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Introduction 
Experimental errors are inevitable. In absolutely every scientific measurement there is a 
degree of uncertainty we usually cannot eliminate. Understanding errors and their 
implications is the only key to correctly estimate and minimize them.  
 
In your first year of university physics you must have read a document on Error Analysis 
in Experimental Physical Sciences and eventually done all the related exercises and 
answered all the questions in the document. The document is located at: 
http://www.upscale.utoronto.ca/PVB/Harrison/ErrorAnalysis/index.html 
We strongly advised you to review it, including all the questions and exercises. We do 
this again! 
 
1. Terms and definitions 
The experimental error can be defined as: “difference between the observed value and the 
true value” (Merriam-Webster Dictionary). Uncertainties (errors) in experimental science 
can be separated into two categories: random and systematic.  
Random errors fluctuate from one measurement to another. They may be due to: poor 
instrument sensitivity, random noise, random external disturbances, and statistical 
fluctuations (due to data sampling or counting).  
Systematic errors usually shift measurements in a systematic way. They can be built into 
instruments. Systematic errors can be at least minimized by instrument calibration and 
appropriate use of equipment. Extraneous effects can also alter experimental results.  
The terms accuracy and precision are often misused. Experimental precision means the 
degree of exactness of the experiment or how well the result has been obtained. Precision 
does not make reference to the true value; it is just a quality attribute. Accuracy refers to 
correctness and means how close the result is to the true value. 
Accuracy depends on how well the systematic errors are compensated. 
Precision depends on how well random errors are reduced. 
Accuracy and precision must be taken into account simultaneously. All measurements are 
subject to both uncertainties. 
 
2. One variable: the simple average and the standard deviation 
Assume we want to measure a quantity x. We identified and reduced all systematic 
errors; we are left with only random uncertainties. We take N measurements of x. We 
know (from First Year Physics) that the best estimate for our measurements would be the 
average (mean) value: 
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    (1) 
 
The N values have been measured in the same conditions, by using the same equipment. 
However, they differ from each other and from the mean value because of the random 
uncertainties. In order to quantify these uncertainties, we define the deviation or residual 
of measurement i, from the mean value: 
          (2)   
 
Very small residuals mean precise measurements. This suggests that residuals can be 
used to assess the reliability of measurements. One way of doing this assessment would 
be taking the average of all deviations. However, some deviations are positive and some 
are negative, so that the average would be zero.  
Another procedure we may try is to take the average of the squares of all deviations, then 
to take the square root of the result. This ‘root-mean-square’ or ‘RMS’ approach has the 
advantage of yielding a final result with the same units as the measured values. The final 
number resulting from the RMS of deviations is called the standard deviation of 
measurements x1, x2, ......xN: 
 
   
     (3) 
 
A better definition of the standard deviation would be: 
  
       (3’) 
 
 
The difference between (3’) and (3) is very small at large N values. At low N, expression 
from (3’) calculates a slightly larger standard deviation than (3), but (3’) is the only way 
of dealing with a very low number of measurements. 
Standard deviation is the uncertainty to be used with any value from the measurement set 
x1, x2, ......xN. To express the uncertainty in the mean value x , we define the standard 
deviation of the mean or the standard error: 
 
      (4) 
 
3. Distributions of values 
Repeated measurements show a clear distribution of values around the mean. In order to 
manipulate and display the values, we have to know the properties of mathematical 
functions called probability distributions. 
Three such distribution functions are important in data analysis:  

- Gauss (normal) distribution  
- Binomial distribution 
- Poisson distribution 

We shall cover in detail the Gaussian or normal error distribution since it is commonly 
used in analyzing experimental data. We will also discuss the Poisson distribution later. 
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In experiments characterized by N measurements of the same quantity, we can display 
data in the form of a histogram which has on the vertical the fraction Fi of the N 
measurements that gave the result xi (where i = 1, 2, 3, ....N) and on the horizontal the 
measured values x1, x2, .....xN.  
As the number of measurements increases, the histogram changes into a quasi-continuous 
curve, close to a bell shape. The continuous curve is a graph of the limiting distribution 
and is described by a mathematical function called the normal distribution or Gauss 
function: 
 
     (5) 
σ is a fixed parameter called width (we defined it before as standard deviation) . 
Function from (5) is symmetrical about x = 0, is 1 at x = 0 and decreases to zero as  
x  . 
A Gauss function centered on a point X  0 would be expressed as: 
 
     (5’) 
 
The probability density P(x) is a very important quantity which defines the Gauss 
function. P(x)dx  means the fraction of measurements that fall between x and x+dx or the 

probability that a measurement will fall between x and x+dx. 




 1)( dxxP  is the 

normalization condition (total probability must be 1). 
The Gauss function can be written and interpreted as a probability density if we arrange it 
to satisfy the normalization condition: 
 

     (6) 
 

and 




  21)( NdxxP      (6’) 

Formula (6’) makes use of the fact that: 
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, which is proved in calculus 

courses. The normalization factor N is calculated and the final form of the Gauss or 
normal distribution is expressed as: 

    
       (7) 
 

 
X is the center of the distribution; σ is the width. 
Calculation of the mean value follows as: 
 

         (8) 
 
 
Q1. Verify (8). 
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An interesting application would be to calculate σ and confirm its meaning as standard 
deviation.  
Standard deviation defined in (3) and (4), is the average of the squared 
deviations 2)( xx  : 
 
     (9) 
 
In evaluating the integral, substitute x by X and integrate by parts, obtaining: 
 
         (10) 
 
(10) proves that “the width” parameter of Gauss function (σ) and the standard deviation 

x are the same. 

 
4. One variable: the problem of the weighted average 
Sometimes, we take several independent measurements of the same physical quantity. In 
order to express the result of our experimental work, we need to combine them into a best 
estimate of that quantity. 
Suppose we have measured quantity x in two separate runs: 

         
 
      (11) 
 
 

where: xA,B are the mean values from measurements A or B, σA,B are the corresponding 
standard errors. 
Assuming that the two measurements are consistent, defined by the following 
statement: BABA xx  , . We need to calculate the best estimate (true value) of 

variable x. We shall name the unknown true value of x by X. 
Assuming that both measurements are governed by the Gauss distribution, the probability 
of obtaining the value xA is approximated by: 

 
    (12a) 
 
 

Correspondingly,  the probability of obtaining the value xB is:                                                                           
 
 
               (12b) 
 
 

The probability of finding value A and value B is the product of probabilities (12a) and 
(12b): 

                                      (13) 
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The exponent, called Chi-squared (χ2) is expressed as: 
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The principle of likelihood states that our best estimate for the unknown true value X is 
that value for which the actual data xA and xB are most likely to occur. 
According to this, when reaching the best estimated value, the overall probability (13) 
has to be a maximum, or the value of chi-squared has to be a minimum. This method of 
finding the best estimate is often called the method of least squares. 
To find X, we look for the minimum of χ2 and we obtain: 
 

       
              (15)     This is the best estimate for X                                        
 
 

We define the weights of xA and xB to be: 
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We can now introduce the weighted averages of xA and xB as: 
 
                         (16)   This is also the best estimate for X  
 
 

If the uncertainties of xA and xB are identical (σA = σB), (16) reduces to the simple 
average of xA and xB. 
 
The best estimate (16) would be closer to xA if σA < σB, which means measurement A 
would be more precise than measurement B. 
 
We can generalize for any number of measurements of a quantity x: 

 
                                     (17) 
 
 

Where: i = 1, 2, ……..,N 
 
The weighted average is a function of the measured values xi. Therefore, the uncertainty 
in the weighted average can be calculated using the error propagation expressions (see 
the document on Error Analysis in Experimental Physical Sciences)  
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5. Investigating the mathematical relationship between two variables 
In the vast majority of experiments you will perform this year, you’ll be asked to 
determine one physical quantity y (the dependent variable) as a function of some other 
quantity x (the independent variable). 
To accomplish this goal, you’ll take a series of N measurements of the pair (xi,yi), where  
i = 1, 2,….., N. You will then find a function y = y(x) that describes the relation between 
the two measured quantities. 
 
5.1. The linear regression method 
If the two variables are clearly related by a linear relationship such as: y(x) = a + bx, we 
have to consider the linear regression method to determine the most probable values of 
parameters a and b. Linear regression is a method of least squares.  
For any value xi, if we knew coefficients a and b we could calculate the true value of the 
corresponding yi   
                                     (18) 
 
Measured yi values usually obey Gauss’ distribution. The probability of obtaining yi is 
given by: 
    
 
                                                                            (19)  
      
where σy is the width of the y-values distribution.   
Probability of obtaining the complete set of measurements: y1, y2, …..,yN is given by the 
product: 

 
 
  (20) 
 

Exponent is called chi-squared: 
 
 
                                                       (21) 
 
The principle of maximum likelihood requires a maximum probability or a minimum chi-
squared. Setting χ2 to minimum means: 

      
 
    (22a) 
  

 
            (22b) 
 

Equations (22a,b) can be solved for a and b: 
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              (23b)   
 
 
 
 Q3. Prove (23a,b)  
 
Equations 23a and 23b are best estimates for coefficients a and b, based on N 
measurements  (xi, yi) where i = 1, 2, …,N. The straight line y = a + bx is called least-
squares fit to the data or the line of regression of y on x. 
 
5.2. Uncertainties in measured values and calculated parameters 
Measurements of yi are normally distributed about the true value itruei bxay , . 

Distribution is characterized by the width parameter σy. 
Therefore, the deviations )()( , iitrueii bxayyy  will also be normally distributed, 

but about zero. The distribution of deviations will have the same width σy as the 

measurements distribution. This suggests that 
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The above result is not complete unless we determine the uncertainties in calculated 
coefficients a and b. To do this, we use the error propagation equation for parameters a 
and b, assuming )()(),( iiii xfyandybbyaa  : 

 
      (25) 
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 Q4. Prove (26) 
 
When analyzing experimental data, we have to take into account a parameter called 
number of degrees of freedom, which is the number of data points (N) minus the number 
of parameters (m), calculated from the fit. This suggests that instead of (24), we can use a 
better estimate of σy for a linear fit: 
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5.3. The least squares fitting method applied to other functions 
For problems in which the fitting function is linear in the parameters, the methods of 
least squares can be extended to any number of terms such as a power series polynomial: 
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The solution to this problem could be very tedious: ‘m’ coupled linear equations for the 
‘m’ parameters have to be solved. a1, a2, ....., am are written in the form of m × m 
determinants. 
 
The least squares method can work well with simple exponential functions, which are 
very important in physics: 
        (29) 
Examples: 
- Intensity I of the radiation decays after traveling a distance x through a medium (shield) 
and is given by: 
        

     (30a)     
where I0 is the original intensity and μ characterizes the attenuation by the medium. 
- Charge on a capacitor in series with a resistor decays exponentially: 

             
     (30b) 

 
where Q0 is the original charge and RC where R is resistance and C is capacitance. 
To apply linearization to (29), we simply take the natural logarithm of both sides: 
 
 
We can see that even if y is not linear in x, lny is.  
With: z =lny, a = lnA and b = B, we can write: 
   z = a + bx 
 
5.4. Non-linear fitting 
Analytic methods of least-squares fitting used before for linear or lineralized functions 
cannot be applied to non-linear fitting problems. The probability function (Eq. 20) can be 
generalized to m parameters by the following approximation: 
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As before, we have to maximize the likelihood with respect to the parameters a1, a2, .., am, 
or minimize the exponent χ2, also called goodness-of-fit parameter: 
                 
      (32) 
 
 
 

xeII  0

BxAey 


t

eQQ


 0

BxAy  lnln




















 
 

2

21

)(

2

1
exp),....,,(

i

ii
m

xyy
aaaP



2

2 )( 






 


i

ii xyy






 9

 
xi and yi are the measured variables, σi are the uncertainties in yi and y(xi) are values of 
the calculated fit function at xi which depends on the parameters a1, a2, .., am. The method 
of least squares states that the optimum values of the parameters a1, a2, .., am are 
calculated by minimizing χ2 with respect to each parameter. This yields m coupled 
equations in the m parameters. 
The coupled equations may not be linear in all the parameters. In this case, we must treat 
χ2 as a continuous function of the m parameters and search the m-dimensional space for 
the minimum of χ2. An alternative method would be to find the roots of the m nonlinear, 
coupled equations by using approximation methods. Both approaches are difficult. 
Several (very useful) computer routines will be introduced in the computational part of 
this course. 
 
5.5. Covariance and Correlation: how two variables are related through their errors 
Covariance is part of the ‘leastsq’ module output from scipy. Covariance is a parameter 
σxy which, if not zero, assesses that the errors in x and y are correlated. 
The coefficient of linear correlation is a measure of the goodness of the fit.  
 
Assume we measured xi and yi, N times. We calculated the mean values yx, and the 
corresponding standard deviations σx and σy. We found out that uncertainties are small 
and deviations from the mean values are also small for both x and y. 
Assume our experiment aims at finding a value for a function f(x,y) which takes values 
for different pairs xi, yi: Niyxff iii ,....,2,1),(   

Given small deviations from the mean, we can expand f(x,y) around yandx : 
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The average of all function values can be calculated as any other one-variable mean 
value: 
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become zero upon summation over all i values and we are left with only: 
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The mean of function f is the value calculated at yyandxx  . 
It is not unreasonable to calculate the variance associated with the N values of function f: 
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Substituting (33) and (34) we obtain: 
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The sums in the first and second terms from (36) define the standard deviations σx and σy. 
σxy is called sample covariance of x and y:  
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Covariance is a quantity different from zero only if variables x and y are dependent. If x 
and y are independent, (36) reduces to the usual relation for error propagation. When σxy 
is not zero, the errors in x and y are correlated. σxy can take positive or negative values 
but it can be proved that: 

yxxy    (Schwarz’s inequality)    (38) 

 
The linear correlation coefficient r measures the extent to which the set (xi, yi) (i = 
1,2,...N) supports a linear relation between x and y: 
         
       (39) 
 
Values of r near +1 or -1 indicate strong correlation; values close to zero indicate very 
little or zero correlation.  
 
5.6. The chi-squared test for goodness of fit 
Chi-squared have been used before in relation to how well the observed values fit a 
certain function. Assume we measured N pairs (xi, yi) (i = 1,2,...N) and xi had negligible 
uncertainty. f(xi) is a linear function in m parameters defined as the expected value of yi.  
To test how well y fits the function f(x) we calculate: 
 
         (40) 
 
 
To test the agreement between a dependent variable and a function, we have to have a 
closer look at the constraints imposed by the calculation itself.  
The variance of the fit is defined as: 
 
 

          (41) 
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In (41), the factor ν = N-m is the number of degrees of freedom for fitting N data points 
with m parameters. 
The relationship between the variance of the fit (41) and chi-squared (40) is given by: 
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s2 is characteristic for both the distribution of data and the goodness of the fit. 
If the fitting function is a good approximation to experimental data, the estimated 

variance s2 should agree well with σ2 and the reduced chi-squared 



2
2  should be 

close to 1. 
A value of 2

 much larger than 1 or much less than 1 means an underestimation or 

overestimation of experimental uncertainties, respectively. 
 
Another valuable evaluation tool for goodness of the fit comes from the probability 
distribution of chi-squared values. The probability distribution function for 2 with ν 
degrees of freedom is presented in many textbooks on statistics or error analysis (see 
Bevington 11.1). Below, you may see this distribution for several values of the number of 
degrees of freedom ν. 

Let's say we did the same experiment 1000 
times, each time we calculated the chi-
squared value and plotted them all on a 
graph. The x-axis is the chi-squared value; 
the y-axis is the number of individual 
experiments that yielded that chi-square 
value 
If the results were perfect we should have 
obtained a chi-square value of zero because 
the observed and calculated values were 
identical. This never happens in real lab 
experiments. Most times the fit is very 

different from experimental values. This is represented by the long tail on the graph.  
The main properties of the chi-squared distribution are: 

- The distribution is constructed so that the total area under the curve is equal to 1.  
- The mean of the distribution is equal to the number of degrees of freedom. 

      -    As the degrees of freedom increase, the chi-square curve approaches a normal 
distribution.  

For a good fit the reduced chi-squared 



2
2  should be close to 1. 
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6. The Poisson distribution or distribution of rare events 
A typical example of a Poisson experiment is the statistical study of a radioactive decay: 
a radioactive source is placed in front of a counter (Geiger-Mueller tube) and random 
events are recorded. Every time ionizing radiation passes through the counter it produces 
ionization in the gas filling the tube and a negative charge is accumulated at its anode. 
The anode is connected through a resistor to the power supply and thus a negative voltage 
pulse appears at the anode and is counted as ‘event’. 
All Poisson experiments are characterized by the following properties: 

1) The experiment results in “success” or “failure” outcomes. Success is determined 
by the physical recording of a radioactive event; failure is obviously the non-
event. 

2) If we investigate the decay within a certain time or energy window, we can define 
the average number of successes (μ) that occur per window.  

3) It is clear that the probability of a success occurrence is proportional to the size of 
the window.  

4) By reducing the size of the window to something very, very small, the success 
probability will be close to zero. 

 
Letting μ be the mean number of successes that occur in a specified window and x be the 
actual number of successes in that window (x is also called a Poisson random variable), 
we can define the Poisson probability: 
 

 
      

 (43) 
 

This expression gives the probability distribution of the Poisson random variable x (for a 
complete derivation, see Bevington, Ch. 2, p.23-25). The Poisson distribution is discrete, 
defined only at integer values of the variable, in contrast with the continuous normal 
(Gaussian) distribution. 
 
The variance of a Poisson distribution is equal to the mean μ. The standard deviation is 

given by    which is the golden rule of assessing the uncertainty in a counting 

experiment: it is given by the root of the average number of counts per counting interval. 
 
For large values of μ, we don’t see “rare events” anymore and the probability sum: 
 
 
    (44) 
 
 
may be approximated by an integral of the Gaussian function (see Bevington p. 24-25). 
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Some exercises 
 

1) Assume you measured the period of a pendulum 12 times, under identical 
conditions and you have obtained the following data (in sec.): 

 1.31, 1.35, 1.34, 1.37, 1.41, 1.37, 1.32, 1.33, 1.35, 1.36, 1.35, 1.33 
 a) Find the mean and the standard deviation of the data set 
 b) Calculate the uncertainty in the mean value. 
 
2) Suppose we are interested in a quantity f(x, y, z) made up of three independent 

components that we measured as: x = 1.20 + 0.42, y = 2.71 + 0.01, z = 0.010 + 

0.001. The expression of f is given by: 
zx

yx
f




  . Express f + Δf . 

 
3) In a lab exercise, you measured the acceleration of a cart on a low-friction track 

slope by timing the passage of the cart through two photocells separated by a 
distance s. The cart has a length l, needs a time t1 to pass through the first 
photocell and a time t2 to pass through the second one. Given: l = 4.00 + 0.05 cm, 
s = 110.0 + 0.2 cm, t1 = 0.055 + 0.01 sec, t2 = 0.033 + 0.001 sec., calculate the 
acceleration and its uncertainty. 

 
4) Imagine that you received a “black box device” with one input and one output. 

Upon applying an input voltage V1, you measured an output V2. Data are 
presented in the following table: 

  
V1 (V) 20 23 23 22 

V2 (mV) 30 32 35 31 
  

a) Calculate the variances 2
x  and 2

y and the covariance xy . 

b) Calculate the coefficient of linear correlation r and discuss the output of your 
device. 

 
5) Given five data pairs: 
   x = 1   2   3   4   5 
   y = 4   6   3   0   2 
 do the following: 

a) Draw a scatter plot and the least-squares line that fits the points 
b) Calculate the correlation coefficient and decide if data pairs are strongly 

correlated or not 
  

6) Fiesta plates are known to be radioactive due to the presence of low amounts of 
uranium oxide in the glaze. In order to measure the activity of such a plate, a 
student counts 48 events in 5 minutes. The background was measured 
independently to be 16 counts in 2 minutes. Is there significant evidence that the 
plate is radioactive? 
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7) In doing a radioactive measurement of an air sample, a student knows that the 

expected number of counts per minute is 3. The enclosed table shows the number 
of decays (n) observed by the student in 100 separate intervals of 1 minute each: 

  
 

 
 

a) Assuming that the events are Poisson-distributed, calculate the probability that 
0, 1, 2,... events are measured (P3(n)). 

b) Plot the fraction of times the result n was found (fn) vs. n. On the same graph 
plot P3(n) vs. n. Does the expected distribution seem to fit the data? 

c) Calculate χ2 and examine the χ2 probability for the whole data set. Discuss the 
result. 

Times observed 4 16 28 31 15 8 3 2 1 0 
n 0 1 2 3 4 5 6 7 8 9 


