Figure 1).

Figure 1: Fluid motion between two plates

If a force F is applied to the top plate, it will move at some velocity , forming a velocity

gradient between the top and bottom plates. As the viscosity increases, it will take a larger

force to form the same velocity gradient. It is this proportionality between the force per
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area (also known as shear stress) and the velocity per length (shear rate) that is known as

viscosity.

From Figure 1, we can define the viscous force Fv and the ”inertial” force Fi = ma:

Fv =
ηAv

`
(2)

Fi = ρV a =
ρ`Av

t
(3)

Taking the ratio gives the Reynolds number:

Re =
Fi
Fv

=
ρ`v

η
(4)

Equations of motion

In this experiment, you will be following the motion of objects falling in fluids. Check out

the force diagram for a sphere falling in a fluid (see Figure 2).

Figure 2: Force diagram

The equation of motion is:

m
dv

dt
= mg − Fd (5)

Where Fd is the drag force and m is the mass of the object corrected for buoyancy: m =

(ρsphere− ρfluid)V . When the object reaches its terminal velocity: a = dv
dt

= 0 and mg = Fd.

The form of Fd depends on the Reynolds number.

At a high Reynolds number, the drag force is commonly written as:

Fd =
1

2
ρCdAv

2 (6)

The drag coefficient Cd is measured empirically, ρ is density of fluid and A is cross-sectional

area of the object, perpendicular to the direction of motion. Terminal velocity is this regime

can be obtained from the equation of motion (5) with the appropriate substitution for Fd:

Using the terminal condition mg = Fd, we can define the terminal velocity, given by:

vterm =
(

2mg
ρCdA

)1/2

By separating the variables, we obtain the following solution:

v(t) = vtermtanh

(
gt

vterm

)
(7)
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The terminal velocity at high Reynolds number depends on the bead radius as

vterm ' r1/2.

The drag force at low Reynolds number is directly proportional to velocity. For the

particular case of a spherical particle of radius r moving at velocity v in a fluid with viscosity

η we can write:

Fd = 6πηvr (8)

The equation of motion in this case is written as:

m
dv

dt
= mg − 6πηrv (9)

From the terminal condition at low Reynolds number, we can determine the terminal veloc-

ity: vterm = mg
6πηr

.

Separating variables and integrating, we obtain:

v(t) =
mg

6πηr
(1− e−

t
τ ) = vterm(1− e−

t
τ ) (10)

where τ = m
6πrη

is a time constant.

Qualitatively, we can see that the solution from equation (12) has the correct initial and

asymptotic behavior: at t = 0, v = 0 and at t→∞, v = mg
6πηr

, which is the expected terminal

velocity.

Numerical exercise. The time constant is a good estimate for the time needed to reach

the terminal velocity: when τ = t , v(τ) = mg
6πηr

(1 − 1
e
) = 0.634vterm which means that at

t = 3τ the object reaches 98% of terminal velocity.

Estimate τ for an aluminum sphere of radius r = 0.5 × 10−3m falling in glycerine where

viscosity is η = 1500× 10−2Poise. Density of aluminum is ρ = 2.7 g
cm3

The terminal velocity in the low Reynolds number regime depends on the par-

ticle’s radius as: vterm ' r2
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� Notes about the experimental procedure

The experiment uses a video tracking method. Open the LabView application ”Motion

through Fluids” (shortcut on computer’s desktop). Confirm the default camera. The pro-

gram asks you to select the number of frames to be recorded. Do some trial experiments

with 120 frames, adjust the number later on, if needed.

The frame rate means how many frames per second. Try 20, this will cover 6 seconds when

combined with 120 frames, adjust it later if needed.

You will have to provide a location for saving the ∗.avi file (movie of the falling bead).

When starting the experiment, submerge the tweezers + bead in order to avoid surface ten-

sion problems. Click on ”Start the avi movie capture”. You’ll hear warning beeps; release

the bead at the long beep. The application will output a text file with time (in seconds)

and position (in mm) of the falling bead.

� Correction due to the wall effect

An object falling near a boundary (like the wall of the container) moves more slowly than

an object falling far from a wall. Try this: drop simultaneously two identical spheres: one

near the wall the other one at the center of the container.

To account for the effect of the container wall, a correction has to be calculated (Metrologia

2001, 38 (531-534)):

vcorr =
vm

1− 2.104 d
D

+ 2.089( d
D

)
2 (11)

In equation (13), vm is the experimental mean velocity, d is the diameter of the bead, D

is the dimension of the container perpendicular to the direction of the fall and vcorr is the

expected velocity of the bead as if it were falling in an unbounded fluid.

� Exercise 1: Low Reynolds number

Use the box marked ”Pure Glycerine” with five different sizes of spherical beads made of

Teflon. Use the container marked ”Glycerol”, place it in front of the dark chamber. The

video camera is located at the rear of the chamber.

Test the setup by dropping beads and timing the fall using a stopwatch. This would give

you a hint about the number of frames and the frame rate.

Take 2-3 measurements for each bead size. Measure the diameters using the caliper pro-

vided.

Obtain the mean terminal velocity (with uncertainty) for each bead size from the collected

data.

Correct the data for the wall effect.

Calculate the Reynolds number. Is the value a ”low Re”?

Python: plot the mean terminal velocity as a function of bead radius. Fit the data using:

vterm = ar2. Does the fit work well? How does the value of parameter a compare with the

theoretical value?
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� Exercise 2: High Reynolds number

Use the box marked ”Water” with five sizes of Nylon beads. Measure the diameter of each

bead.

Replace the ”Pure Glycerine” container by the ”Water” container (be careful not to spill

glycerine).

Remove all the air bubbles.

Test your setup; you may notice that larger particles do not always fall in straight lines:

sometimes they wobble due to water turbulence. Practice until you get the best trajectory.

Take 5 measurements for each bead size using the tracking program.

Obtain the mean velocity (with uncertainty) for each bead size from the collected data.

Can this be interpreted as ”terminal velocity”?

Correct the data for the wall effect.

Calculate the Reynolds number. Is the value a ”high Re”? This would be Re > 200. Is

there a critical bead size or a critical velocity that confirms the ”high Re”?

Python: plot the mean terminal velocity as a function of bead radius. Fit the data using:

vterm = br1/2. Do you notice any discrepancy with the theory?

For intermediate Reynolds number situations, both linear and quadratic terms may be rel-

evant. The dependence of vterm on r is more complicated.

Try to come up with a fit function to describe this case. Does it improve the fit?

� Physical reference data

Glycerol density: ρg = 1.26 g
cm3

Glycerol viscosity: ηg = 934 centipoises (cp) or 9.34 g
cm·s at 25oC.

Water viscosity: ηw = 1 cp at 25oC.

Water density: ρw = 1 g
cm3 at 25oC.

Teflon density: ρt = 2.2 g
cm3 .

Nylon density: ρn = 1.12 g
cm3

The experimental setup and the LabView tracking program were made by Larry Avramidis.

This guide was written by Ruxandra Serbanescu in 2013 and revised in 2019. Thanks to Michael

Bartram for suggestions.


