Non-collider Detectors

NEWS-G -- continuing with gas chambers

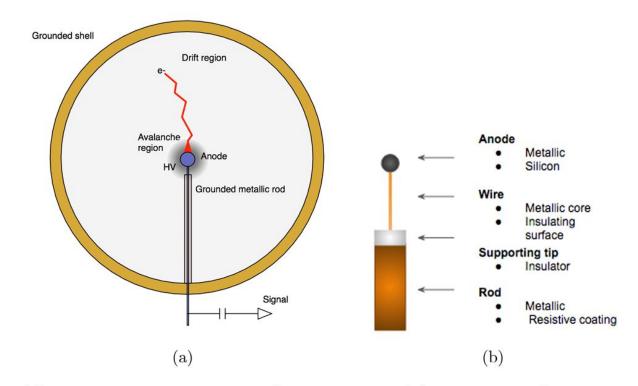
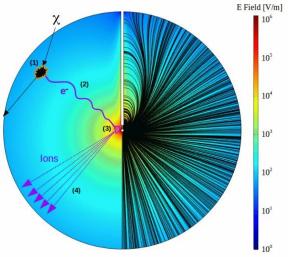
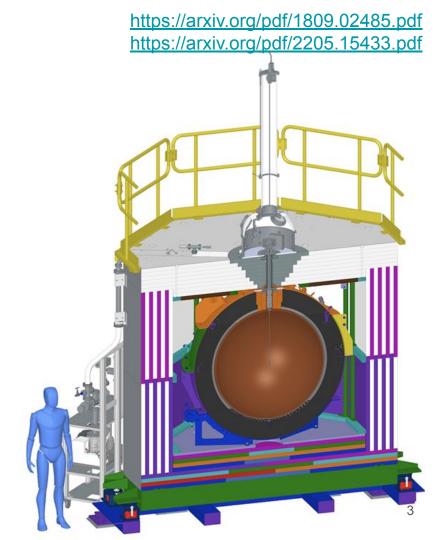




Figure 1: (a) SPC design and principle of operation and (b) illustration of the basic read out sensor⁵.

NEWS-G

- New Experiments With Spheres-Gas
- Spherical Proportional Counter
- Noble gases as targets
- Search for light dark matter
 - Down to sub-GeV mass region

NEWS-G -- Electrode

- From last lecture:
 - Mostly measuring drifting ions Ο
 - Most ions generated near surface of the anode Ο
 - $E(r) \approx \frac{V}{r^2} r_A$ Large E-field
 - Tend to make anodes small
 - \rightarrow larger 2nd ionization
- For small r_A , E field at large r becomes small as well
- Attachment & recombination becomes a problem
- \rightarrow "Achinos" sensor:
 - Large r E-field determined by overall sensor shape Ο
 - Local E-field determined by individual anode Ο

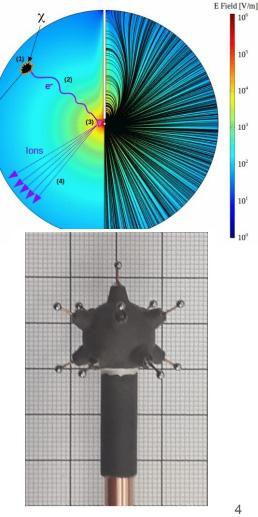


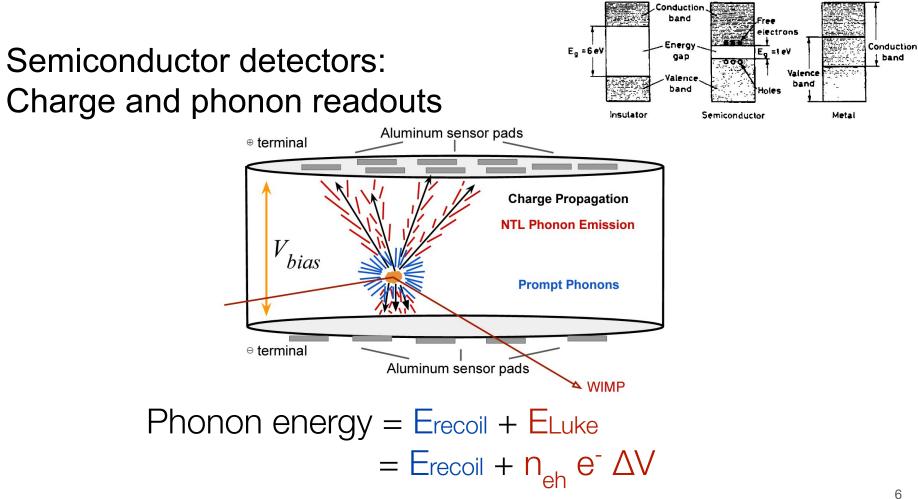
Figure 2. An 11-anode ACHINOS sensor.

Shockley–Ramo theorem

The Shockley–Ramo theorem states that the instantaneous current i induced on a given electrode due to the motion of a charge is given by:

 $i = E_v q v$

where


q is the charge of the particle;

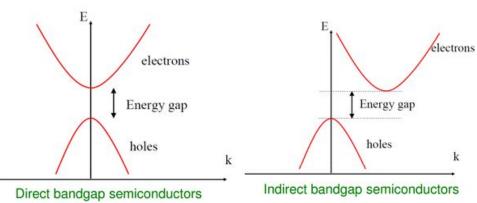
v is its instantaneous velocity; and

 E_v is the component of the electric field in the direction of v at the charge's instantaneous position, under the following conditions: charge removed, given electrode raised to unit potential, and all other conductors grounded.

Can verify expression in last lecture

Take away: The signal measured is charge-drifting induced signal...

Semiconductor detectors Microscopic interactions


- Detector crystal is voltage biased
- Initial recoil generates electron-hole pairs
- Electrons and holes gain initial kinetic energy
 - Immediately emit as phonons -- NTL effect
- Electrons and holes drift across semiconductor
 - Drift speed depends on E-field and temperature
 - ~5000 cm/s at low temperature, ~ 1 V/cm
 - Notice electrons don't follow electric field
 - Tensor mass of electron in semiconductor
 - All ionization happens at ~ initial recoil
 - Tend not to induce avalanche (except Avalanche PhotoDiodes/SiPM)
 - Emit phonons as they go
- Charge measured by Shockley–Ramo theorem, $E_{Phonon} = E_{recoil} + n_{eh} e^{-} \Delta V$

⊕ terminal	Aluminum sensor	pads
	IN I IT	Charge Propagation
		NTL Phonon Emission
V _{bias}		Prompt Phonons
e terminal Aluminum sensor pads		
		WIMP

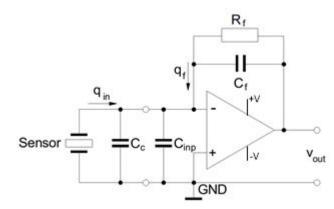
7

Direct band-gap vs indirect band-gap

- Energy and momentum both need to be conserved in a transition
- During absorption, momentum compensation can be via phonon absorption (room temp.) or phonon emission (low temp.)

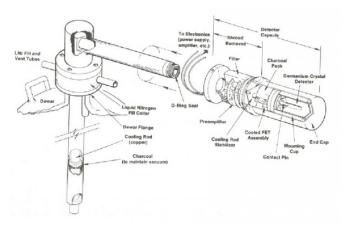
- For direct band-gap materials, excited electron can recombine by **photon** emission
 - \rightarrow Materials for scintillator detectors / LED (InAs, GaAs)
- Indirect band-gap materials don't emit photons
 - $\circ \rightarrow$ Charge detectors (Si, Ge)

https://en.wikipedia.org/wiki/Charge_amplifier

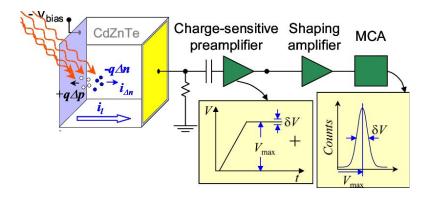

Charge amplifier

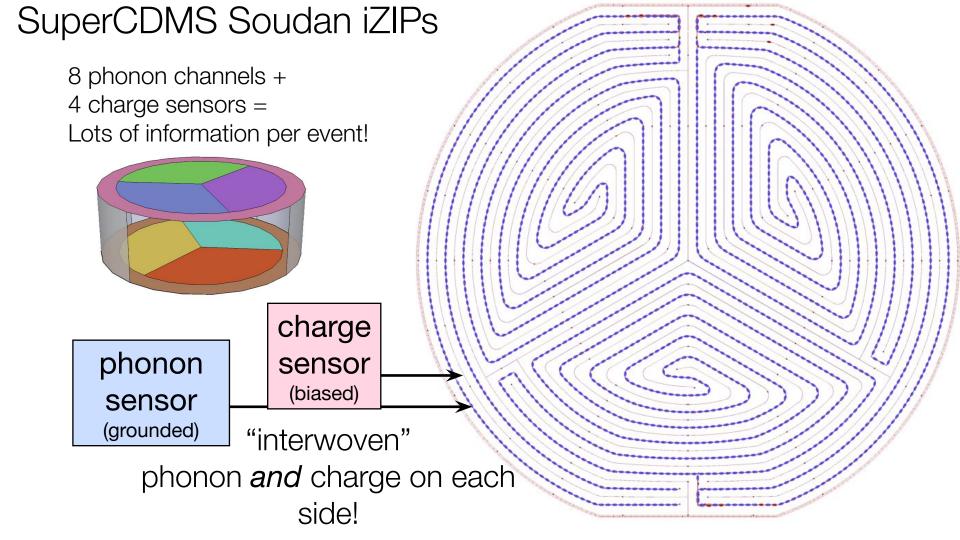
- Detector design is often integrated with readouts
- Charge detector:
 - Collecting charge on its capacitance
 - Amplifying via "charge amplifier"
 - Discharge via feedback resistor

$$egin{array}{l} q_{in} = q_f \ V_{out} = q_f/C_f = q_{in}/C_f \end{array}$$


Decay time: R_f*C_f

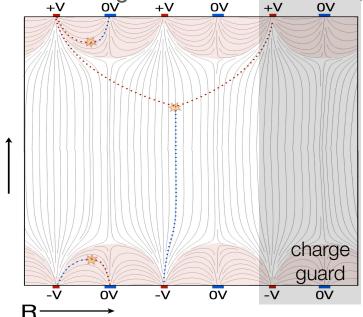
- Detector capacitance critical for noise
 - Voltage noise (v_n) amplified by C_{in}/C_{f}




Semiconductor charge detector examples

- High purity germanium (HPGe)
 - Work at liquid Nitrogen temperature
 - Can cool down electronics
 - Resolution ~keV

- CdTe/CdZnTe
 - Work at room temperature
 - Resolution ~ a few keV



SuperCDMS Soudan iZIP

• Minimize C_D and C_P

Ζ

- Cool down first stage amplifier (JFET)
 - Next generation uses HEMT, operating at 1 Kelvin

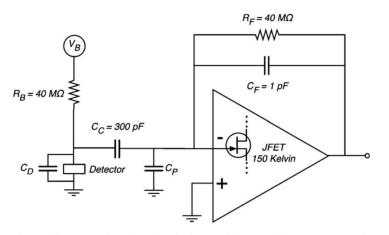


Fig. 5. Charge readout circuit. The heart of the amplifier is a JFET. The parasitic capacitance has been measured to be $C_p = 100 \,\text{pF}$ and the detector capacitance is typically $C_D = 50 \,\text{pF}$. G denotes the gate of 12 the JFET.

https://arxiv.org/pdf/2306.00166.pdf

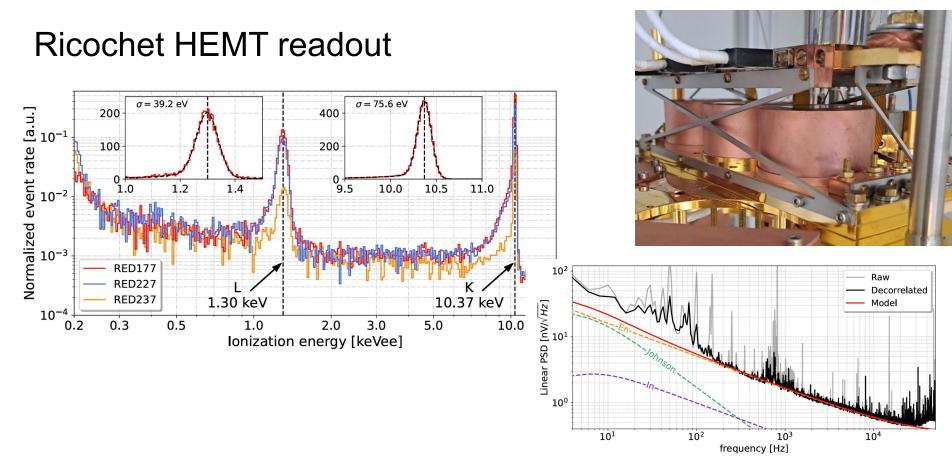
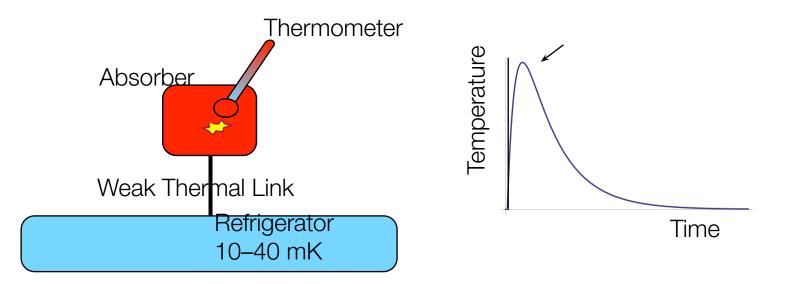
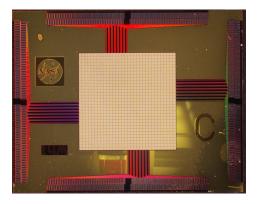



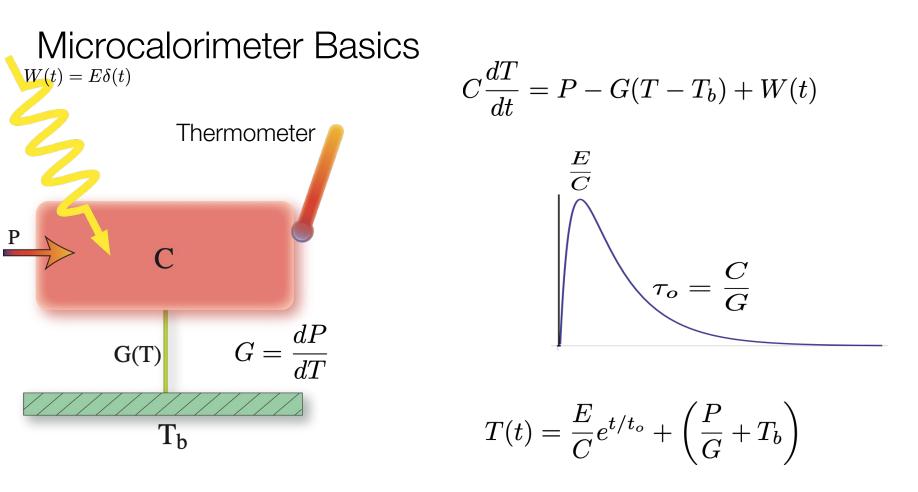
Fig. 2 Differential $(V_B - V_A)$ noise power spectrum of RED227 with $V_{ds} = 100$ mV and $I_{ds} = 300 \ \mu$ A and the mixing chamber at 17 mK. The black, grey and red solid lines show the decorrelated and raw data, and our noise model considering a parasitic capacitance of 20 pF, respectively. The total contributions from the two ionization channels A and B of the current (I_n) , voltage (E_n) , and Lonson noise sources are also shown as dashed purple, orange, and green lines, respectively.

Measuring phonons: Cryogenic Crystal Detectors



Cryogenic Crystal Detectors are used in...

- Astrophysics
 - mm to gamma-ray energies
- Particle Physics
 - Dark Matter Detectors
 - Neutrino Physics
- Materials-analysis
- Others!



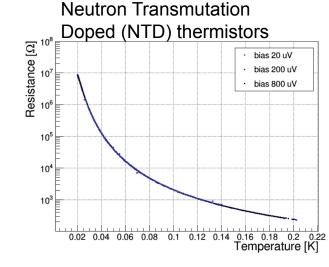
Why Use Cryogenic Detectors?

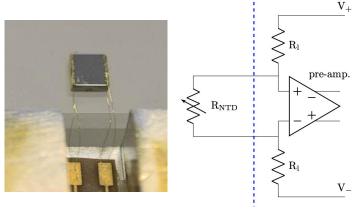
Cryogenic microcalorimeters can provide a unique combination of energy sensitivity and efficiency Nal CZT energy-dispersive CdTe -gamma-ray **HPGe** detectors TES Linki Li 239**D**LI ²³⁹Pu 85% 100 102 104 96 98 60 80 120 160 180 40 100 140 200 220 Energy (keV)

16

Some types of thermometers:

- resistive
- capacitive
- inductive
- paramagnetic
- thermoelectric

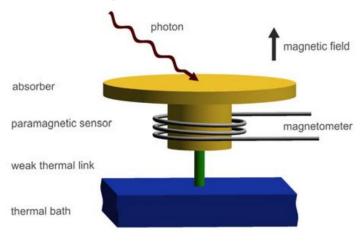

Thermometer #1


Neutron Transmutation Doped (NTD) thermistors

- Doped germanium/silicon chips
- Resistance follows Efros-Shklovskii law:

$$R = R_0 e^{\sqrt{T_0/T}}$$

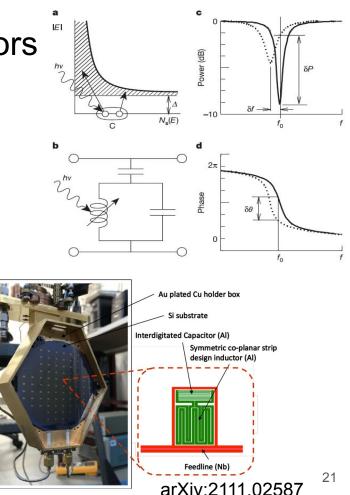
- Taking advantage of the steep slope at low temperature
- Also comes with high dynamic range
- Readout with FETs, operating at room temperature or in cold



Metallic magnetic calorimeter (MMC)

• Paramagnetic sensor positioned in weak magnetic field

- Heat changes its induced magnetic field
- Readout by SQUIDs as magnetometer

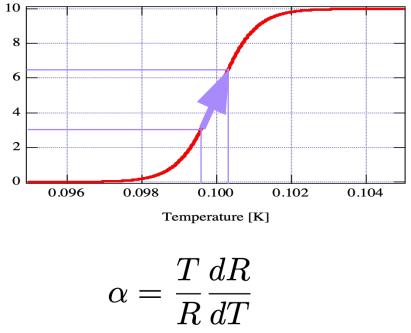

TASC.2009.2012724

Metallic magnetic calorimeter (MMC)

Thermometer #3

Microwave Kinetic Inductance Detectors (MKIDs)

- Resonators made of superconducting metal films
- Resonance frequency and phase response depending on its temperature
- Radio-Frequency (RF) Readout system
- Intrinsic capability for multiplexing

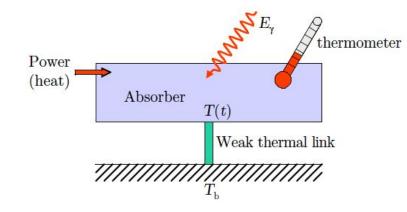


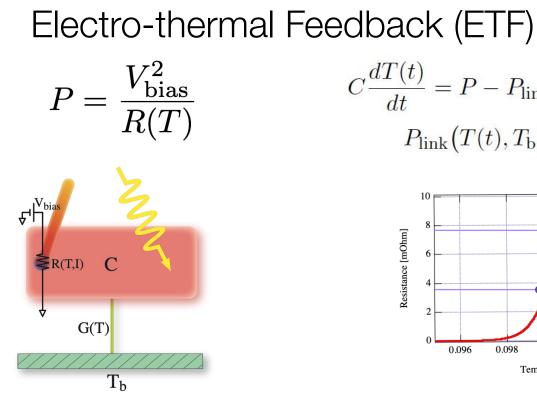
Transition-Edge Sensors

- Superconductor biased in its transition
- Several metal systems are used:
 - Elemental: W, Al, Re, Pb, etc.
 - Paramagnetic impurity doped: Al/Fe, Al/Mn, etc.

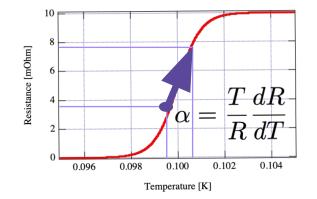
Resistance [m0hm]

- Bi-layers: Mo/Au, Mo/Cu, Ti/Al, etc.
- $50 < \alpha < 1000$
- Low resistance allows read out with SQUIDs


Balance the heat


- Sensor heat capacity C
- P is heat flowing into the sensor
 - For now assume as a constant
- Energy deposition E_{γ} at t_{γ}

$$C\frac{dT(t)}{dt} = P - P_{\text{link}}(T(t), T_{\text{b}}) + E_{\gamma}\delta(t - t_{\gamma})$$


$$P_{\rm link}(T(t), T_{\rm b}) = G(T(t) - T_{\rm b})$$

$$T(t) = \frac{E_{\gamma}}{C} e^{-t/\tau_o} + \left(\frac{P}{G} + T_{\rm b}\right) \qquad \qquad \tau_o \equiv C/G$$

$$C\frac{dT(t)}{dt} = P - P_{\text{link}}(T(t), T_{\text{b}}) + E_{\gamma}\delta(t - t_{\gamma})$$
$$P_{\text{link}}(T(t), T_{\text{b}}) = K(T(t)^{n} - T_{\text{b}}^{n})$$

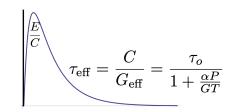
Electro-thermal Feedback (ETF)

 $\frac{1}{\text{bias}}$ P₽₽ $\geq R(T,I)$ G(T)T_b sistance [mOhm] T dR0.102 0.104 0.096 0.098 0.100 Temperature [K]

$$C\frac{dT(t)}{dt} = \frac{V^2}{R(T)} - K(T(t)^n - T_b^n) + E_\gamma \delta(t - t_\gamma)$$

In quiescence:

$$P = \frac{V^2}{R} = K(T^n - T_b^n)$$

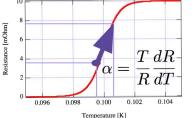

- Note, in quiescence T~T_c. Thus P is roughly constant
- Taylor expand with ΔT , note R₀, T₀ are the quiescent values $R = R_0 + \alpha \frac{R_0}{T_0} \Delta T$

$$Crac{d\Delta T}{dt}=rac{V^2}{R_0}-K(T_0^n-T_b^n)-rac{V^2}{R_0^2}rac{dR}{dT}\Delta T-nKT_0^{n-1}\Delta T+E_\gamma\delta(t-t_\gamma)$$

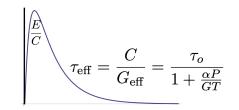
• Define
$$G \equiv \frac{dP}{dT} = nKT^{n-1}$$

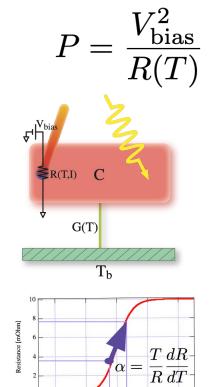
$$\Delta \dot{T}(t) = -\left(\frac{\alpha P}{TC} + \frac{G}{C}\right)\Delta T + \frac{E_{\gamma}}{C}\delta(t - t_{\gamma})$$
²⁵

Electro-thermal Feedback (ETF)


$$\Delta \dot{T}(t) = -\left(\frac{\alpha P}{TC} + \frac{G}{C}\right)\Delta T + \frac{E_{\gamma}}{C}\delta(t - t_{\gamma})$$

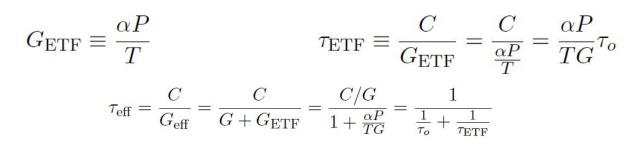
- Solution is a simple exponential, with
 - $\tau_{\rm eff} = \frac{\tau_0}{1 + \frac{\alpha P_0}{T_0 G}} = \frac{\tau_0}{1 + \frac{\alpha}{n} (1 \left(\frac{T_b}{T_0}\right)^n)}$ Define $(T_b)^n = \tau_0 = \frac{\tau_0}{T_0}$
 - Define $\phi = 1 \left(rac{T_b}{T_0}
 ight)^n$ $au_{ ext{eff}} = rac{ au_0}{1 + rac{lpha \phi}{n}}$
- In "extreme electrothermal feedback regime"
 - Cold fridge $\rightarrow T_0^n << T_b^n$
 - Excellent detector $\rightarrow a/n >> 1$


 $\tau_{\rm eff} = \frac{n\tau_o}{\alpha}$


- Higher $a \rightarrow$ Faster detector
 - Will see later that higher a also leads to better detector

 $P = \frac{V_{\text{bias}}^2}{R(T)}$

ETF as virtual conductance

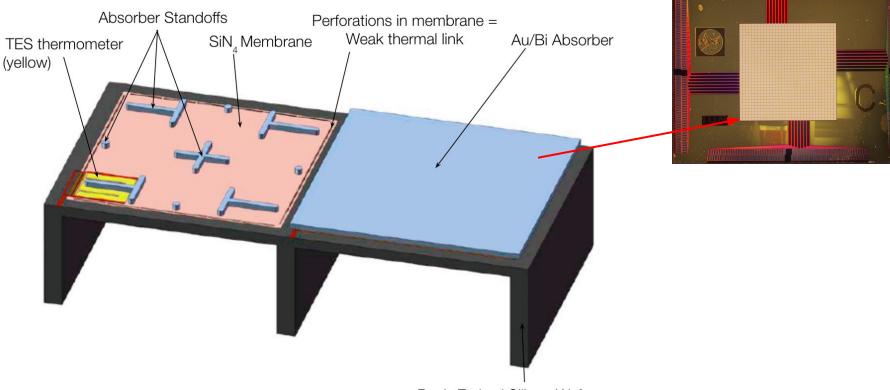

0.096

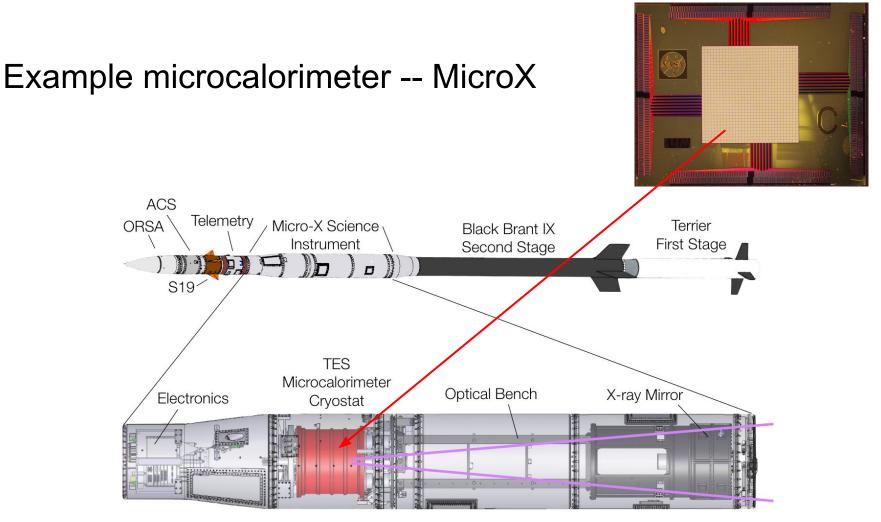
0.098

0.100

Temperature [K]

0.102


- ETF acts like another conductance, in parallel with the natural thermal conductance
- For ETF to be stable


$$\frac{\alpha P}{TG} > -1$$

Naturally satisfied for TES, flipped for NTD

 → TES needs to be "Voltage biased" NTD needs to be "current biased"

Example microcalorimeter -- MicroX

