Particle Interactions

Particle Interactions

- Consider five different kinds of interactions
 - Energy loss of heavy charged particles
 - Electron and positron energy loss (light particles!)
 - Interaction of Photons
 - ← Electromagnetic showers

Interaction Probability

- Interaction probability depends on density and thickness of target
 - P proportional to ρ d (1/cm²)
 - ρ is the number density of the target particles
 - Take a target with N₂ particles and surface S: N₂/S = ρ d
 - \circ The cross-section (σ) givens the interaction probability for each incident particle
 - Interaction rate given by $R=N_1 \sigma N_2/S=(N_1 \sigma \rho d)$

Mean Free Path

- Mean distance between collisions of particle traversing matter given by:
 - Determined by the interaction rate of particle traveling a distance dx and then undergoing an interaction

 $\blacksquare R/d = N_1 \sigma \rho$

- **Probability** of an interaction between x and x+dx
 - w dx = (R/d) dx / $N_1 = \sigma \rho dx$
- Probability of not interacting
 - $P(x+dx) = P(x) (1-w dx) \rightarrow d P(x) / dx = -wP(x)$
 - P(x) = e^{-wx}
- Mean free path $\lambda = 1/w = 1/(\sigma \rho)$ and $P(x) = exp(-x/\lambda)$

Heavy Charged Particles -- Ionisation

- Includes all charged particles besides electrons and positrons
 - At relatively low energies (keV to GeV)
 - Energy loss dominated by electromagnetic interactions with atomic electrons (orbits 10⁻¹⁰ m vs. 10⁻¹⁴ m for nuclear size)
 - Transfer part of the energy of the particle to an atomic electron
 - Results in ionisation of atom (typical binding energies < keV)</p>
- The cross-section is pretty small (10⁻¹⁷ cm²) but the huge density (6x10²³/g) makes this is the most important contribution
 - 10 MeV protons lose all their energy in less than 1 mm of Cu
- Sometimes the electrons liberated in initial collision are able to ionise other atoms
 - \circ Called δ -electrons and leave localised blobs of ionisation

Here we dive into some derivations...

Following Chapter 2 of Leo, then William's notes Baseline assumptions:

- Incoming charged particles are heavy
 - Heavier than electrons so inelastic collisions with electrons don't change its trajectory much
- Not too heavy to be comparable to nuclei
 - Otherwise effects of nuclei collisions need to be considered
- Energy transferred in each collision is small
- Number of collisions per path length is huge
- Averaged energy loss per unit length: stopping power or simply dE/dx,

W.R.Leo

Techniques for Nuclear and Particle Physics Experiments

A How-to Approach

Second Revised Edition

Classical derivations (II)

 Electron density N_e, look at a shell (b → b+db, dx), energy lost to all electrons in this shell is

$$-dE(b) = \Delta E(b) N_e dV = \frac{4\pi z^2 e^4}{m_e v^2} N_e \frac{db}{b} dx$$

- Can't integrate from b=0 to $b \rightarrow \infty$: invalid for large and small b
- Need to estimate b_{max} and b_{min} that are reasonable.

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e v^2} N_e \ln \frac{b_{\max}}{b_{\min}}$$

Classical derivations (III)

- For b_{\min} , recall max energy gained in a collision is $2\gamma^2 m_e v^2$ • Thus $b_{\min} = -\frac{ze^2}{\gamma m_e v^2}$
- For b_{max}, energy transfer needs to be fast. If the electron bound state frequency is v, the interaction time t/y = b/(yv) needs to be smaller than 1/ (averaged v) b_{max} = yv/v/v
 dE 4πz²e⁴ v²mv³

$$-\frac{dE}{dx} = \frac{4\pi z}{m_e v^2} N_e \ln \frac{\gamma m_e v}{ze^2 \bar{v}}$$
. Fine for a , not good for p

Now define:
$$\oint (E, E') dE' dx$$
 to be the
probability that a particle losses energy
(etween $E' \rightarrow E' + dE$ in path length dx
 $=) \oint (E, E') dE' dx = -n_0 (2\pi b) db dx$
 $L \rightarrow \# electrons / unit volume$
 $= n_0 \pi b^2 dx \left(-\frac{2db}{b}\right)$
 $= n_0 \pi \frac{3^2 G^2 (mc^2)}{\beta^2} \frac{dE'}{E'^2} dx$
 $E' = \frac{A}{\beta^2} \left(\frac{p dx}{\beta^2}\right) \frac{dE'}{E'^2} dx$
 $= \frac{A}{\beta^2} \left(\frac{p dx}{\beta^2}\right) \frac{dE'}{E'^2} dx$
 $= A - Atomic \# of Media$

FOR MOST GASES QUANTIN EFFECTS ARE IMPORTANT (SCREENING ETC.). FOR <u>HYDROGEN</u> BETHE PEFORMED A "FULL CALCULATION". CONCUDED:

$$E_{min} = \frac{I_{o}}{c \left[l_{n} \frac{2mc^{2}}{I_{o}} \frac{\beta^{2}}{1-\beta^{2}} + S - \beta^{2} \right]}$$

$$I_{o} = 15.4 \text{ eV} \quad c = 0.29 \quad \mathbf{S} = 3.04$$

$$= \sum E_{min} = 3.5 \text{ eV} \quad n_{prin} = 4.6 / c_{m}.$$

FOR OTHER GASES

$$E_{min} = \frac{\tilde{A}p}{A_{1}\left[A_{z} + ln\left(\frac{B^{2}}{1-B^{2}}\right) - B^{2}\right]}$$

See table for A, Az and plots of experimental determinations of Aprim.

Fig. 1 Primary ionisation. Points: measured, --- Bethe's formula adjusted

	Table I				
gas	density (mg/cm ³)	I _o (eV)	· A1	A2	ⁿ prim (cm ⁻¹)
Н2	0.0899	15.4	Bothele		
в	0.1785	24.6	0.244	formula 11.64	.4-6 3.5
Ne	0.9004	21.7	0.844	10.89	11.4
^r x	1.7837	15.8	1.828	11.45	25.8
°е N ₂	1.2506	12.1	3.554	11.31	49.6
0,	1.4290	12.2	2.079	11.43	27.1

13

• •

Bethe-Bloch formula

$$-\frac{dE}{dx} = 2\pi N_{\rm a} r_{\rm e}^2 m_{\rm e} c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_{\rm e} \gamma^2 v^2 W_{\rm max}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right], \quad (2.27)$$

with

 $2\pi N_{\rm a} r_{\rm e}^2 m_{\rm e} c^2 = 0.1535 \,{\rm MeV cm^2/g}$

- $r_{\rm c}$: classical electron radius = 2.817 × 10⁻¹³ cm
- $m_{\rm e}$: electron mass
- $N_{\rm a}$: Avogadro's number = $6.022 \times 10^{23} \,\mathrm{mol}^{-1}$
- I: mean excitation potential
- Z: atomic number of absorbing material
- A: atomic weight of absorbing material

- p: density of absorbing material
- z: charge of incident particle in units of e

$$\beta = v/c$$
 of the incident particle

$$y = 1/(1 - \beta^2)$$

- δ : density correction
- C: shell correction
- W_{max} : maximum energy transfer in a single collision.

$$W_{\rm max} = \frac{2m_{\rm e}c^2\eta^2}{1+2s\sqrt{1+\eta^2}+s^2},$$

where
$$s = m_e/M$$
 and $\eta = \beta \gamma$

Interpretation

$$\frac{dE}{dx} = 0.31 \frac{Z}{A} \left\{ \frac{MeV cm^2}{g} \right\} \frac{3^2}{\beta^2} \left[\int_{u} \left(\frac{2mc^2 \delta^2 \beta^2}{T} - \beta^2 - \frac{d}{Z} \right] \mathbf{G}$$

- At low $eta, \ dE/dx \sim 1/eta^2$
 - \circ Collision time ~ 1/β, momentum transfer ~ 1/β, energy ~ 1/β²
- As eta
 ightarrow 1, $ln(eta^2\gamma^2)\sim ln(p)$ dominates
 - "Relativistic rise"
 - Starts at $\beta\gamma\sim3.5-4$
- Material begins to polarise as γ goes even higher
 - Density correction

 ω_{p} is the plasma frequency $\begin{vmatrix} d \\ z \end{vmatrix}$

$$\frac{1}{2} = ln p^2 r^2 - ln \frac{\overline{I}^2}{\overline{h}^2 \omega p^2} - \frac{1}{2} \frac{1}{2}$$

$$\omega_{p} = \left(\frac{\Lambda_{o}e^{2}}{\epsilon_{o}m}\right)^{1/2}$$

• The density effect cancels the relativistic rise around

Minimum Ionizing Particles (MIPs)

• Most relativistic particles (e.g., cosmic-ray muons) have mean energy loss rates close to the minimum

IF YOU HAVE A MIXTURE OF MATERIALS (e.g. A SAMPLING CALORIMETER - SEE LATER) THEN YOU CAN SUM THE ENERGY LOSS FROM THE DIFFERENT COMPONENTS :

$$\frac{dE}{dx} = \sum_{j} w_{j} \frac{dE}{dx}$$

WHERE W: IS THE FRACTION (BY MASS) OF THE jth COMPONENT

а 2	FLUCTUATIONS	ABOUT	MOST PROBA	BLE
т. н. н.	ENERGY	Loss	(LANDAU	DISTRIBUTION
	2 d- e			
		llan aman r	·····	The state of the second state of the second states and the second states of the second states

FOR VERY SMALL EMPACT PARAMETER CULLISIONS THERE IS A (LOW PROBABILITY) CHANCE OF PRODUCING A VERY HIGH ENERGY SECONDARY ELECTRON - S-RAY.

WHILE IT HAS HIGH-ENERGY COMPARED TO "NORMAL" IONISATION IT HAS LOW ENERGY COMPARED TO RELATIVISTIC PARTICLE IN THE FIRST PLACE.

Note: Most probable energy isn't averaged energy

F10. 3. The Landau distribution of energy losses ϵ for 3-Bev protons traversing a thickness 6.97 gm/cm² of Be, for which $\epsilon_{prob} = 10$ Mev, $\epsilon_{Av} = 11.10$ Mev, and $W_{max} = 17$ Mev.

DELTA ELECTRONS HAVE AT LEAST TWO IMPLICATIONS FOR PARTICLE DETECTOR PERFORMANCE

. . . .

1) SOME TRACKERS USE dE/dx FOR PARTICLE ID (SEE LATER). LANDAU TAIL CAN MASK 20-40% EFFECTS OF DIFFERING PARTICLE MASSES IF NOT PROPERLY ACCOUNTED FOR.

2) S-RAYS CAN BE "ORTITOGONAL" TO ORIGINAL PARTICLE TRAJECTORY. IN VERY PRECISE TRACKERS (SILICON) THIS CAN DETERIORATI POSITION RESOLUTION.

FAR FROM AN EXACT SCIENCE, BEWARE OF LIMITATIONS OF PARAMETRISATION (-TT)

Multiple Scattering

- As particles traverse a medium they are deflected by many small angles
- $\frac{x}{y_{plane}}$
 - Collisions mainly with nuclei in the material
 - Columb scattering
- For ~98% of cases can approximate by Gaussian with

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}} = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x z^2}{X_0 \beta^2}) \right]$$

• X₀ is the <u>radiation length</u> of the medium

NB. DISTRIBUTION OF O. LOOKS LIKE:

$$\theta_0 = \theta \operatorname{rms}_{\text{plane}} = \frac{1}{\sqrt{2}} \,\theta_{\text{space}}^{\text{rms}} = \frac{13.6 \text{ MeV}}{\beta c p} \, z \, \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x \, z^2}{X_0 \beta^2}) \right]$$

- For z=1, $\beta \rightarrow 1$, above formula varies from measurements by less than 10%
- For 1E-3 < x/x₀ < 1E2, often enough: $\theta_0 \sim \frac{13.6}{\beta cp} \sqrt{\frac{x}{x_0}}$ • In practical applications (particle traversing more than 1
- In practical applications (particle traversing more than 1 material), it is better to compute combined x & x₀ and apply above formula once.
 - \circ Scattering angles are not independent \rightarrow Cannot just sum in quadraqure

Bremsstrahlung

- For electrons, Brem dominates in high energy, ionisation in low energy
- Where the two breaks even is called "critical energy"

Radiation Length

- Define as the thickness of material in units of (g/cm²)⁻¹
 - Over which a **high energy electron** loses all but e⁻¹ of its energy

$$\frac{1}{X_0} = 4\alpha r_e^2 \frac{N_A}{A} \left\{ Z^2 \left[L_{\rm rad} - f(Z) \right] + Z L_{\rm rad}' \right\}$$

$$f(Z) = a^2 \left[(1+a^2)^{-1} + 0.20206 - 0.0369 a^2 + 0.0083 a^4 - 0.002 a^6 \right] \qquad a = \alpha Z$$

Table 34.2: Tsai's $L_{\rm rad}$ and $L'_{\rm rad}$, for use in calculating the radiation length in an element using Eq. (34.25).

Element		L_{rad}	$L'_{ m rad}$
Н	1	5.31	6.144
He	2	4.79	5.621
Li	3	4.74	5.805
Be	4	4.71	5.924
Others	>4	$\ln(184.15 Z^{-1/3})$	$\ln(1194 Z^{-2/3})$

Photon interactions

Figure 34.15: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [50]:

 $\sigma_{p.e.}$ = Atomic photoelectric effect (electron ejection, photon absorption)

 $\sigma_{\text{Rayleigh}} =$ Rayleigh (coherent) scattering-atom neither ionized nor excited

 $\sigma_{\text{Compton}} =$ Incoherent scattering (Compton scattering off an electron)

 $\kappa_{nuc} =$ Pair production, nuclear field

 κ_e = Pair production, electron field

 $\sigma_{\text{g.d.r.}}$ = Photonuclear interactions, most notably the Giant Dipole Resonance [51]. In these interactions, the target nucleus is usually broken up.

Original figures through the courtesy of John H. Hubbell (NIST).