# **PHY293F1 - Particles Part**

Lecturer: Prof. Kaley Walker Office: MP712; 416 978 8218

E-mail: kwalker@atmosp.physics.utoronto.ca

Replies to e-mail within 2 business days (i.e. excluding weekends) but will not answer detailed questions by e-mail
 Office hours: Fridays 14:00 – 15:00

Course website for Particles Part:

- http://www.physics.utoronto.ca/~phy293h1f/293\_particles.html
- Class announcements given on the website

Lectures: 3 hours/week in MP203

• Mon. 15:00-17:00, Tues. 15:00-17:00 and Fri. 15:00-17:00

# My research (1)

- I am the Deputy Mission Scientist for the Atmospheric Chemistry Experiment (ACE) satellite
- Launched in August 2003 for a two-year mission and still going strong...
- We measure over 30 different species in the Earth's atmosphere each day to study the changing composition relating to
  - Ozone depletion
  - Air quality
  - Climate change



## My research (2)

- Studying the Arctic atmosphere from the Canadian high Arctic - PEARL in Eureka, Nunavut
- A team of researchers will be going up there to see what happens when sunlight returns to the high Arctic (Feb.- Apr.)
- On Ellesmere Island, 1100 km from the North Pole
- PEARL is the most northern civilian research laboratory in the world
- Nearest community is 420 km south at Grise Fiord



#### **Textbook and Resources**

- An Introduction to Thermal Physics, Daniel V. Schroeder (Addison Wesley Longman, 2000)
- Available at UoT bookstore etc., should be some used ones
- Additional references available on short-term loan from the Physics and Gerstein libraries listed under PHY293
- *Thermal Physics*, Kittel and Kroemer (Freeman, 1980)
- *Thermal Physics*, Ralph Baierlein (Cambridge University Press, 1999)
- *Fundamentals of Statistical and Thermal Physics*, Frederick Reif (McGraw Hill, 1965)

## **Course Evaluation Recap**

- Problem Sets (four in the Particles Section)
  - Posted Mondays due following Monday by 5 PM
  - Only one question (or sometimes two) will be marked and solutions will be posted
  - Answers should be written up independently
  - Late problem sets (after 5:10 PM) will not be accepted
- Midterm Test
  - Thursday 19 Nov. at 9:30 10:20 AM (50 min.) in EX200
- Final Exam
  - During Dec. exam period TBA
  - Will cover all course material (Waves and Particles)

| Monday             | Tuesday       | Wednesday | Thursday                      | Friday |
|--------------------|---------------|-----------|-------------------------------|--------|
| 26 Oct             | 27 Oct        | 28 Oct    | 29 Oct                        | 30 Oct |
| First lecture      |               |           |                               |        |
| 2 Nov              | 3 Nov         | 4 Nov     | 5 Nov                         | 6 Nov  |
| Problem Set #1 due |               |           |                               |        |
| 9 Nov              | 10 Nov        | 11 Nov    | 12 Nov                        | 13 Nov |
| Problem Set #2 due |               |           |                               |        |
| 16 Nov             | 17 Nov        | 18 Nov    | 19 Nov                        | 20 Nov |
|                    |               |           | Midterm 2 - 9:30<br>in EX 200 |        |
| 23 Nov             | 24 Nov        | 25 Nov    | 26 Nov                        | 27 Nov |
| Problem Set #3 due |               |           |                               |        |
| 30 Nov             | 1 Dec         | 2 Dec     | 3 Dec                         | 4 Dec  |
| Problem Set #4 due |               |           |                               |        |
| 7 Dec              | 8 Dec         | 9 Dec     | 10 Dec                        |        |
| Last class         | Course review |           | EXAMS Start                   |        |

#### 293F1 – Particles Course Schedule

# **Outline of Course**

- Course will generally follow the textbook and will cover most of Chapters 1-3 and 5-7
- No prior knowledge of statistical physics is assumed but will assume that you are familiar with thermodynamic functions such as enthalpy, entropy, etc.
- Some quantum mechanics would be helpful but not required
  - Appendix A in textbook provides a very brief introduction to quantum mechanics - we will review this in class
- Lecture notes will be posted after each day of class
- The best way to learn this material is by solving problems
  - Try to do the problem sets yourself

## **Tentative outline of topics (with ref.)**

- 1. Overview of statistical mechanics
- 2. Temperature and review of thermodynamics (1.1 1.4; 1.6)
- 3. Two-state system and multiplicity (2.1 2.3)
- 4. Large systems and multiplicity (2.4)
- 5. Entropy (2.6)
- 6. Temperature and entropy (3.1 3.2)
- 7. Paramagnetism (3.3)
- 8. Pressure and thermodynamic identity (3.4, 5.1 5.2)
- 9. Boltzmann factor and partition function (6.1)
- 10. Paramagnetism revisited (6.2)
- **7**11. Partition function and free energy (6.5 6.6)
- term 12. Ideal gas (6.7)
  - 13. Blackbody radiation (7.4)
  - 14. Blackbody radiation continued (7.4)
  - 15. Debye theory of solids (7.5)
  - 16. Chemical potential and Gibbs factor (3.5, 7.1)
  - 17. Quantum statistics (7.2)
  - 18. Degenerate Fermi gases (7.3)

## What is Statistical Mechanics?

- Here we start with thermodynamics
  - Study of properties of matter that do not depend on microscopic details of atoms
- Statistical mechanics provides underlying explanation of thermodynamics at microscopic level
  - Using quantum mechanics, we can calculate (in most cases, with some difficulty) behavior of one atom or molecule
  - To explain and predict average behavior of 10<sup>23</sup> atoms or molecules, need to use statistics to go from one to many

### Why Statistical Mechanics?

- Using the microscopic theory of thermodynamics
- To investigate something that we can measure
  - Temperature
  - Specific heat (heat capacity)
  - Magnetization
- Applications
  - Condensed matter physics magnetics, supercond.
  - Atomic and molecular physics -> primarily gas phase
  - Atmospheric physics, astronomy and astrophysics

Is remote sensing of properties

### Temperature

- What is temperature?
  - Operational definition: Temperature is what you measure with a thermometer
  - Theoretical definition: The thing that is the same for two objects, after they've been in contact long enough
- More terminology
  - After two objects have been in contact long enough, they are in thermal equilibrium.
  - The time required for a system to come to thermal equilibrium is called the relaxation time.
  - Contact is when two objects can exchange energy spontaneously in the form of heat.

# More about Equilibrium

| Exchanged quantity | Type of equilibrium |  |
|--------------------|---------------------|--|
| energy             | thermal             |  |
| volume             | mechanical          |  |
| particles          | diffusive           |  |

- Temperature is a measure of the tendency of an object to spontaneously give up energy to its surroundings.
  - When two objects are in thermal contact, the one that tends to spontaneously *lose* energy is the one at *higher* temperature.
- But how do you assign a numerical value for temperature?

#### Thermometers

- How to measure temperature
  - Thermal expansion alcohol or mercury
  - Thermo-electric effect (thermocouple)
  - Blackbody radiation
  - Other electrical properties

• e.g. Change in resistance of standard object

– Gas thermometer

gauge relates change in pressure to temperature

#### **Temperature Scale**

- Celsius (centigrade)
  - Uses water: freezing point at 0 °C and boiling point at 100 °C
- Kelvin (absolute temperature scale)

$$-273.15$$
 °C  $= 0$  K



#### **Ideal Gas**

This is one of three model systems we will be using
Ideal gas: Pressure in  $\rightarrow PV = nRT \leftarrow temperature in K$ Pa  $\sim PV = nRT \leftarrow temperature in K$ Volume  $m^3$   $\sim R = 8.31 J/md/k$ PV = NkT Constant 1.381×10-23 J/K Thumber of molecules • Not exactly true for real gas so when is this model usable? - It is valid is the limit of low density - For most purposes, accurate enough for air (and other common gases) at room temperature and atmospheric pressure NOX size of molecule for average distance