

Some definitions for these "States"
micro state -> specify state of each particle
macrostate -> averall state (e.g. HHT)
multiplicity -> muncher of microstates that
correspond to a given
macrostate

$$\Gamma(3H) = 1$$
 or $\Gamma(2H) = 3$
total multiplicity $\Gamma(all) = 8$
probability of getting particular macrostate
(n heads) = multiplicity = $\frac{\Gamma(n)}{\Gamma(all)}$

Considering a larger system...

• If you have 10 coins, how do you calculate $\Omega(n)$?										
$- 0$ H: $\Omega(0) = 1$	1	2	3	4	5	6	7	8	9	10
-1 H: $\Omega(1) = 0$		9	3	4	5	6	7	8	9	10
$-2H: \Omega(2) = \frac{0x9}{2}$	٦,	2	3	4	5	6	7	8	9	10
$- 3H: \Omega(3) = \underbrace{10 \times 9 \times 9}_{10 \times 9 \times 9}$	1	2	3	4	5	6	7	8	9	10
$- 3H: \Omega(3) = \frac{107070}{3 \times 2 \times 1}$	1	2	3	4	5	6	7	8	9	10
-	1	2	3	4	5	6	7	8	9	10
$=\frac{10\times9\times8\times7(}{(7\times6\times5\times1)(3\times2\times1)}$	1	2	3	4	5	6	7	8	9	10
(7×6×5×…)(3×2×1)	1	2	3	4	5	6	7	8	9	10
= 10!	1	2	3	4	5	6	7	8	9	10
7:3!										

Multiplicity of a Macrostate

• Generalizing from 10 to N

 $\mathcal{L}(3) = \frac{10!}{7!3!} = \mathcal{L}(n) = \frac{N!}{n!(N-n)!} = \binom{N}{n}$

N total number of coms n number of coms chosen

$$\mathcal{N}(n) \Longrightarrow$$
 multipler of ways of chosing
n objects out of N

Moving to a Model System

Another example is the two-state paramagnet

- In a paramagnetic material
 - Magnetic "dipoles" tend to align parallel to any externally applied magnetic field
- Quantized so only certain discrete values are allowed
 - Simplest case, only two values are allowed
 - Either positive or negative orientation of dipole

Two-state Paramagnet

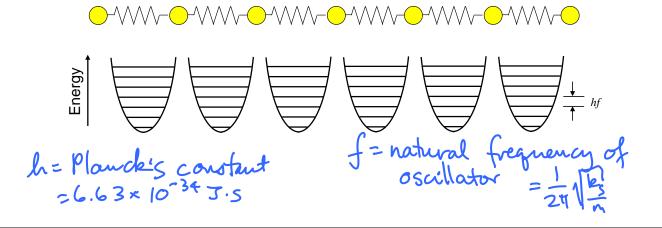
• At a particular time,

 N_{f} inputand N_{f} downward $N = N_{f} + N_{f}$ one macrostate for each N_{f} from $O \rightarrow N$ multiplicity of macrostate $\Omega(N_{f}) = \binom{N}{N_{f}} = \frac{N!}{N_{f}! N_{f}!}$

A more complex system

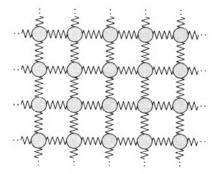
Moving to a more realistic or "physical" model system

- A set of microscopic systems that can store any number of energy "units", all of the same size
 - Such as quantum-mechanical harmonic oscillator
 - Potential energy function: $\frac{1}{2} k_s x^2$
 - Size of all energy "units": hf



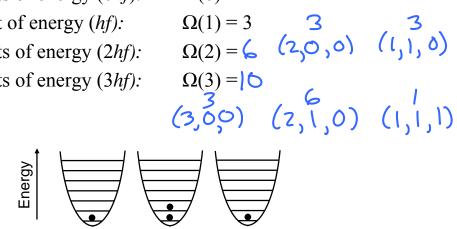
Einstein Model of a Solid

- Oscillations of atoms in a solid can be described as a collection of identical oscillators
 - In three-dimensional solid, can vibrate in three independent directions
 - N oscillations => only N/3 atoms



Einstein Solid

- Each oscillator can have multiple energy units
 - Example: 3 oscillators
 - 0 units of energy (0*hf*): $\Omega(0) = 1$
 - 1 unit of energy (*hf*):
 - 2 units of energy (2*hf*):
 - 3 units of energy (3*hf*):



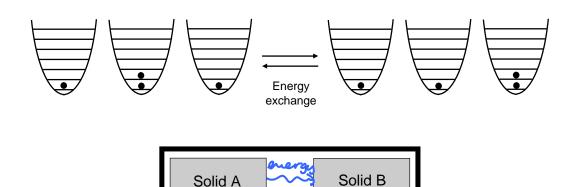
Larger Einstein Solid

• In general, for N oscillators with q energy units: $S\left(N_{3}q\right) = \left(\begin{array}{c}q+N-1\\q\end{array}\right) = \frac{\left(q+N-1\right)!}{q!\left(N-1\right)!}$ Using • energy unit q I line for partition N-1 for oscillators • [•]• (1, 1, 1,) • J]• (2, 0, 1) t 5 other anongoneuts of microsfote

Interacting Systems

Two Einstein solids that can share energy back and forth - A & B

- Assuming weakly coupled systems
 - Exchange of energy between atoms in each solid is much faster than between the two U_A and U_B



 N_B, q_B

 N_A, q_A

System of Two Einstein Solids

• Each solid has 3 harmonic oscillators (N_A, N_B) and they contain a total of six units of energy (q_{total})

2++== 8A + 9B = 6 $N_A = N_B = 3$ to calculate energy need U=qhf < harmonic oscillator System of Two Einstein Solids Ω_A $\Omega_B \quad \Omega_{\text{total}} = \Omega_A \Omega_B$ q_A q_B Ω_{total} $\mathbf{2}$ $\mathbf{3}$ 2 6 $\mathbf{3}$ $\frac{28}{462} = \binom{6+6-1}{6}$ $0 \ 1 \ 2$ $3 \ 4 \ 5$ $\mathcal{S} = \begin{pmatrix} q + N - I \\ q \end{pmatrix}$ stotel depend on number of ways of chosing A ZB for each of NA microstates of A there are NB microstates available for B

System of Two Einstein Solids $\Omega_{\rm total} = \Omega_A \Omega_B$ Ω_A Ω_B q_A q_B $\mathbf{3}$ $\mathbf{5}$ Ω_{total} $\mathbf{2}$ $\mathbf{3}$ $\mathbf{3}$ $\mathbf{2}$ $\mathbf{3}$ $\overline{462} = \binom{6+6-1}{6}$ $\mathbf{2}$ q_A

- Fundamental assumption of Statistical Mechanics
 - In an isolated system in thermal equilibrium, all accessible microstates are equally probably

Probabilities of Macrostates

• If all *microstates* are equally probable, some *macrostates* will be more probable than others