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Figure 3.1. Characterization of transverse and longitudinol degrees-of-freedom of particle
motion.
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Figure 3.4. Deflection of pariicle by i
magnetic element.



Ray initially porallel to the optical axis is bent by a convex lens causing it
cal point a distance f away.
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r a concave lens, the focal length is of opposite sign. In this language,
igress of a ray through the interlens space of length L is given by
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erefore, the matrix corresponding to transport of the ray through fir
icave lens, then a drift, and then a convex lens may be written as
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re 3.6. Exomple of o porticle oscillotion through o system of lenses where f=L /2. Th
mum displacement is independent of the size of the accelerctor.
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Figure 3.7. Coordinate system for development of equation of motion.
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Figure 3.8. Time rate of change of unit vector X.
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.10. The spring constont K varies with position, but is normally constant wil
componenis of the accelerator.
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FIGURE 2.9 Betatron oscillations. In a ring accelerator, each transverse coordinate x
of a particle oscillates as a function of path length s within an envelope described by the
so-called B-function. In the example illustrated, focusing quadrupoles are located at the
peaks and defocusing magnets are located at the troughs of the - function. A cosine-like
trajectory starting at s = 0 and a sine-like trajectory starting at s = 0 are shown [After M
Sands, “The Physics of Electron Storage Rings: An Introduction™, SLAC-r-121,35(1970)]



Table 2: Summary of the main LHC beam and machine parameters for 2015. It should be noted that the emittance values
in collision are optimistic and assume emittance growth only from IBS with values from Ref. [15]. If the scrubbing
is not fully successful, larger emittances should be expected. Furthermore, the intensity in collision assumes a 95%
transmission of the injected intensity. It should also be noted that the 2012 mm kept collimator settings in collision might

still be modified to achieve a larger margin for machine protection between the TCDQ and the TCTs.

Parameter Unit Value at injection Value at collision
Beam energy TeV 0.45 6.5
B* at IR1I/IR2/IR5/IR8 m 11/10/11/10 0.8/10/0.8/3
half crossing angle at IR1/IR2/IR5/IR8 prad | -170/170/170/170 | -145/120/145/-250
Tunes (H/V) - 64.28/59.31 64.31/59.32
Parallel separation at IR1/IR2/IR5/IR8 mm 2/2/2/3.5 | 0.55/0.55/0.55/0.55
Normalized emittance (BCMS/nominal) pm >13/>24 >1.7/>27
Total number of bunches (BCMS/Nominal) — < 2604 /2748

Number of bunches colliding at IR1/5 (BCMS/Nominal) - < 2592/2736

Bunch intensity p < 1.3 x 101! < 1.2 x 1011
Bunch length (40) ns 1.0-1.2 1.0-1.25
Collimator settings - 2012 mm kept 2012 mm kept
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accelerator located at equivalent values of the amplitude function, we would
expect the rms value of the closed orbit distortion to be larger than the
preceding figure by a factor of order N'/? with the placement error & also
reinterpreted as an rms value, In the Tevatron, N = 100, so we come to an
estimate of 10 mm for the rms orbit distortion due to quadrupole placement
crrors, and we would expect peaks larger than the rms by some factor on the
order of 3 or 4, depending upon the distribution. As a consequence, we need
some means of correcting steering errors as a basic design feature in
synchrotrons of this scale.

Correction of closed orbit distortions can be carried out with the aid of a
set of independently powered steering dipole magnets, The same set of
steering dipoles can be used to make intentional closed orbit distortions to
facilitate a variety of accelerator functions. More rigorous and quantitative
calculations of the above arc the subject of some of the problems at the end
of the chapter,

As a final note, referring to Equation 3,146, we observe that there is no
closed orbit if the tune is an integer. This is the most clementary example of
a resonance. Of course, we didn't need to go through any algebra to find that
out. If the tune were an integer, the steering crrors would just reinforce from
turn to turn until the oscillation amplitude became large enough to strike the
walls of the vacuum chamber. The implication in the formula that the orbit
goes to infinity is just an artifact of our approximations. But since infinity is
only a few centimeters away, the approximations are pretty good,

3.4.2 Focusing Errors and Corrections

A gradient error would be expected to alter the tune of a circular accelerator.
Let there be a single gradient error equivalent to a thin lens quadrupole with
focal length f. The matrix M for a single turn is then

10
M=M,|_1 | (3.147)
f

where A, is the matrix for the ideal ring. From the trace of M it follows that
18, .
cos 2wy = cos 2Ty — 3 -},- sin 27y, (3.148)

where v and v, are the new and old tunes respectively, and B, is the original
amplitude function at the point of the perturbation, For the ideal ring,
presumably v is real by design. But depending on the sign and magnitude of
the gradient error term, » can become complex; that is, the motion can
become unstable, Since, for small magnitudes of the gradient error term, the
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Flgure 3.18. Phase spece developmant of park-
Ee cle trojectory in presence of holf-indeger reso-
nonce.

instability will occur for » near an integer or half integer, these instabilities
are called half-integer resonances. There will be a range of values of v, for
which the motion is unstable; this range is called a stopband,

Just as in the case of dipole error resonances, we didn't need to use any
algebra to demonstrate that quadrupole errors can produce resonance ef-
f;us. Figure 3.18 represents the phase space history of a particle on succes-
sive turns as it passes the gradient error. The initial motion, in the absence of
the error, was one in which the tune was an odd multiple of onc-half.
Successive passages of the gradient error just add constant vectors parallel to
the vertical axis,

If the tune is not near a half-integer and the perturbation is sufficiently
small, we can obtain a useful expression for the tune shift due to a gradient
error by writing

v =y, + v (3.149)

and lupanding the cosine term on the left hand side of the last equation. The
result s

1
6v-—ﬂ°

et (3.150)

If there is a distribution of gradient errors, this last result generalizes to

_L B 1 B(s)BY(s)
By E;—‘—OH¢TB;)—¢; (3.151)

and is the lowest order (in gradient error) approximation to the tune shift.
In analogy with steering errors and corrections, one can make adjustments

to the tunes of the accelerator by intentionally introducing perturbations on

the gradients. The capability to adjust the tune is essential to modern high



