
Review

• System in thermal equilibrium with a reservoir at temperature T

• Now use this to calculate thermodynamic properties of more 
complex systems from microscopic model considerations

“System”Reservoir

Boltzmann Factor

• This is one of the most powerful tools in statistical physics

• Can use it to find the probability of finding the system in any 
particular microstate, when the system is in thermal 
equilibrium with a reservoir at temperature T

• Simple system to consider first:  single atom + reservoir

“System”
Energy = E

Reservoir
Energy = UR

Temperature = T



Probability

• If the atom was completely isolated from the rest of the 
Universe

– Each of the energy levels would be equally probable

– However, it is not - it can exchange energy with some 
“reservoir” at a fixed temperature T

• In this case, the atom will more than likely be found in some 
states rather than others

– Depending on their energies

• Consider two states of the atom:  s1 and s2

– Since the system (atom + reservoir) is isolated, so we can 
say that all possible states for the combined atom + 
reservoir system are equally probable

Interacting Systems

• Consider our atom+reservoir system as two interacting systems

Energy
exchange
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Probability

• ΩR(s1) - multiplicity of reservoir when atom is in state 1

• ΩR(s2) - multiplicity of reservoir when atom is in state 2

• If ΩR(s1) = 100 and ΩR(s2) = 50

– Then it is twice as probable that the atom will be in s1 than 
in s2

– Because there are twice as many equally probable states

• The probability is directly proportional to the number of 
microstates for reservoir

P(s2)

P(s1)
=
ΩR (s2)

ΩR (s1)

Boltzmann Factor

• Starting from P(s2)

P(s1)
=
ΩR (s2)

ΩR (s1)



Boltzmann Factor

• Boltzmann factor is proportional to the probability of the 
corresponding microstate, s, with energy E(s) 

• Total probability of finding the atom in one of the states is 1

– So, to get the probability requires normalization

    P(s)∝e−E (s) / kT



Partition Function

• The normalization constant is called the partition function:  Z

– Partition function depends on temperature and thus 
describes how many states are available

• Now the probability of state, s, can be written as

This equation is often called the Boltzmann Distribution
    
P(s) =

1

Z
e−E (s) / kT

Z = e−E (s) / kT

s

∑

Boltzmann Distribution

• Constant shift in energy scale has no effect on probability

P(s) =
e−[E (s)+E0 ] / kT

e−[E (s)+E0 ] / kT

s

∑
=

e−[E(s)] / kT

e−[E(s)] / kT

s

∑
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Example of the Sun

• Consider the spectrum of the atmosphere of the Sun

Solar spectrum from BASS2000 archive; http://bass2000.obspm.fr/solar_spect.php

Energy Levels for Hydrogen Atom

• Microstates for this system are the allowed energy levels for 
the hydrogen atom

-1.5 eV

-3.4 eV

-13.6 eV

Energy



Studying Atomic Energy Levels

• To investigate the energy 
levels of an atom, you need 
to measure the spectrum

– Transitions between 
quantized energy levels

• Can measure the light 
emitted or absorbed by the 
atoms

Cell with Sodium gas

Lamp with Sodium gas



McMath-Pierce Solar Telescope

Photo credit:  John Owens

Kitt Peak National Observatory, Arizona, elevation ~2100 m 

Visible Spectrum of the Sun

© National Optical Astronomy Observatory/Association of Universities for Research in Astronomy/National Science Foundation


