
Review

• Comparing size of energy
steps with kT

– Different limits with 
temperature
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Comparing systems

• In an isolated system (fixed energy U)

– Ω(U), number of available microstates, is fundamental 
quantity

– S = klnΩ tends to increase

• In a system in thermal equilibrium with a reservoir (fixed 
temperature T)

– Z(T) is property most analgous to Ω

– Z essentially gives number of microstates available

– So for this system, what tends to increase?



Partition Function and Free Energy

• Under these conditions, Helmholtz Free Energy tends to 
decrease

– Intuitively, a function of this form describes system

– Gives appropriate units of energy

– Also, can derive it from:

F = −kT lnZ
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For the two-state paramagnet

• Recall that lnΩ = N ln N − N↑ lnN↑ − N↓ ln N↓



Equipartition Theorem Revisited

Initially, this was stated. Now, we will derive it.

• Applies to energies in form of quadratic degrees of freedom

E(q) = cq2

• System is one degree of freedom in thermal equilibrium with 
reservoir at temperature T

• States of system, q, are independent and spaced by Δq



Composite Systems

• Moving from partition function for single particle to system of 
several particles 

Ztotal = e−β [E1 (s)+E2 (s)]= e−βE1 (s)e−βE2 (s)
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Composite Systems

• In general, for non-interacting indistinguishable particles

• We will apply this to an ideal gas

– Rotational, vibrational, translational energies

• We will use semi-classical approach

– Quantum mechanics to calculate energy levels (states)

– Classical Boltzmann distribution to calculate 
thermodynamic properties (high temperature limit)

  
Ztotal ≈

Z1Z2LZN
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