
Future Colliders

W. Trischuk January 23, 2019 January 18, 2024

Synchrotron Radiation

By Emma Alexander - [1], CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=116390459

A direct consequence of Maxwell's equations is that accelerated charged particles always emit electromagnetic radiation. Synchrotron radiation is the special case of charged particles moving at relativistic speed undergoing acceleration perpendicular to their direction of motion, typically in a magnetic field. In such a field, the force due to the field is always perpendicular to both the direction of motion and to the direction of field, as shown by the Lorentz force law.

The power carried by the radiation is found (in SI units) by the relativistic Larmor formula:^{[9][10]}

$$P_\gamma = rac{q^2}{6\piarepsilon_0 c^3}a^2\gamma^4 = rac{q^2c}{6\piarepsilon_0}rac{eta^4\gamma^4}{
ho^2},$$

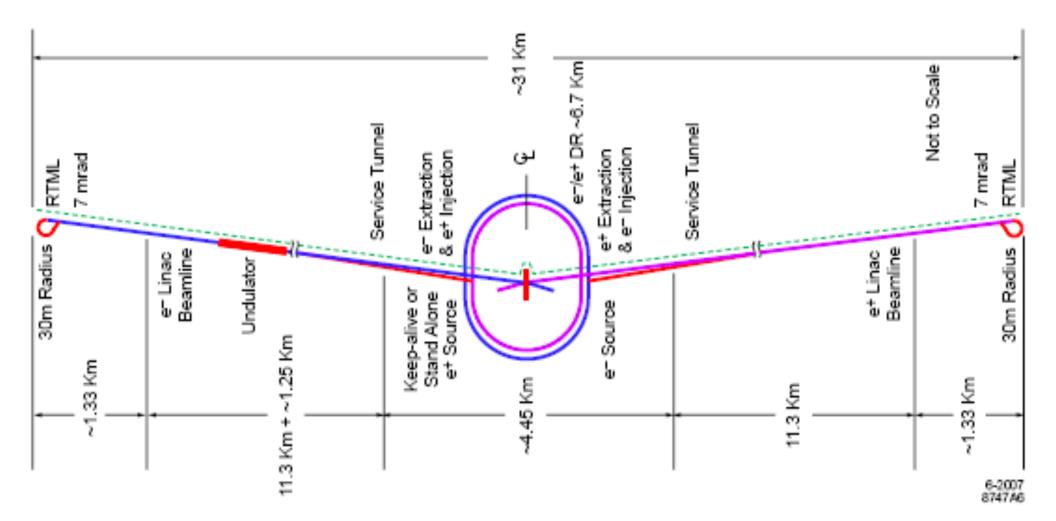
where

- ε₀ is the vacuum permittivity,
- q is the particle charge,
- a is the magnitude of the acceleration,
- c is the speed of light,
- γ is the Lorentz factor,
- $\beta = v/c$,
- ρ is the radius of curvature of the particle trajectory.

The force on the emitting electron is given by the Abraham-Lorentz-Dirac force.

Jackson E&M (Chapter 14)

Wikipedia

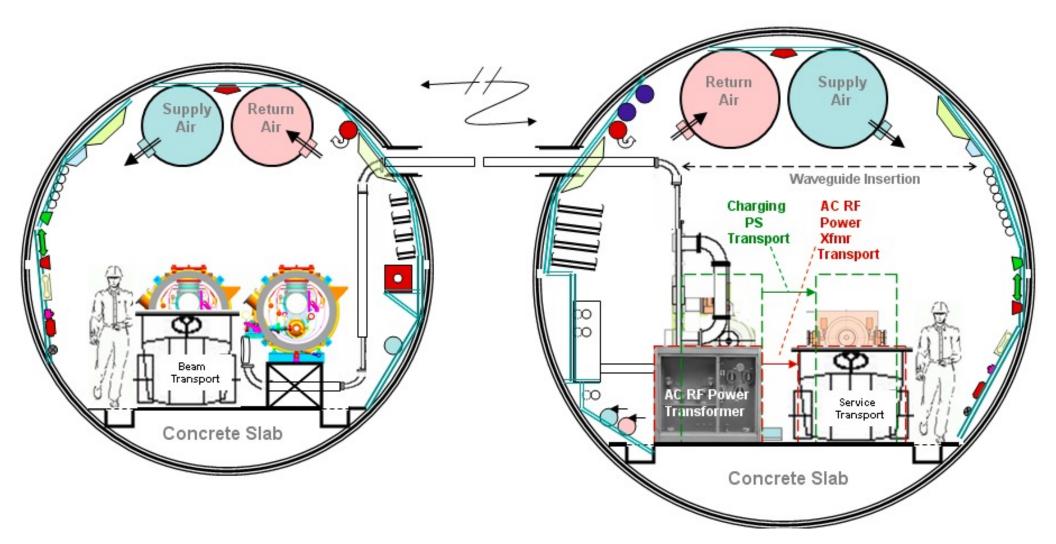

Lepton vs. Proton Colliders

- Colliding electrons
 - Puts all the beam energy in to the collision
 - Limited by energies you can reach
 - Circular electron colliders limited by synchrotron radiation
 - Linear colliders limited by only colliding each accelerated bunch once
- Colliding protons
 - Quarks/gluons on carry a fraction of beam energy
 - Synchrotron losses are much lower (go like γ^4)
 - Still non-negligible energy/power at LHC ends up in superC magnets
- Colliding muons
 - Might be best of both worlds
 - Point like projectiles, 200x higher mass (10⁹ less synchroton rad)
 - But muons only have a 2us lifetime...

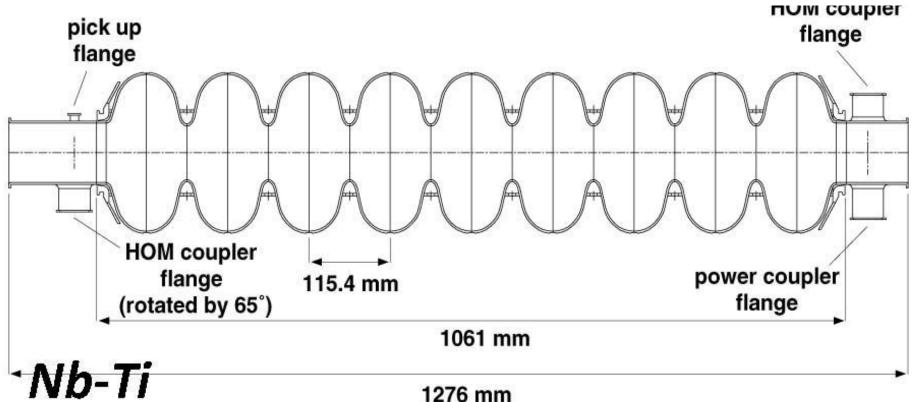
Summary of Future Colliders

- ILC/CLIC comparison (Zimmerman: CERN-ATS-2010-056)
 - Linear colliders don't have synchrotron radiation limits
 - But can only use each accelerated bunch "once".
- Circular colliders
 - Hadron machines (HE-LHC CDR: CERN-ACC-2018-0059)
 - Electron machines (Chinese Circular Collider)
- Muon collider
 - <u>https://cerncourier.com/a/sketching-out-a-muon-collider/</u>

ILC Layout

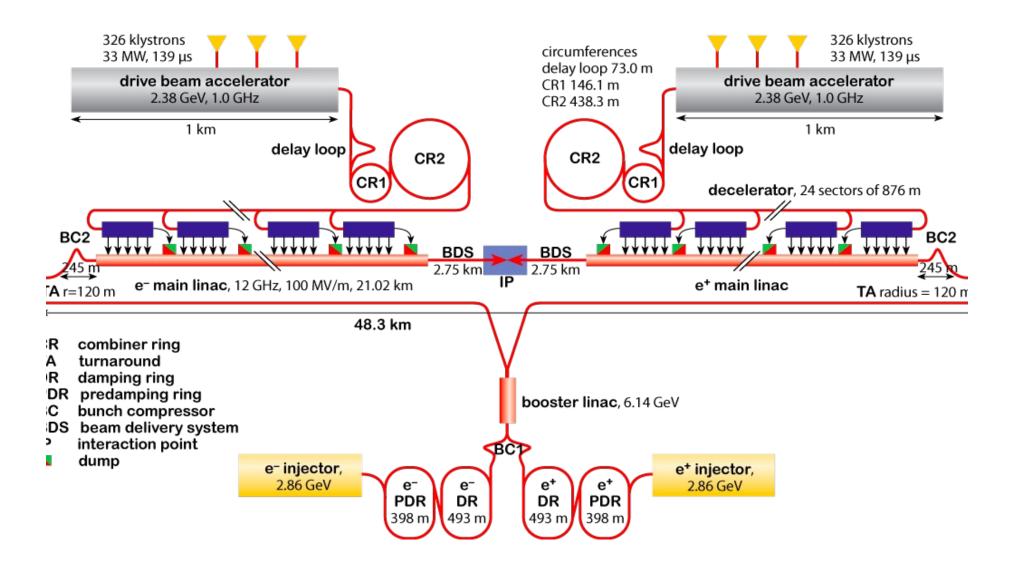

ILC/CLIC Comparsion

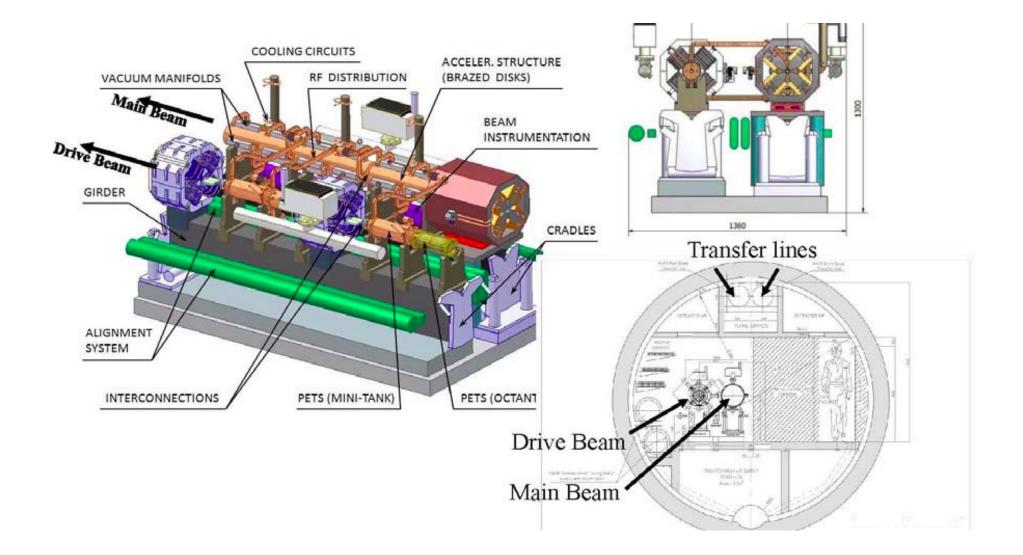
centre-of-mass energy	ILC 500 GeV	CLIC 500 GeV	CLIC 3 TeV
total (peak 1%) luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2(1.5)	2.3 (1.4)	5.9 (2.0)
repetition rate [Hz]	5	4	50
loaded accelerating gradient [MV/m]	32	80	100
main linac RF frequency [GHz]	1.3]	12
particles per bunch [10 ⁹]	20	6.8	3.7
bunch separation [ns]	370	0.5	
beam pulse duration [ns]	950,000	177	156
beam power / beam [MW]	10.8	4.9	14
horizontal/vertical IP beam size [nm]	639, 5.7	200, 2.3	40, 1.0
#hadronic events / crossing at IP	0.12	0.2	2.7
incoherent pairs at IP [10 ⁵]	1.0	1.7	3.0
crossing angle [mrad]	14	18.6	20
beam delivery system length / beam [km]	2.23	1.87	2.75
total site length [km]	31	13	48
total electrical power consumption [MW]	230	130	415

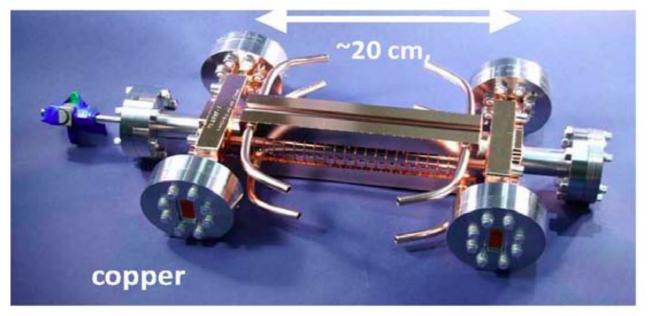

Table 14: CLIC and ILC parameters [61,65].

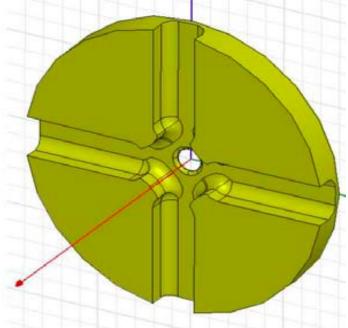
Parameters		units	ILC(RDR)	CLIC(3 TeV)
Injection / final linac energy	E _{Linac}	GeV	25 / 250	9/ 1500
Acceleration gradient	Ea	MV/m	31.5	100
Average beam current	l _b	μA	42	9
Peak RF power	P _{in peak}	MW/m	0.37	275
Average RF power	<p<sub>in></p<sub>	kW/m	2.9	3.7
Initial / final horizontal emittance	ε _x	μm	8.4 / 9.4	0.38/0.66
Initial / final vertical emittance	ε _y	nm	24/34	4/20
RF pulse width	Τ _p	μs	1565	0.24
Repetition rate	F _{rep}	Hz	5	50
Number of particles in a bunch	N	10 ⁹	20	3.7
Number of bunches / train	N _b		2625	312
Bunch spacing	Т _ь	ns	360	0.5
Bunch spacing per RF cycle	T_{b}/T_{RF}		468	6

ILC tunnels

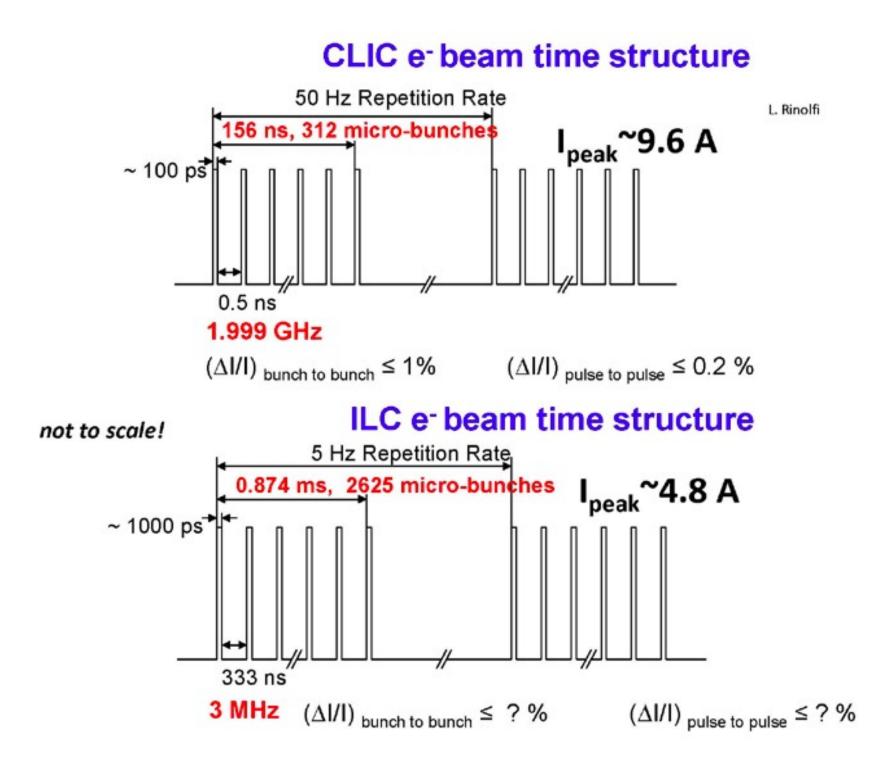

ILC Cavity

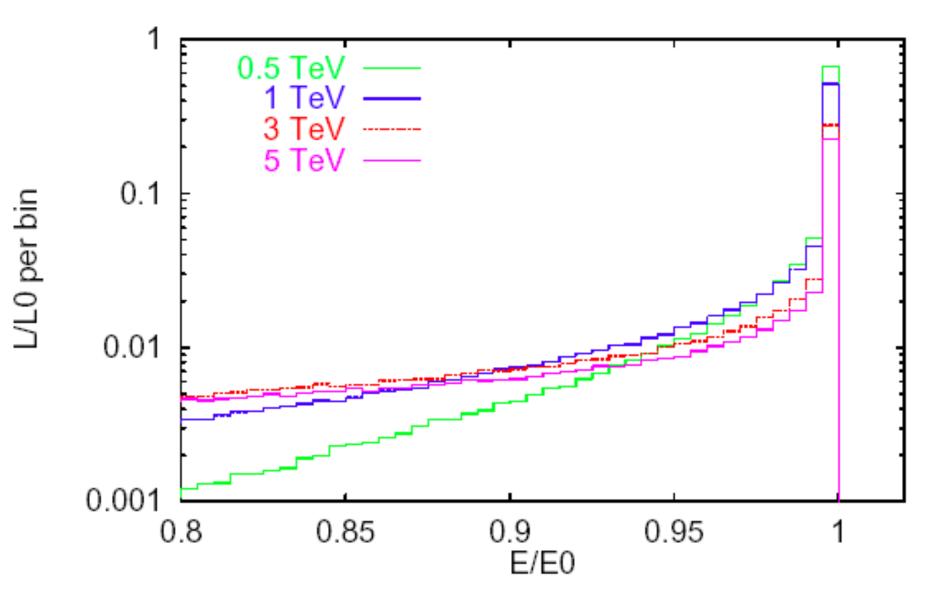

1276 mm


CLIC Layout

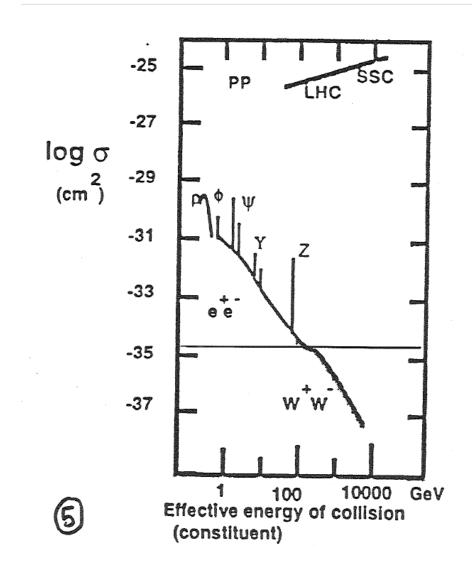


CLIC Layout

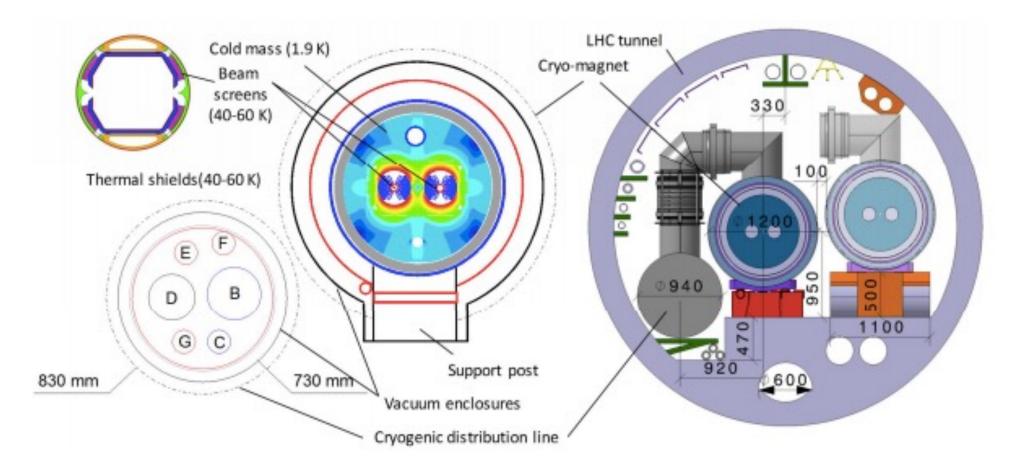

CLIC RF structure



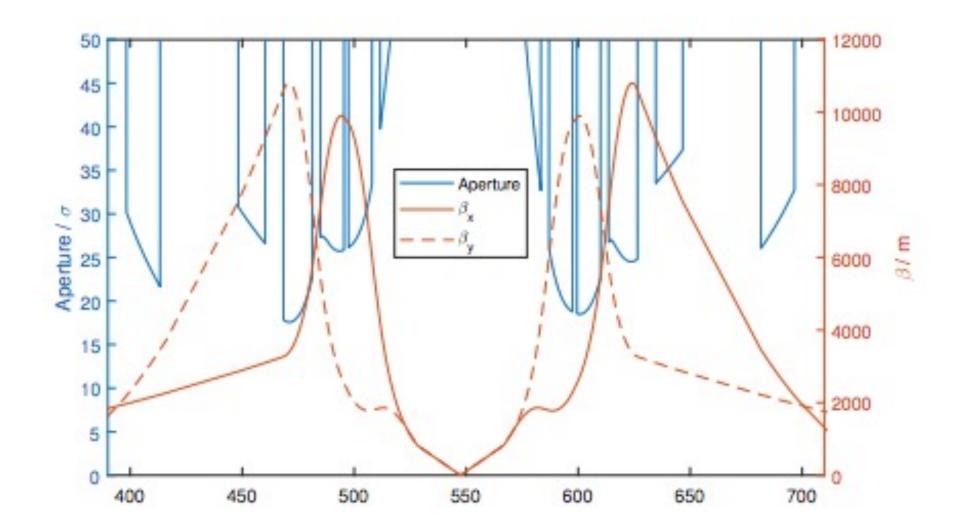
blue: e-cloud effect observed red: planned accelerators bunch population [10¹⁰] 100 Ult. LHC LHC SPS 10 APS SPS,PS Tevatron ILC-DR RHIC TESLA DAFNE? KEKB SPS NLC/GL 0.1 1000 100 CLIC 0.1


bunch spacing [ns]

Collision Energy Dispersion (CLIC)



Future Hadron Colliders



Parameter	Unit	FC	C-hh	HE-LHC	(HL-)LHC	
Centre-of-mass energy	TeV	100		27	14	
Injection energy	TeV	3	3.3	1.3 (0.9, 0.45)	0.45	
Peak arc dipole field	Т		16	16	8.33	
Circumference	km	9	7.8	26.7	26.7	
Straight-section length	m	14	400	528	528	
Beam current	A	().5	1.12	(1.12) 0.58	
Bunch population	1011	1	.0	2.2	(2.2) 1.15	
Number of bunches / beam	_	10	400	2808	(2760) 2808	
RF voltage	MV	1	32	16	(16) 16	
RMS bunch length	mm	~	80	90	(90) 75.5	
Longitudinal emittance $(4\pi\sigma_z\sigma_E)$	eVs	~	~8	4.2	2.5	
Bunch spacing	ns	1	25	25	25	
Norm. transv. rms emittance	μm	2	2.2	2.5	(2.5) 3.75	
IP beta function $\beta_{x,y}^*$	m	1.1	0.3	0.45	(0.15) 0.55	
Initial rms IP beam size $\sigma_{x,y}^*$	μm	6.7	3.5	9.0	(7.1 min.) 16.7	
Half crossing angle	µrad	37	100	165	(250) 142.5	
Peak luminosity per IP	10 ³⁴ cm ⁻² s ⁻¹	5	30	16	(5, levelled) 1	
Peak no. of events / crossing		170	1000	460	(135) 27	
RMS luminous region	mm	53	49	57	(68) 45	
Stored energy / beam	GJ	8.4		1.4	(0.7) 0.36	
SR power / beam	kW	24	400	100	(7.3) 3.6	
Transv. emittance damping time	h	1	.1	3.6	25.8	
No. of high-luminosity IPs	_	2	2	2	(2) 2	
Initial proton burn-off time	h	17	3.4	2.5	(15) 40	
Allocated physics time / year	days	160	160	160	160 (160)	
Average turnaround time	h	5	4	5	4 (5)	
Optimum run time	h	11.6	3.7	5.3	(18-13)~10	
Accelerator availability		70%	70%	75%	(80%) 71%	
Nominal luminosity per day	fb ⁻¹	2.0	8.0	4.5	(1.9) 0.4	
Luminosity per year (160 days)	fb^{-1}	≥ 250	≥ 1000	500	(350) 55	

Dipole magnets

Beam envelope near IP

Synchrotron radiation screens

Table 2.2: Synchrotron radiation (SR) characteristics in the arcs of LHC, HE-LHC and FCC-hh.

Parameter	LHC	HE-LHC	FCC-hh
Linear SR power [W/m]	0.25	5.5	35
Linear photon flux [1016 photons/m/s]	5	27	15
Critical photon energy [eV]	44	320	4300

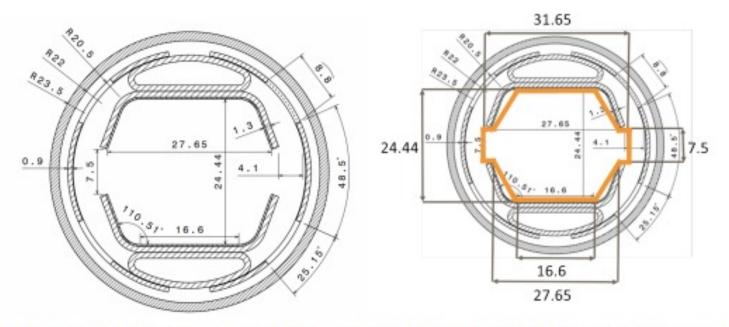


Figure 2.1: Beamscreen proposed for FCC-hh and HE-LHC [31] (left); and the approximation used for aperture calculation [32] (orange line, right).

e-p Collider ?

able 2.13: Baseline parameters and estimated peak luminosities of future ep collider configuration ased on an electron ERL, esp. HE-LHeC, when used in concurrent ep and pp operation mode [110].

Parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
E_p [TeV]	7	7	13.5	50
E_e [GeV]	60	60	60	60
\sqrt{s} [TeV]	1.3	1.3	1.7	3.5
Bunch spacing [ns]	25	25	25	25
Protons per bunch [10 ¹¹]	1.7	2.2	2.5	1
$\gamma \epsilon_p [\mu m]$	3.7	2	2.5	2.2
Electrons per bunch [109]	1	2.3	3.0	3.0
Electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
Hourglass factor H _{geom}	0.9	0.9	0.9	0.9
Pinch factor H_{b-b}	1.3	1.3	1.3	1.3
Proton filling H _{coll}	0.8	0.8	0.8	0.8
Luminosity $[10^{33} cm^{-2} s^{-1}]$	1	8	12	15

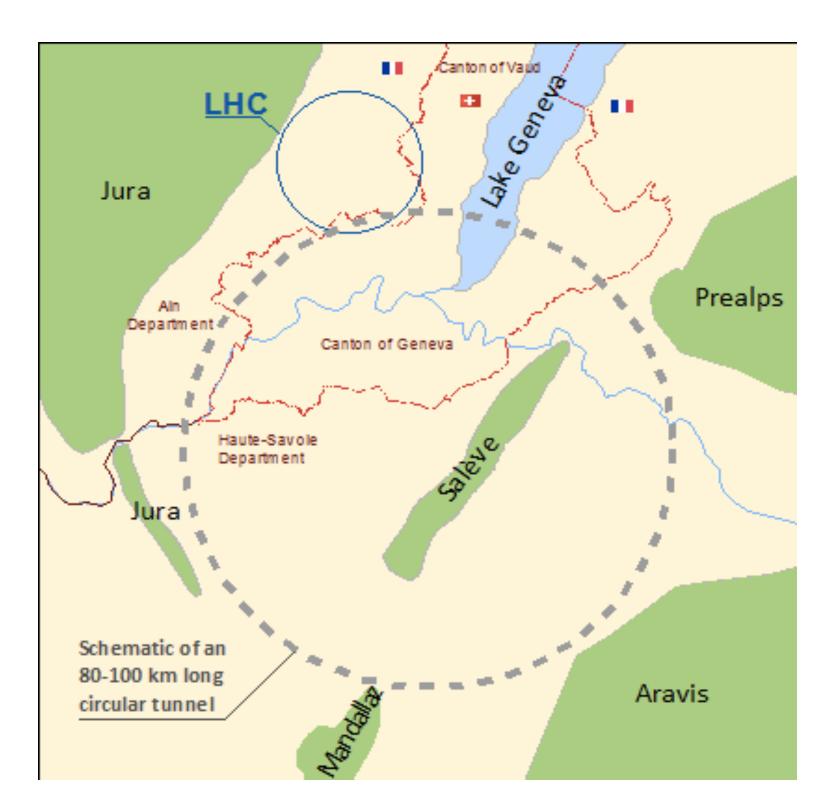
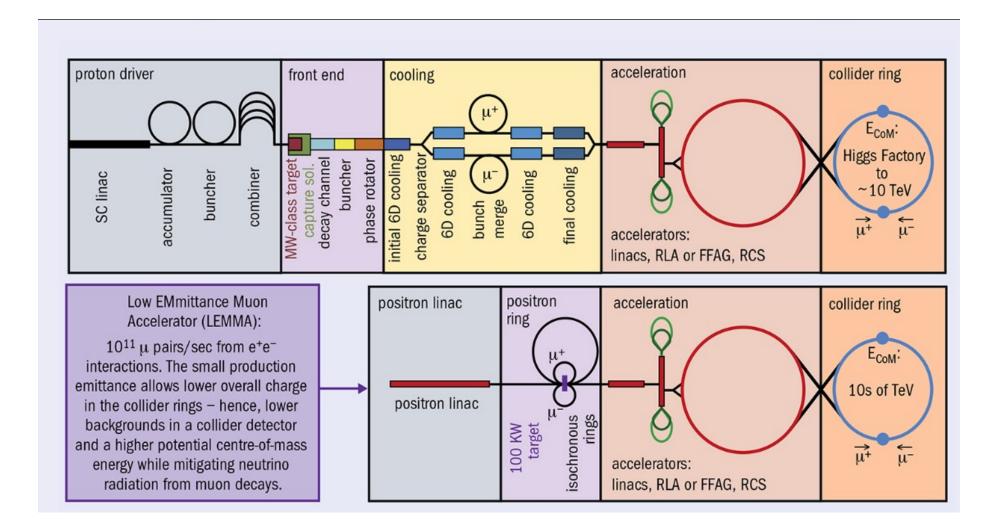
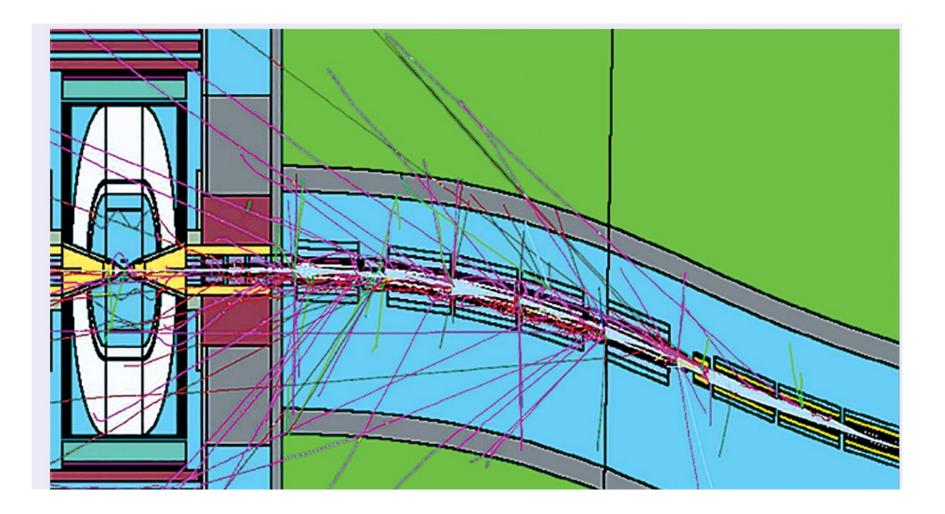

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14	14	27	100
Circumference	km	26.7	26.7	26.7	97.8
Peak L, nominal (ultimate)	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1 (2)	5 (7.5)	16	30
Bunch spacing	ns	25	25	25	25
Number of bunches		2,808	2,760	2,808	10,600
Goal ∫ L	ab ⁻¹	0.3	3	10	30
σ_{inel} [244]	mb	80	80	86	103
σ_{tot} [244]	mb	108	108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak av. PU events/BC, nominal (ultimate)		25 (50)	130 (200)	435	950
RMS luminous region σ_z	mm	45	57	57	49
Line PU density	$\rm mm^{-1}$	0.2	1.0	3.2	8.1
Time PU density	ps ⁻¹	0.1	0.29	0.97	2.43
$dN_{ch}/d\eta _{\eta=0}$ [244]		6.0	6.0	7.2	10.2
Charged tracks per collision N _{ch} [244]		70	70	85	122
Rate of charged tracks	GHz	59	297	1,234	3,942
$< p_T > [244]$	GeV/c	0.56	0.56	0.6	0.7
Bending radius for $< p_T >$ at B=4 T	cm	47	47	49	59
Total number of pp collisions	10 ¹⁶	2.6	26	91	324
Charged part. flux at 2.5 cm, est.(FLUKA)	GHz cm ⁻²	0.1	0.7	2.7	8.4 (10)
1 MeV-neq fluence at 2.5 cm, est.(FLUKA)	$10^{16} {\rm cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ionising dose at 2.5 cm, est.(FLUKA)	MGy	1.3	13	54	270 (300)
$dE/d\eta _{\eta=5}$ [244]	GeV	316	316	427	765
$dP/d\eta _{\eta=5}$	kW	0.04	0.2	1.0	4.0

Table 7.1: Key values relating the detector challenges at the different accelerators.

LHC HL-LHC HE-LHC FHC

90% b $\overline{b} p_T^{\rm b} > 30 { m GeV/c} $ [245]	$ \eta <$	3	3	3.3	4.5
VBF jet peak [245]	$ \eta $	3.4	3.4	3.7	4.4
90% VBF jets [245]	$ \eta <$	4.5	4.5	5.0	6.0
$90\% \text{ H} \rightarrow 4l \text{ [245]}$	$ \eta <$	3.8	3.8	4.1	4.8
bb cross-section	mb	0.5	0.5	1	2.5
bb rate	MHz	5	25	250	750
$b\overline{b} p_T^b > 30 \text{GeV/c cross-section}$	μb	1.6	1.6	4.3	28
$b\overline{b} p_T^{\overline{b}} > 30 \text{GeV/c}$ rate	MHz	0.02	0.08	1	8
Jets $p_T^{jet} > 50 \text{ GeV/c cross-section } [244]$	μb	21	21	56	300
Jets $p_T^{jet} > 50 \text{ GeV/c}$ rate	MHz	0.2	1.1	14	90
W ⁺ + W ⁻ cross-section [246]	μb	0.2	0.2	0.4	1.3
$W^+ + W^-$ rate	kHz	2	10	100	390
$W^+ \rightarrow l + \nu$ cross-section [246]	nb	12	12	23	77
$W^+ \rightarrow l + \nu$ rate	kHz	0.12	0.6	5.8	23
$W^- \rightarrow l + \nu$ cross-section [246]	nb	9	9	18	63
$W^- \rightarrow l + \nu$ rate	kHz	0.1	0.5	4.5	19
Z cross-section [246]	nb	60	60	100	400
Z rate	kHz	0.6	3	25	120
$Z \rightarrow ll$ cross-section [246]	nb	2	2	4	14
$Z \rightarrow ll$ rate	kHz	0.02	0.1	1	4.2
tt cross-section [246]	nb	1	1	4	35
tt rate	kHz	0.01	0.05	1	11


. . .


Muon Collider

- Muons (like electrons) are point-like projectiles
 - All energy available in collisions \rightarrow new particles
 - Bending radiation $\gamma^4 \sim 200^4$ smaller than electrons
- Their rest lifetime is only 2 us
 - Accelerate them to near $v^{\sim}c$ they survive for $\gamma\tau$
 - Long enough to make collisions
- Muon beam halo difficult for detectors

Schematic of a Muon Collider

Muon Beam halo backgrounds

