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Example questions for Particles part of PHY293 Final Exam – 30 November 2009 
 
 
Examples of Short Answer Part (typically worth 4 points each): 
Please answer the following questions showing your reasoning as well as your final answer.  
To receive full marks for your answer, both your reasoning and your answer must be correct. 
 
1. At low temperatures, the temperature dependence of the heat capacity of a metal can be 

described by:  Cv = aT + bT3. 
Briefly describe the origin of each of the terms in this equation and the model system we 
used to derive each term.   
 
 

2. You have a 1000 cm3 container of 1026 neon atoms in thermal equilibrium at room 
temperature and pressure.  The mass of an atom of neon is 3.2x10-26 kg.  Calculate the 
temperature range over which quantum statistics would apply to this system. 

 
 
3. A Boltzmann factor (    

! 

e
"E (s) / kT ) is proportional to the probability of finding the system in a 

state, s, with a specific energy, E(s).  The figure below shows a bar graph of the Boltzmann 
factors versus energy for a hypothetical system at temperature, T.  Based on the 
information presented in this plot, what are the energy, E(s), and the Boltzmann factor for 
the system in its lowest energy (or ground state)?  Using two labelled sketches, show how 
the distribution of Boltzmann factors will change when the temperature of this system is 
increased (T1 >T) and when it is decreased (T2 < T). 

 

 
 

4. The Sackur-Tetrode Equation describes how the entropy of an ideal monatomic gas 
depends on its volume, total energy and number of particles.  From this equation, write 
down an expression for the change in entropy, ∆S, when only the volume changes from Vi 
to Vf.  For an ideal monatomic gas freely expanding into a vacuum, such that Vf=2 Vi, 
calculate the change in entropy, ∆S, for this process.  What is the change in total energy for 
this process?  Briefly explain this result. 

 

    

! 

S = Nk ln
V

N

4"mU

3Nh
2

# 

$ 
% 

& 

' 
( 

3 / 2# 

$ 

% 
% 

& 

' 

( 
( 

+
5

2

) 

* 

+ 
+ 

, 

- 

. 

. 
 

Bo
ltz

m
an

n 
fa

ct
or

 



page 2 of 3 pages 

Examples of Derivation Part (typically worth 20 points each): 
Please answer the following questions showing all the mathematical steps that led to your final 
answer providing sufficient explanations to justify your answer. 
 
5. For a diatomic molecule consisting of distinguishable atoms (such as CO or HCl), the 

energy for a particular rotational level is given by:  E(J) = J(J+1)ε.  The degeneracy of this 
energy level is given by:  (2J+1).  Consider a single molecule for this question. 

 
a. Write down an expression for the rotational partition function of a diatomic molecule 

as a function of J. 
 
b. In the low-temperature limit, each term in the rotational partition function is much 

smaller than the one before it.  By truncating the sum after the second term, 
determine the rotational partition function in the low-temperature limit. 

 
c. Calculate the average energy in the low-temperature limit.  Simplify your answer by 

keeping only the leading order term. 
 

d. Using your simplified answer from part (c), calculate the heat capacity in the low-
temperature limit. 

 
 
 
6. Consider a particular crystalline solid consisting of N non-interacting atoms.  The atoms are 

located at fixed locations in the crystal lattice and the nuclei of the atoms have spin one.  
Therefore each nucleus has three allowed independent spin states labelled by the quantum 
number m, where m = +1, 0, or -1.  The energies of these states are equal to zero in the m 
= 0 state and equal to µNε in the m = +1 and m = -1 states, where µN is the nuclear 
magneton and ε is the field strength. 

  
a. Calculate the partition function for this system. 
 
b. Determine the Helmholtz free energy, F.  

 
c. Calculate the total energy for the crystal.  Simplify your answer to obtain the most 

compact expression.  
 

d. Show explicitly how your answers to parts (a) and (b) would change if the energies 
of the m = +1 and m = -1 states of the atomic nucleus were +µNε and -µNε, 
respectively. 



A list of formulae, perhaps useful and certainly in no particular order

k = 1.38× 10−23 J/K = 8.6× 10−5 eV/K NA = 6.02× 1023

h = 6.626× 10−34 Js c = 3× 108 m/s

e = 1.6× 1019 C R = 8.31 J/mol/K

mp = 1.6× 10−27 kg me = 9.1× 10−31 kg

Physics Formulae:

PV = NkT = nRT lnN ! ≈ N lnN −N

CV =

(
∂U

∂T

)
V

N ! ≈ NNe−N
√

2πN

T−1 =

(
∂S

∂U

)
N,V

S = Nk

[
ln

(
V

NvQ

)
+

5

2

]
dU = TdS − PdV + µdN vQ =

(
h2

2πmkT

)3/2

dF = −SdT − PdV + µdN F = U − TS

Ē = − 1

Z

∂Z

∂β
β =

1

kT

λdeBroglie = h/p EK.E. = mv2/2 = p2/2m

n̄Planck =
1

ehf/kT − 1
u(ε) =

8π

(hc)3

ε3

eε/kT − 1

Stefan’s law: power per unit area = σT 4 where σ = 2π5k4

15h3c2
= 5.67× 10−8 W/m2K4

Wien’s law: peak photon energy of spectrum (in eV); ε = 2.82kT
Ztotal = (Z1)

N for distinguishable particles

Ztotal = (Z1)N

N !
for indistinguishable particles

Average value of parameter X: X̄ =
∑
s

X(s)P (s)

Math formulae:

sinhx =
ex − e−x

2
coshx =

ex + e−x

2
tanhx =

ex − e−x

ex + e−x∫ ∞
−∞

e−x
2

dx =
√
π

∫ ∞
−∞

x2e−x
2

dx =
√
π/2

∫ ∞
0

x3

ex − 1
dx =

π4

15∫ ∞
0

x

ex − 1
dx =

π2

6

∫ ∞
0

x

ex + 1
dx =

π2

12

(
N
n

)
=

N !

n!(N − n)!

For x� 1, ex ≈ 1+x, ln(1+x) ≈ x, sin x ≈ x, cos x ≈ 1−x2/2, sinhx ≈ x, cosh x ≈ 1+x2/2,
tanhx ≈ x. For x < 1,

∑∞
n=0 x

n = 1
1−x .
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