### Review

• System in thermal equilibrium with a reservoir at temperature T



• Now use this to calculate thermodynamic properties of more complex systems from microscopic model considerations

## **Boltzmann Factor**

- This is one of the most powerful tools in statistical physics
- Can use it to find the probability of finding the system in any particular microstate, when the system is in thermal equilibrium with a reservoir at temperature T



• Simple system to consider first: single atom + reservoir

# **Probability**

- If the atom was completely isolated from the rest of the Universe
  - Each of the energy levels would be equally probable
  - However, it is not it can exchange energy with some "reservoir" at a fixed temperature T
- In this case, the atom will more than likely be found in some states rather than others
- states rather than others
  Depending on their energies
  Consider two states of the atom: s<sub>1</sub> and s<sub>2</sub> *Consider two states of the atom:* s<sub>1</sub> and s<sub>2</sub>
  - Since the system (atom + reservoir) is isolated, so we can say that all possible states for the combined atom + reservoir system are equally probable



## Probability

- $\Omega_{R}(s_{1})$  multiplicity of reservoir when atom is in state 1
- $\Omega_R(s_2)$  multiplicity of reservoir when atom is in state 2
- If  $\Omega_{R}(s_{1}) = 100$  and  $\Omega_{R}(s_{2}) = 50$ 
  - Then it is twice as probable that the atom will be in  $\boldsymbol{s}_1$  than in  $\boldsymbol{s}_2$
  - Because there are twice as many equally probable states
- The probability is directly proportional to the number of microstates for reservoir



### **Boltzmann Factor**

| • Starting from $\frac{P(s_2)}{P(s_1)} = \frac{\Omega_R(s_2)}{\Omega_R(s_1)}$ $S = \frac{e^{S_R(s_2)/k}}{e^{S_R(s_2)/k}} = e^{S_R(s_2) - S_R(s_1)/k}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| dSp====================================                                                                                                               |
| $JS_{R} = \frac{Q_{R}}{T} - S_{R} = \frac{Q_{R}}{T}$ $S_{R}(s_{2}) - S_{R}(s_{1}) = \frac{1}{T} \left[ Q_{R}(s_{2}) - Q_{R}(s_{1}) \right]$           |

 $=\frac{1}{T}\left[E(s_2)-E(s_1)\right]$ plugging backin P(s2) \_ p -[E(s2)-E(s,)]/10T = C  $= E(s_2)/leT$  = C  $= E(s_1)/kT$ Boltzman factor => exp(-E(s)/bT) **Boltzmann Factor** 

• Boltzmann factor is proportional to the probability of the corresponding microstate, *s*, with energy *E*(*s*)

 $P(s) \propto e^{-E(s)/kT}$ 

Total probability of finding the atom in one of the states is 1
 So, to get the probability requires normalization

#### **Partition Function**

• The normalization constant is called the partition function: Z

$$Z = \sum_{s} e^{-E(s)/kT}$$

Partition function depends on temperature and thus describes how many states are available

• Now the probability of state, *s*, can be written as  $P(s) = \frac{1}{Z} e^{-E(s)/kT}$ 

This equation is often called the Boltzmann Distribution





held additional quantum num to define our states  $N = 1, 2, 3 \dots$ l=0,1,....n-1 look at , state N=2 - 4 states 120,1 Px

#### **Studying Atomic Energy Levels**

- To investigate the energy levels of an atom, you need to measure the spectrum
  - Transitions between quantized energy levels
- Can measure the light emitted or absorbed by the atoms



