
Thermal Motion

1 Introduction and Historical Facts

The most famous description of Brownian Motion was given by the botanist Robert Brown
in 1828.His first speciments were of ’live’ pollen grains (he believed that pollen grains were
alive). To his credit, he did show that inorganic as well as organic objects produced the
same movements, and more importantly, demonstrated that the phenomenon was not due
to convective currents or other experimental artifacts. Nevertheless, Brown still clung to
the notion that the cause of the motion was some unknown active molecules internal to the
particles and not in the surrounding fluid [1].
In 1905, Einstein, then an industrious patent clerk, produced a series of work on the ele-
mentary theory of Brownian motion (and also found time to hypothesize the photon and
invent the theory of special relativity). Remarkably, he completed the first paper without
ever having seen Brownian motion himself. The paper begins [2]:

.. ”according to the molecular-kinetic theory of heat, bodies of microscopically visible size
suspended in a liquid will perform movements of such magnitude that they can be easily ob-
served in a microscope, on account of the molecular motions of heat. It is possible that the
movements to be discussed here are identical with the so-called Brownian molecular motion;
however, the information available to me regarding the latter is so lacking in precision, that
I can form no judgment in the matter.”

Einstein's intuition was indeed the correct physical picture. The particle is randomly
bombarded by the molecules of the surrounding fluid and these random forces impart ve-
locity changes to the particle. The particle’s velocity immediately gets damped by viscous
forces and so ultimately these impulses generate a change in the position, causing the particle
to undergo a random walk. Einstein’s theory of Brownian motion requires some knowledge
of the diffusion equation, which we have yet to discuss. So we present the relevant results for
this lab without further comment, but give alternate derivations of the same results in the
next section. Einstein showed theoretically that the mean squared distance of a Brownian
particle increases linearly with time, < x2 >= 2Dt, where D is the diffusion coefficient, and
that the diffusion coefficient of the particle is equal to the ratio of the thermal energy and
Stokes drag, D = kT

γ
, where k is Boltzmann’s constant.

Jean Perrin experimentally verified Einstein’s results in 1908. Perrin projected magnified
images of Brownian particles using a camera lucida, and traced their complicated trajectories
over time. The figure below shows three such traces of 0.53µm mastic (tree resin) particles
where the position was marked every 30 seconds (1 division = 50µm ). By averaging a
large number of positions, Perrin showed that the mean squared distance of these particles
increased linearly with time [3].
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Figure 1: Successive displacements of 0.53µm mastic particles (Perrin [3])

Another striking verification was obtained by shifting each displacement in space so to
give them all the same origin as shown below in Figure 2. This distribution should be
Gaussian with a spread that depends on the diffusion coefficient, which Perrin verified quite
readily. After much sweat and labour, Perrin came within about 20% of the currently
accepted value of Avogadro’s number. Can we do better?

Figure 2: Steps with common origins for 0.37µm particles, 30 s time interval, < r2 >≈ 64µm2

2 Theory

As you have learned, the motion of an object due to thermal energy is known as Brownian
motion. One of the characteristics of this motion is that the mean displacement of the par-
ticle is zero < x >= 0, while the mean squared displacement increases linearly with time
< x2 >= 2Dt, where D is the diffusion coefficient.

1-D random walk
One way to see this relationship is through a simple random walk model. Picture an ensemble
of particles stepping randomly left and right in 1−dimension. Every τ seconds, each particle
steps a distance δ in either direction with equal probability. The position of the i−th particle
after n steps is:

xi(n) = xi(n− 1)± δ (1)

If we assume we have N particles, the average position of the ensemble of particles is:

< x(n) >=
1

N

N∑
i=1

xi(n− 1)± δ =< x(n− 1) > (2)
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Note that the ± term averages to zero. The mean position from step to step is constant.
The average mean squared position is given by:

< x2(n) >=
1

N

N∑
i=1

[x2i (n− 1)± 2δx2i (n− 1) + δ2] =< x2(n− 1) > +δ2 (3)

The ± term in the brackets averages to zero. Since < x2(1) >= δ2 ,< x2(2) >= 2δ2,
< x2(3) >= 3δ2, etc., we have < x2(n) >= nδ2. Since t = nτ , we have:

< x2(t) >=
δ2

τ
t = 2Dt (4)

Newton’s equations with external thermal force
Another way to derive this relation is to add an external thermal force to the equation of
motion:

m
d2x

dt2
= −γ dx

dt
+X (5)

In equation (5), X is the thermal force, positive or negative. We assume that the viscous
drag is Stokes drag γ = 6πηr, where η is viscosity of water and r is radius of the sphere.
Note that we are looking for the mean square distance the particle travels in some time
interval t. Multiplying equation (5) by x, we obtain:

mx
d2x

dt2
= −γxdx

dt
+ xX (6)

Using:

mx
d2x

dt2
=
m

2

d2x2

dt2
−m

(
dx

dt

)2

(7)

And noting that: xdx
dt

= 1
2
d(x2)
dt

, we obtain:

m

2

d2x2

dt2
−m

(
dx

dt

)2

= −γ
2

d(x2)

dt
+ xX (8)

Take the time average of both terms. The term < xX > averages to zero.
Setting z = d(x2)/dt and using equipartition of energy, we obtain:

m

2

dz

dt
+
γ

2
z = kT (9)

The solution to equation (9) is:

z =
2kT

γ
+ Ce

−γ
m
t (10)

The time constant of the exponential is small: therefore we ignore this term. We obtain:

d(x)2

dt
=

2kT

γ
(11)

Equation (11) can be re-written as:

< x2 >=
2kT

γ
t (12)

Note that D = kT/γ is Einstein’s relation, therefore equation (12) becomes < x2 >= 2Dt.
The case above is for one dimension, but since the movement along each dimension is inde-
pendent, the mean squared distance in three dimensions would be simply:

< r2 >=< x2 > + < y2 > + < z2 >= 6Dt (13)
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We would be verifying that equation (13) does in fact hold for Brownian motion, by mea-
suring the motion of small polysryrene beads diffusing in water. Plotting the mean squared
distance as a function of time should give us a linear relation, with a slope proportional to
the diffusion coefficient D.
Having D and assuming that the viscous drag is Stokes drag γ = 6πηr, where η is viscosity
of water and r is radius of the sphere, we will be able to calculate Boltzmann’s constant k
using Einstein’s relation.

Distribution of steps in a constant time interval
An alternate method to calculate Boltzmann’s constant is to measure the distance the bead
travels over a specific time interval. The probability distribution for the distance traveled in
time is Gaussian:

P (x, t) =
1

(4πDt)1/2
e−

x2

4Dt (14)

Where D is the diffusion coefficient. Fitting a histogram of the distances that the beads
travel during a given time interval will allow you to calculate D and k. Note that you have
in mind the bin width dx when fitting the discrete probablity distribution to the continuous
distribution P (x).

Avogadro’s number
The connection between the microscopic statistical model of molecular motion and the
macroscopic gas laws is done by the Avogardro number NA.
The gas laws come from empirical results, while the derivation of the gas laws from the
kinetic theory of gases is a theoretical result. The ideal gas law can be written as pV = nRT
where p is the pressure, V is the volume , n is the number of moles, R is the gas constant
and T is the temperature. Alternatively, pV = kNT where N is number of molecules, k is
Boltzmann’s constant and NA is Avogadro’s number NA = R/k.

3 Experimental Procedure

In this experiment, you will measure the thermal motion of micron-sized spheres in water.
The diffusion constant of the beads can be calculated by tracking position over time using
video microscopy.
Boltzmann’s constant k can be determined from Einstein’s relation D = kT/γ, assuming
Stokes drag: γ = 6πηr.
You will have two sessions to complete everything below. On the first day, you will track
single particles undergoing Brownian motion and start the data analysis. On the second day,
you will finish by writing the Python program to help with data analysis.

Exercise 1
Setting up the microscope
1. Switch on the microscope (bottom left switch) and turn up the illumination intensity
(botton right dial).
2. Turn the phase ring to (Ph1)

Focus on a piece of printed paper by turning the large focusing knob at the left bottom
side until you visualize the shapes of ink sprayed on paper to form letters.
Place an empty slide on the microscope stage and get familiar with moving the slide in 2
dimensions.
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CAUTION: excessive pressure from the objective can break the slide and damage the lens.
Do not lower the objective too quickly. When approaching the focusing limit, use the inner
part of the large knob for a finer adjustment

Preparing the sample
1. On a microscope slide, delimit a long (3-4 cm) rectangular space of about 1.2 cm width
using two layers of double sticky tape on either side. Press down the tape to avoid creases
and air bubbles, Seal off a space of about 2 cm length with a dot of grease at either end, to
prevent the leak of the beads suspension.
2. Pipette out 50 µl of the diluted bead solution and dispense it into the sealed slide space.
Gently place a cover glass over the space.

Setting the microscope for fluorescence illumination
1. Switch on the fluorescence illumination (X-Cite box).
2. Rotate the GFP fluorescence cube into place with the dial on the upper right side of the
scope. The fluorescence cube should be in Position 2 indicated on the dial (alligned with the
mark on top of the filter housing).
3. Make sure that the fluorescence shutter is set to open(O) (front lever just below the
eyepieces). You should be able to see the blue excitation light coming from the objective.
4. Carefully place the prepared slide on to the microscope stage so that grease does not
touch the objective. Leave the sample still for a couple of minutes to ensure equilibrium of
particles against flow, evetually created by moving the slide around.
5. Focus the image using phase microscopy (Ph2) with the 40× objective. Use the focusing
knob so that you are approximately imaging the center of the preparation depth. You should
see bright, star-like points on a darker green background.
6. Note the difference in motion between the large and small particles.

Data acquisition
1. Run the Microscope Camera Controller (LabView application) and switch to camera
imaging (lever in/out on the right-top part of the microscope). The acquisition software
allows you to acquire a single image, multiple images or AVI movie. Get familar with cam-
era adjustments: Gain Value and Brightness Value. The are found under Acquire/Adjust
Image tab. Set up the ajustment values that provide the best contrast between beads and
the background.
2. Your goal is to capture images with a few energized beads in the field. Too many beads
will make the analysis difficult because the paths of the beads will interfere over time. Too
few beads will make it difficult to find good candidates for tracking. If necessary, prepare a
new slide.
3. Search for beads located in nearly the same focal plane and spaced not too close to each
other. If the beads being tracked get dimmer, you can refocus the microscope while the
images are being captured. Set up the Microscope Camera Controller on Multiple Image
Capture. Select Number of Images: 120 frames and Images per Second: 2 frames. Save the
data set as a folder on your memory stick. Each folder will consist of an image sequence.
Make a new folder every time you take a new recording.
4. Take at least 10 data sets with different beads. Try to stay on the same focal plane. If
the beads seem to be less energetic (motions are not swift anymore) or if it becomes difficult
to find any moving bead in the field of view, prepare a fresh slide.

Image analysis
In Image Object Tracker, click on Click here to select Folder and open the first image. Click

5



in the middle of the bead you want to track and the data will be saved as a text file.

Exercise 2
Data analysis with Python: Mean Squared Distance vs. Time
Some constants:
Bead diameter: 1.9± 0.1µm
Viscosity: 1.00± 0.05 centipoise (poise= g/cms) at 20oC but decreases 2% with each degree
increase in temperature.
Temperature: 296.5± 0.5K
Distribution of steps in a constant time interval The probability distribution for the
displacement of a particle in 2D (or 3D) is also a Gaussian, but now a 2D Gaussian,

p(x, y; t) =
1

4πDt
e−

x2+y2

4Dt . (15)

This differs from Equation (14) in the scaling factor, and that the exponent is now x2 + y2.
The analysis is complicated by the fact that we now have two independent variables:

the distribution is a surface, not a curve. We can convert this distribution into a curve
by observing that the direction doesn’t matter, only the distance. Thus, we substitute
r2 = x2 + y2.

There is one more important step to this variable substitution, because probabilities use
integration. For example,

P (x < a, y < b; t) =
∫ b

0

∫ a

0

1

4πDt
e−

x2+y2

4Dt dxdy (16)

Changing variables of integration requires more care. For polar coordinates, dxdy → rdrdθ.
Now, we can calculate the probability that a particle has moved up to some distance R,

P (r < R; t) =
∫ 2π

0

∫ R

0

1

4πDt
re−

r2

4Dtdrdθ =
∫ R

0

r

2Dt
e−

r2

4Dtdrdθ (17)

The probability density function for the step size in a 2D diffusion process is therefore,

p(r; t) =
r

2Dt
e−

r2

4Dt (18)

This is a Rayleigh distribution. The same derivation in 3 dimensions provides the Maxwell-
Boltzmann equation. In other words, if a position (or momentum) follows a Gaussian dis-
tribution, its magnitude follows the Maxwell-Boltzmann distribution.

Some assumptions of least-squares (curve_fit()) are violated when data is put into a
histogram. Notably, changing the bin size has a significant effect on the calculation. Instead,
when fitting a pdf, one should use the maximum likelihood to determine parameters. For the
Rayleigh distribution, the maximum-likelihood estimate gives the formula,

(2Dt)est =
1

2N

N∑
i=1

r2i . (19)

Probability distribution of step lengths

From your bead position data, calculate the distance between each time point, plot the data
histogram, using the hist module from SciPy and then fit the probability density function
in Equation to the histogram. From the fit, you can determine D.

1. Calculate the distance travelled (the step size) between each time point.
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2. Repeat for all of your data sets.

3. Compile all the step size data into a single 1D array.

4. Plot the step size data in a histogram with an appropriate number of bins.

5. Fit Equation (18) to the data using the curve_fit() function from SciPy. Refer back
to the theoretical discussion; calculate k.

6. Use the maximum likelihood estimate to calculate k.

7. Plot the Rayleigh distribution using each estimate on the same axes as the histogram.

8. Calculate the percent difference from the accepted value of k = 1.38× 10−23J/K.

The bead tracking program outputs position (x, y) and time in an array format. The
distance are in pixel. Convert values to micron, using 0.1155µm/pixel. The uncertainty in
position is 10−1µm. The uncertainty in time is 0.03s

Figure 3: Sample plot: Mean-squared distance vs. time

Figure 4: Sample plot: Probability distribution of step lengths
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Revised by Ruxandra Serbanescu in 2017. Addendum on 2D motion was written by John
Ladan. Previous version: R.M. Serbanescu, W. Ryu 2008
The LabView Microscope Camera Controller and also the Image Object Tracker were written
by Larry Avramidis
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