
Slinky waves

Introduction
In this experiment you will look at the propagation of waves. The experimental system is
designed to make the wave motion slow enough to allow you to view directly a number of
features of wave motion. We hope that by the end of the experiment you will have developed a
number of intuitions about how waves travel, that you will have learned some new properties
of wave motion and that you will have some level of quantitative understanding of wave
propagation.

Much of this investigation is qualitative. In introducing a number of phenomena we try
to give a conceptual explanation. In this process we shall be quoting formulae and relations
that you should be able to understand and the results of which you should be able to use.
However, many of these formulae involve theory beyond the reach of students in an intro-
ductory physics course, so we do not expect that you will be able to follow the derivations,
which we shall thus not detail.

Theory and background
You shall investigate the wave propagation in a dispersive medium. Non-dispersive propa-
gation is simpler to deal with, but is probably less common in nature. Non-dispersive waves
move at a constant speed, independent of the frequency of the wave disturbance. An exam-
ple of this is wave motion on a stretched string. In a non-dispersive wave medium, waves
can propagate without deformation. Electromagnetic waves in free space are nondispersive
as well as nondissipative and thus can propagate over astronomical distances. Sound waves
in air are also nearly nondispersive even in the ultrasonic frequency range.
Most waves in material media are dispersive. Dispersive propagation involves a variation of
wave speed with frequency. Examples of this are waves on water surface and light waves
moving through glass.

Our dispersive system
You shall investigate dispersive wave propagation using a suspended slinky system. This

consists of a coil spring which can viewed as a series of coil loops coupled together by the
spring constants of the coils. When one loop is displaced by a distance y along the axis
of the spring, the elastic force on its neighbours will determine an acceleration. A wave
motion results because the displacement of one coil loop produces a delayed displacement
of its adjacent loops. The delay depends on the mass of the loop and the spring constant
of the joining components between the loops. The slinky would be non-dispersive, but this
would be correct only if the slinky were resting on a friction-free skating rink. However, our
slinky is suspended by strings of a fixed length, so that each coil loop thinks itself to be
a pendulum of length equal to the string length and mass equal to the loop mass. Thus,
two sets of forces act on each loop, one as described above which produces wave motion,
and one from gravity which provides a restoring force to make the loop swing back to its
centre position. In this experiment,we shall find out that the pendulum component makes
the slinky waves dispersive.

It can be shown that, for this suspended slinky system, ω and k are related in a slightly
more complicated form than that of equations 1, and 2:

ω =
√
ω2
o + c2ok

2 (1)

k2 =
ω2 − ω2

o

c2o
(2)

1



Recall: k = 2π
λ

where k is the wave number and λ is the wavelength. Also: ωo is the
angular frequency for a single pendulum of the slinky suspension string system and co is, the
constant wave speed of a non dispersive system, in this case consisting of the slinky resting
on a frictionless surface.

Note that since the slinky can be driven by a motor at any frequency, ω can assume a
variety of values. Equation (1) leads us to investigate three ranges of values of for ω.

Range 1: ω > ωo
In this case k2 > 0 , so k is a real number. Equations (3) and (4) below fully describe

the wave motion of the slinky under these conditions:

yr = Arcos(ωt− kx+ φr) (3)

yl = Alcos(ωt+ kx+ φl) (4)

where yr and yl represent waves moving to the right and left respectively and y represents
the general case: y = yr + yl. ω = 2πf is the angular frequency and f is the frequency of
oscillations as seen from a position in space. The speed of phase propagation of these waves
is given by:

c =
ω

k
=

ωco√
ω2 − ω2

o

(5)

At higher frequencies, this case produces wave motion because the high acceleration of the
coil loops makes the inertial effect of each loop predominate over the pendulum effect due
to the strings.

In your experiment with the slinky, one end of the slinky is held fixed and the other may
be driven sinusoidally. For convenience take the fixed end to be x ≡ 0; the fact that it is
fixed implies y = 0 at x = 0 for all times t. From (4) and (5) you can derive, with proper
choice of the origin of time, the following solution:

y = yosin(ωt)sin(kx) (6)

where yo is a constant. The wave in this case is a standing wave rather than a propa-
gating wave: it is a superposition of two waves of equal amplitudes propagating in opposite
directions with nodes of zero displacement separated by distances π

k
, half the wavelength

2π
k

of the propagating waves.
The amplitude yo is determined by the driving motor at the end of the slinky where

x = L. If the motor enforces a sine wave motion with amplitude yd we obtain: y = ydsinωt
at x = L. From equation (6) we get:

ydsin(ωt) = yosin(ωt)sin(kL) (7)

and so:
yo =

yd
sinkL

(8)

yo will tend toward infinity, being limited only by dissipation and non-linear effects, for any
k such that:

k = kn ≡
nπ

L
, n = 1, 2, 3... (9)

This represents resonant behaviour: the different natural modes of oscillation represented
by (9), are called the normal modes or the eigenmodes. Between the two ends, they exhibit
one loop, two loops, three loops, etc. They may be thought of as: fundamental (or first
harmonic), first overtone (second harmonic), second overtone (third harmonic), etc. Note,
however, that the harmonics are characterized by k being some integer multiple of the
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fundamental value π
L

; the associated ω, from (1) does not progress in steps of integer
multiples, but instead goes as:

ω =
√
ω2
o + c2ok

2
n =

√
ω2
o +

n2c2oπ
2

L2
(10)

This is different from a non-dispersive violin string in which: ωn = ncoπ
L

It might be pointed out that the human ear finds pleasure in combinations of notes whose
frequencies are integer multiples of a fundamental frequency; octaves have a frequency ratio
of 2:1, fifths have a 3:2 frequency ratio, major thirds a 5:4 ratio, etc. Thus non-dispersive
violin strings can produce pleasant sounds. However, this writer would hate to listen to
sounds produced by a high frequency dispersive suspended slinky.

Range 2: ω < ωo
In this case k2 < 0 , so k is an imaginary number. This would imply that no real wave

could be propagated. Thus, solutions (1) and (2) do not work. The solutions for this case
are:

yr = Arcos(ωt+ φr)e
−kr (11)

yl = Alcos(ωt+ φl)e
+kr (12)

y = yr + yl (13)

where:

k2 =
ω2
o − ω2

c2o
(14)

Now we have ω = 2πf where f is the frequency of oscillation as seen from one position
in space and k = 1

xo
where xo is the exponential decay distance to 1

e
of the initial amplitude.

This case produces no wave motion at lower amplitudes because the pendulum effect due
to the restoring force of gravity on the coil loops predominates over inertial effects. Thus
each coil sees its adjacent coil pulling it to one side, while gravity tries to pull it back to
its central position. The whole slinky moves in unison, the amplitude of motion decreasing
exponentially with distance along the slinky. This solution of equations 10-12 produces
two waves which are called evanescent: they are stationary, rather than propagating in
the x direction, one growing and the other decaying exponentially with increase of x, the
e-folding length being 1

k
.

With an infinitely long sinusoidally driven spring, the relevant solution would of course
be the one that decayed exponentially away from the driven point (yr being 0 on one side,
and yl being 0 on the other side). In the present experiment, with the fixed end taken as
x ≡ 0 so that y = 0 at x = 0, we have the solution:

y = yosinωt(e
+kx − e−kx) (15)

As before, the amplitude y0 is determined by the driving motor at x = L where it enforces
a sine wave motion with amplitude yd: y = ydsinωt at x = L, so:

yo =
yd

e+kL − e−kL
(16)

Note that there are no resonances available here: y is necessarily a monotonic function of
x, so there are no nodes between the end points; the wave is a standing or stationary wave,
but one without the familiar node-and-loop pattern.
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The limiting case of ω → 0, approximated by taking one end of the suspended slinky and
holding it with a fixed displacement shows the exponential decay of the displacement along
the slinky. We have:

k =

√
ω2
o − ω2

co
→ ωo

co
(17)

In this case, if the pendulum restoring force is much weaker than the spring restoring
force, as is the case in our slinky, so that co

ωo
is very small compared to the apparatus dimen-

sions. For reasonable distances away from the fixed end kL ≥ kx� 1 so that y ≈ yoe
kxsinωt

and the displacement of the coils is exponential.

Range 3: ω = ωo
This is the limiting case between the previous two ranges, with k1,2 = 0
For our already stated boundary conditions of y = 0 at x = 0 and y = ydsinωt at x = L

we can obtain the solution:
y = yd

x

L
sinωt (18)

with the amplitude diminishing linearly from yd at the driven end to 0 at x = 0.

The Apparatus
The slinky is fixed at one end and has a high precision sinusoidal drive at the other. You

should inspect the drive to assure yourself that the motion is truly sinusoidal. The drive
motor speed is continuously variable and is adjusted from a control box. The drive has an
electronic timer associated with it which measures the time between successive oscillations.
The timer has an accuracy of ±0.001s. It should be noted that the slinky system has quite
a high Q value, which means that little energy gets lost from the slinky spring in each
oscillation. A result of this is that modes of motion that get started take a long time to
decay away and it takes a long time for new modes to start up. Thus in varying the frequency
(speed) of the drive it is important to make the changes slowly or at least to wait a long
time after a sudden change is made to observe the steady state result of the change.

You will note the three sets of combs on the apparatus. These may be raised or lowered
to change the effective string length and thus change ωo. A 3 mm diameter steel rod is
provided to facilitate the lowering or raising of the combs: the rod gets inserted in the hole
near the edge of the comb.

The Experiment
The following suggests a number of things you can do to check out the properties of the

slinky. Investigate the wave characteristics according to your interest.

1. Start a pulse off at one end and time it over the round trip to the other end and back.
This is done by giving one lateral shake to a coil near one end of the slinky. Note that
the pulse that returns is not as sharply defined as the one you send; this is to a lesser
part the result of dissipation (whose effects have not been discussed) but principally
is non-dissipative dispersion caused by the fact that c in equation (5) is not precisely
constant for the range of ω values of your pulse. Find an approximate value for c0 for
the suspended slinky.

2. Deduce ωo for the suspended slinky by direct measurement of the vertical length of the
strings, with filtering combs out of the way.

3. Drive the slinky at a variety of ω values in the propagating range (ω > ωo). Measure
the distance between adjacent nodes and determine the corresponding k. Plot ω2
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against k2 and deduce ω2
0 and c2o from a linear fit according to equation (1). After

each measurement, turn the driving motor off suddenly; note that, in general, the
oscillations persist in a haphazard fashion, back and forth and gradually dissipate.
They clearly not continue as simple oscillations (at a given point) at the original ω.
This haphazardness does not exist for normal modes as you will find below.

4. Find the family of resonant ω values within the range of values provided by your driving
motor. Note: do not destroy the suspension in the process! Are the frequencies integral
multiples of some fundamental angular frequency, or is the more general relation of
equation (10) required to describe them? For each resonant mode, turn off the motor
abruptly. Note that the mode remains in situ, decaying gradually and not haphazardly.

5. Drive the slinky at an ω � ωo. Does the amplitude fall off exponentially with distance
from the driven end? Or are both exponentials in equation (15) required to describe it?
Collect some data and perform a nonlinear fit, trying one exponential or a sum of two
exponentials as your model. Can you pick in advance an ω that will lead to kL � 1
and hence a simple exponential decay near the driven end? Try the extreme of ω → 0
by merely displacing and holding one end stationary and noting the displacements y
of the coils down the apparatus.

6. Having determined ωo before, drive the slinky at ω = ωo. Collect some data and
perform a linear fit to test how accurately the linear decay law of equation (18) is
obeyed. Discrepancies will indicate imperfections of suspension, or non-uniformities in
the slinky, or perhaps other dissipative effects. Can you distinguish between them?

7. When a filtering comb is lowered and meshed with the supporting strings, it effectively
shortens the string length ` and so raises the ωo of that portion of the slinky. Let
ω` be the ωo for the original long strings and ωs be the ωo for the short strings, with
ω`<ωs. There are ω values that satisfy ω`<ω<ωs , such that corresponding waves
may propagate through the long-string ` section of the slinky but are prevented from
propagating through the short s section. The s section acts as a filter for the removal
of propagating waves. As you will see in the next exercise, wave energy can actually
tunnel through the s section, particularly if ksLs is not � 1 where ks and Ls are the
wave number and length of the s sections.

8. Try lowering combs number 2 and number 3, away from the driven end. Now you can
establish a resonance belonging essentially to section number 1, nearest the drive; since
sections number 2 and number 3 will not support propagation, they behave somewhat
as if they moved the fixed point x = 0 toward the driven end (in the sense that they
produce only small amplitudes of oscillation), and the loopa are confined primarily to
section number 1.

9. Now lower combs number 1 (nearest to the driven end) and number 2, raising comb
number 3. Drive at the same frequency. Does section number 3 exhibit resonance?
Can the energy from the driving motor indeed tunnel through sections number 1 and
number 2, to establish a resonant response in section number 3? Does section number
3 exhibit larger amplitudes than sections number 1 and number 2, despite being farther
from the driven end?

10. With comb number 1 raised and with section number 1 resonating, the combs in the
other two sections are lowered. Determine the resonance wave period. Turn off the
driving motor abruptly and simultaneously raise the comb in section number 3 so that
section 3 could also resonate. Resonance happens only if section 3 receives energy at

5



the oscillation frequency of the other section. Watch (in fascination) as the energy
tunnels through the intervening section number 2, and then tunnels back again, in a
fashion reminiscent of loosely coupled pendula, though now more dissipative. Section
number 2 provides the coupling, and the fact that it is a non-propagating region is
what makes the coupling loose. Can you determine the beat period of tunnelling?

11. The section before suggests that the apparently resonant mode with which you started
has become a superposition of two resonant modes, beating together with the lifting of
the comb number 3. Find the resonant modes, at frequencies slightly higher and lower
than the original frequency. Note that one is a symmetric mode y(x) = y(−x) when x
is measured from the centre, and the other is an antisymmetric mode y(x) = −y(−x)
when x is measured from the centre. Compare the difference between the resonance
frequencies and the beat frequency of tunnelling.

For those who did not intend to do all three weights of this experiment, we would suggest
that parts 1 and 2 are fast and useful, and parts 5, 7, 10, 11 are probably most interesting.
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