Detector Simulations and

Modelling

Typical problems in the design / analysis of HEP ex-
periments

e How well will/does a detector perform?
— Acceptance and efficiency of the device

— Resolution (energy, momentum, TOF, etc.)
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e VVWVhat can be done to improve or optimize design?
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e How do I correct “observed data”’ to compare with models?
e Can I make a given measurement?

— What running time is required?

— What would be needed?
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General Strategy

The general strategy is to take an integrated approach
e Use MC Generator to create 4-vectors

e Use detector simulation to model response of detector to
particles

e Produce ‘“raw data” record identical in structure to real data

e Process as real data
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Review of Simple Principles

Must first understand “back-of-the-envelope” calcula-
tions

e Should be able to calculate basic performance without re- |
sorting to huge “black box”

e Also necessary tool to validate full-blown detector simulation

For example, tracking chamber momentum resolution

e Gluckstern, NIM 24, 381 (1963).

e Calculate uncertainty in curvature k

e [ 720 b= L
Sk ~ -
res = T2\ N+ 4 &

e Good approximation to drift chamber performance
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Calorimeter Resolution

Response of calorimeter to high energy showers is
O ~ FVE
e Determine missing energy resolution of hermetic calorimeter

e |reat as

Y, = Ep;cos¢; and ETy = Ep, sing;

e Results in o(Bp) ~ Fv/>  Ep; (CHECKY)

Can use this to determine what the real response should
behave as

e But note that for CDF

ol = 1.44/ Z Er

e Other effects that must be considered

but FF~ 1.1




More on Back-of-the-Envelope Calculations

Make use of variety of parametrisations

e Shielding calculations

C %

e Multiple scattering formula

L e dldx
A
~ e particle lifetimes and production properties
L _
5 With this arsenal, can make reasonable approximations
- e SDC Letter of Intent based on such calculations
e Backed up in specific cases with more detailed modelling
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Paramelers 3-3

Table 3-1

“and detector requirements

A summary of the parameters of the baseline SDC calorimeter which L
been assumed in the subsequent analyses. The calorimeter depth is quoted in

interaction lengths (A).

Parameter Barrel Endeap Forward
Coverage Il <14 1d.<|p <3.0 3.0< i <60
Radius of front face (m) 2.10
z position of front face (m) 4,47 12.00
Compartment depth
- ENL = Coil) 1.1 0.9 ' E
e HACI 41 5.1 150 g R
HAC2 4.9 6.0
EM resolution
a 0.14 0.17 0.50
b 0.01 0.01 0.05
HAC resolution ‘
a 0.67 0.73 1.00
b 0.06 0.08 0.10
ITAC nonlinearity
a 1.13 1.16 1.16
i 0.31 0.38 0.38

8 barrel and 4 mm lead plates in the end-
the 4 mm scintillator throughout. The
ant term of 0.01 has been retained. We
hat the electron response is linear, as
e8 have shown that with a massless gap
@t energy deposited just behind the SDC
essible to achieve a linear response for
v roughly 10 GeV (see Chapter 6).

¢ particle response for hadrons has
ized from CALORSY simulations. The
: constant terms are displayed in Ta-
 the reasons outlined above, the hadron
8 poncompensating with a resulting /e
28 a function of energy that is para-

s:

beam results indicate that the perfurmance of the
actual calorimeter may be slightly berter than that
given in Table 3-1 (smaller stochastic and constant
terms in the resolution and a berter 7/e response
ratio have been observed).

Muon system

The performance of the muon system is de-
scribed in terms of a momentum cesolution that is a
function of p, and . The parametrization used here
is shown in Fig. 3-2 for several values of muon p,.
‘This resolution has been derived from the covariance
matrix for fits to simulated measurement points, ig-
noring any pattern recognition effects, but including

the effucte of mnltinle arnttorine and misalionmente




Where Do These Fail?

Simple calculations fail for a variety of reasons

1. Have to estimate competing effects, eg.

e jet response
— intrinsic response

— out-of-cone corrections

— overlap with other particles

e tracking
— two-track separation

— correlation with several devices

— unusual detector geometries

2. Complex final states or interactions
e correlated effects

e inability to deal with complexity
— trackfinding in dense jets

— particle ID in cluttered environment

3. Detector response difficult to parametrise, eg.

e shower leakage through calorimeter cracks




Implementation of Typical Detector Simulati

First must incorporate a description of detector geom-
etry

e Must include definitions of volumes

— define active regions

— usually heirarchical

e Composition of volumes
— amount of material

— radiation lengths and absorption lengths

/

e Requires a “database” that is efficiently accessed

— GEANT is a good example of this approach
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Perform Stochastic Simulation

Step each generated particle through the detector
e ‘“swim"” the particle through B field using RK
e incorporate step size commensurate with features of detector

e At each step:

1. Determine if particle interacts during step
— decays

— suffers a nuclear interation

— multiple scatters

o of

Incorporate energy loss in material

3. Check to see if a volume boundary crossed
— If so, cut step to find exit point

— Perform whatever bookkeepping
L~
Y

4. Check to see if passing through active detector
— simulate detector response

Continue till particle exists detector



Examples of Detector Response

For tracking detector (eg, Drift Chamber)

e determine cell of detector

e determine exact point in sense cell
e ‘‘smear’” measured point
e convert to a TDC count

e include inefficiency

Calorimeter response can be done in a number of ways

1. parametrise response of calorimeter cell to shower
e typically quite fast

e requires good model of shower response

2. Use detailed shower MC
e EGS typical for EM showers

e GEISHA favourite model for hadronic showers

9



Tuning Simulations

Largest effort is involved in validating simulations

e Have to ensure that simulation is accurate
— volumes correctly defined
— detector response correctly modelled

— consistent with operation of detector

e Have to understand time dependence of detector response

— Calibration constants for detector should take into ac-
count variations

— Have to ensure this!

Typically done by using test beam data first

e Next steps require studying data and comparing with detec-
tor simulation

e Use specific channels to test understanding

e Feedback into both simulation and data analysis
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Case Study: Dijet Balancing at CDF

CDF has studied calorimeter response by using
99 =99
. 37 . . .
which generates two equally Salanced jets in calorime-
ter

e ook for two clusters of energy

e Compare average energy of one jet with the en-
ergy of the jet in central calorimeter

o

e Calibrate central calorimeter response

— Use test beam data

— Use single particle response

e Use this to develop a correction function

— Also in ‘“fast” detector simulation
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Figure 1: MPF vs. 5 from data a) 50 < TP, < 100 GeV/e, b) 100 < TP, < 130 GelV/e.



Limitations of Detector Simulations

Detector simulations are limited in various ways

e Only as good as the accuracy of the modelling
— Have to really understand detector

— Have to make sure physics process is correctly described

e T loney MO G worect ]

e Always limitations in approximations
— Depends on what you are looking at

— Closer you look, generally find more problems
COE -  den't wwdes Fernd v
Wclwﬁn-.@ 16 leve |

e Things that are not checked are probably wrong

— Just depends on the level

e Sometimes difficult to get the right information

— Too much information at times
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GEANT

CERN has developed a general-purpose simulation pack-
age: GEANT

e Provides tools for defining volumes
e All standard algorithms for incorporating particle interactions
e Provides graphical detector display

e User supplies volume description and response of active com-
ponents

o deline veluwnes

o foop oA quhéldS'
‘orqauc\qla

o a,emmlv\ sutpot

Has wide-spread acceptance

e But it is slow and cumbersome at times

e Avoids reinventing much of the wheel so very useful place
to start
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Detector Readout and Data
Acquisition Systems

Organisation of “typical” HEP appartus
e Detector
e Front End Electronics
e Data Collection
e Data Acquisition
e Trigger System
e Alarms and Limits / Controls / Monitoring / Slow Control

e Online Computing and Software

Will ook at each of these components in more detail
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T he Detector

Any HEP Detector is composed of many subdetectors
e tracking
e calorimetry
e particle ID

e lepton and hadron identification

Fach subdector works by detecting particles using the
interaction of particles with materiai

1. ionisation

2. radiation (synchroton, Cerenkov, x-ray, scintillation)

Typically detectors are segmented in some manner
s Sntzox oTRI® OETEoRS ( i10F - 10€ celis)
e [onisation counters — electrostatic cells (104 cells)

e calorimeters — cells or towers (103 — 104 towers)

{' 7 e scintillators — divided into “paddles’ (102 — 103)



Front End Electronics

Each segment must be instrumented with necessary
electronics

e Must have method of amplifying ionisation signals

— preamplification ( “preamps” ) to generate detectable sig-
nal

e detection of charge (using a capacitor) and/or time of arrival
of signal, eg.

— discriminator to detect when collected charge exceeds
given threshold

— total charge could be integrated
+« usually done in a time “window"

x total charge (analogue) is then digitized using ADC

e Signals are often “shaped"” to improve S/N characteristics

Type Det. Cap. | Peak Time Chatge -
" pF ““nSec - elsctrons |
Si Pixai .05-5 - 10-30 - | - B2 E4
Si Strip 5-10 - 10-30 .,._32.E4 .
Wire/Pad 5-50 320 | 1E4-1E6 |
Liq. Cal. 500-50,000 100-1000 | 2E4-2E8
PMT -3 35 - | 1E6-1E7 |°

R AE I LR



Visible Light Detectors

Scintillators (both liquid and solid) generate a number
of detectable photons

e Light amplified using photomultipliers
— Best phototubes can detect single electrons via
— Voltage output is proportional to number of photons XY %@%’@
2leeie

e Phototube "base" is a multi-stage amplifier integrated onto
tube

e signal can then be discriminated to determine time-of-arrival

ccim hleder

PMT base
. :
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Examples of Readout Systems

Wire Chamber Electronics

HV Bus Rrni HV In
P ITWW—
< My - Cryy Gnd in
ETTATTTREA(: P
g Svaw - tor 256 )21 e[y Uls Out
) :V\V\/\«'] Thr . LV In
Terminatlon ~— ASD —o % CrL

Calorimeter Electronics

T0 TRIGGER 10 OTHER
SUMMING CHANNELS
LEVELY, 2
-
PREAMPLFIER:  pio STORAGE
SHAPER o sCA U
FROM T ARRAY READ-| TODAO
PHOTO- { ouT } SYSIEM
TURE Low CON-
RANGE son TROL
—
{X32) I ARRAY ADC i
CALIBRATION
ADDRESS
— usT
PROCESSOR
Biiiani §OMH:  LEVEL | LEVEL 2
SLEVEL cLock TAIGGERS

ASD:
AMPLIRER

SRAPER
D18L =4 @ge@ﬁﬁ@&;

SCA.
Swﬂ’ eHED
CaphetToR

ARRaY.



Signal Processing Issues

Usually, must optimise front end electronics to achieve
maximum performance

e signals can be “shaped” by employing filters

e can use rapid sampling of signal
— 60 MHz Flash ADC is commonly used {35%%5

— expensive and generates lots of data for each signal

Signal Shaping can be done to either improve charge
or time resolution

e Important where signal of interest is of a given frequency
e Technology is now quite complex
e Most systems have integrated shaping circuits into front end

e Considered “analogue” electronics —gtill somewhat of a black
art
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Understanding Noise

Have to start with a model for circuit elements and
noise s%u rces
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DETECTOR PREAMPLIFIER FILTER

Make assumptions about DC and AC behaviour of com-
ponents

e Can find approximate analytical solutions
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Can also simulate the heck out of the circuit using
HSPICE

e Bottom line is that you still have to build and measure the
performance to be sure '
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Schematic Diagram of
One Channel of VIKING Chip
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Functional circuit diagram for one of the 128 channels of the Viking-2 chip.




Block Diagram for 128-Channel Chip
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Block diagram of the VIKING with input and output
multiplexing.

Pitch : ~ 47 ym




Output Pulse Shape of VA2
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Noise Versus Capacitance for VA2
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