Other Rare Event Detectors

-- Other than SuperCDMS...

CRESST

- CRESST: phonon + light
- Thermal TES sensors

CRESST

- CRESST III detectors focused on low-mass WIMPs
- Design Goal: Threshold of 100 eV. How? Smaller Crystals!
- Going from 250g in CRESST II to 24g in CRESST III

 e/γ

α

0

W

150

- 36 x 800 g detectors
- "Fully Inter-Digitized" charge sensors -- instrumented on the sidewalls
- NTD as heat sensor -- thermal detector

RICORFICER a reactor neutrino observatory

Slide from Nicolas MARTINI, Magnificent CEvNS, 2024

CryoCube detectors

Particle ID based on Ionization/Heat ratio

$$Q = E_{ion}/E_{recoil}$$

- Electronic recoils : Q = 1
- Nuclear recoils : Q ~ 0.3 (Lindhard)

Planar : Fiducial volume = 98.6%

No surface events rejection

FID : Fiducial volume = 62%

Surface events rejection

Final detector design will be based on on-site data-driven CEvNS sensitivity

CryoCube specifications . MiniCryoCube:

3 Ge bolometers with their cold electronics (1 K)

CryoCube (Spring 2025): 3 MiniCryoCubes per level, 2 levels → Array of 18 x 38 g @ ~10 mK

- Heat resolution: 20 eV (RMS)
- Ionization resolution:
 20 eVee (RMS)
- Timing resolution:
 ~100 us @ 100 eV
- Detector payload:
 680 g
- Two detector technologies: planar and FID electrodes

→ Achieve Particle ID down to O(10) eV with a rejection > 10^3

Paper on Ionization performances of the MiniCryoCube: RICOCHET Coll. EPJC **84** (2024), 186

NIM A 1057 (2023) 168765

Modular TES detector

- Thermally couple a TES thermometer onto an arbitrary target
- Target can be almost any solid: semiconductor, metal, superconductor, etc
 - **12 eV** resolution achieved on 1 gram silicon
 - **0.85 keV** resolution on 21 gram Li_2MoO_4
 - Excellent detector also for neutrinoless double beta decay!
- Further improvements to come

Checking DAMA with Nal Detectors

Northern Hemisphere	Gran Sasso DAMA/LIBRA 250 kg running		Canfranc ANAIS 37 kg R&D 250 kg planned	Y2L KIMS 45 kg R&D 200 kg planned	Gran Sasso SABRE R&D	Kamioka PICO-LON KamLAND- PICO R&D
Southern Hemisphere		South Pole DM-Ice 17 kg running 250 kg planned			Stawell SABRE Lab completion 2017	rock ice

Ultra-pure crystal development underway by DM-Ice, KIMS, ANAIS, SABRE, and PICO-LON collaborations

South Pole offers:

- · Ultra-clean and ultra-stable environment
- · Seasonal variation unambiguously different from dark matter modulation
- · IceCube offers muon monitoring and veto as well as experience
- NSF-run South Pole Station for logistical support

Note: Annual Modulation is also being looked for with other detector technologies!

DM-ICE 17

IceCube lab Location: South Pole, Antarctica 50m Depth: 2457 m (2200 m.w.e) Deployment: Dec. 2010 IceCube Science Run: Jun. 2011 – Jan. 2015 AMANDA (decommissioned Uptime: > 99% 1450m Exposure: 60.8 kg-yr Target: Nal(TI) DeepCore Mass: 2 x 8.5 kg 2450m 2820m bedrock

Noble Liquid Time Projection Chambers

Noble Liquid Time Projection Chambers

- Obtain vertex position from S2 hit pattern and drift time
- Ratio of S2/S1 provides nuclear/electron recoil discrimination

Figure: Gibson/Shutt

Electron Recoils Low field, low energy

Figure: Gibson/Shutt

Electron Recoils High field, high energy

Nuclear Recoils

- Electron Recoils and Nuclear Recoils are Separated in Log(S2/S1) vs S1 plane
- Look for WIMPs below the mean of the nuclear recoil distribution (the red line in the plot)

19

Noble Liquid Time Projection Chambers

NOT TO SCALE!

Current Two-Phase XeTPCs for WIMP Search

XENONnT@LNGS

PandaX-4T@JinPing

https://indico.cern.ch/ event/1188759/contri butions/5044010/

1.5 m 1.3 m	1.5 m	1.2 m	1.2 m	
	XENONnT	LZ	PandaX-4T	
Total (sensitive) mass	8.5 (5.9) tonnes	10 (7) tonnes	5.6 (3.7) tonnes	
3-inch PMTs 494		494	368	
Drift Field	23 V/cm	193 V/cm	93 V/cm	

The DarkSide Program: Liquid Argon TPC

DarkSide-50

- 46 kg active Ar, 36.9 kg Fiducial
- Active neutron veto (borated liquid scintillator)
- Using underground Ar obtained 1400x less ³⁹Ar events that atmospheric Ar

- 23 Ton Ar, 20 Ton fiducial
- 100 Ton-yr background-free exposure
- Gd-loaded Water Cherenkov active veto
- Timeline: TBD

Dual Phase Liquid Argon TPC

PSD parameter: F90 = fraction of light in first 90 ns

Dual Phase Liquid Argon TPC

S2 allows for **3D position reconstruction** and additional discrimination power

Dual Phase Liquid Argon TPC

- 46 kg active volume
- 36 cm diameter, 36 cm height
- 38 3" PMTs
- Cold pre-amps
- High reflectivity Teflon walls
- Fused silica anode and cathode windows
 - Coated with transparent conductor (Indium Tin Oxide)
- All inner surfaces coated with wavelength shifter (Tetraphenyl Butadiene)
- 0.2 kV/cm drift, 2.8 kV/cm extraction

Lowering ³⁹Ar background using Underground Ar

³⁹Ar reduction factor: 1400

Single phase TPC

- nEXO
- LXe
- Single phase TPC easier to build
- Measure charge directly on electrode
 - No amplification like S2
- Maybe will go to SNOLAB soon?

Single-phase Noble Liquid Detectors

DEAP3600

- 3600 kg Ar, 1000 kg Fiducial
- 3 Ton-yr exposure
- Scintillator detector

Overview of DEAP-3600: **Pulse Shape Discrimination**

http://deap3600.ca/w p-content/uploads/20 22/08/ICHEP2022_J McLaughlin_DEAP_fi nal.pdf

Nuclear Recoils

Scattering directly with argon nuclei; excimers mostly populate the *singlet state*, relax quickly. Induced by:

- Neutrons
- Alphas
- WIMPs

Electronic Recoils

Scattering with argon atomic electrons, ionizing argon; excimers tend to populate *triplet state*, relax slowly. Induced by:

- Betas (especially ³⁹Ar at ~3 kHz)
- Gammas

Freeze it up?

- To reject Radon...
- Can associate multiple decay daughters at the same location

https://indico.fnal.gov/event/6424/contributions/96002/attachments/6 2734/75184/pahlka_lidine_sxenon_052913_1.pdf

Other Nuclear Detection Technologies

- Silicon CCDs: DAMIC
- Bubble Chamber Experiments

• PICO

- Excellent SD Sensitivity
- (currently running at SNOLAB)
- Scintillating Bubble Chamber
- Directional Detection Experiments

• DRIFT, DMTPC, NEWAGE, MIMAC

PICO Bubble Chamber

- Insensitive to gamma backgrounds due to dE/dx needed to nucleate a bubble.
- Slow detector, but OK for rare event searches
- Alpha discrimination by acoustic
 - Alpha popping is x4 louder

Bubble Chamber Expansion/ Compression Cycle

https://kicp.uchicago.edu/depot/talk s/2016-01-19-colloquium.pdf

Temperature

Bubble Nucleation by Radiation

(Seitz, "Thermal Spike Model", 1957)

- Pressure inside bubble is equilibrium vapor pressure.
- At critical radius Rc surface tension balances pressure.

https://kicp.uchicago.edu/depot/talk s/2016-01-19-colloquium.pdf

• Bubbles bigger than the critical radius R_c will grow; smaller bubbles will shrink to zero.

Energy Barrier to Bubble Nucleation

35

https://kicp.uchicago.edu/depot/talk s/2016-01-19-colloquium.pdf