Classical versus Quantum Systems

• Translational partition function for *N* ideal gas particles

$$Z_{3D} = \frac{1}{N!} \left(\frac{V}{v_Q} \right)^N \quad \text{where } v_Q = \left(\frac{h}{\sqrt{2\pi m kT}} \right)^3$$

- Usually have very large number of states available and much smaller number of particles
- When $\upsilon_Q(=l_Q^3) \ll V/N$, there is very little chance for two particles to be in the same state (dilute gas, ideal gas...)

Bosons versus Fermions

- As we move to discussing more interesting systems, we need to consider quantum statistics
- So far, have assumed that two particles in our system could occupy the same state but it was unlikely
- However, some types of particles can share the same state but others cannot
 - Bosons (e.g. photons, He atoms) can share same state
 - Fermions (e.g. electrons) cannot share the same state (Pauli exclusion principle - two identical fermions cannot occupy the same state)

Blackbody Radiation

- Consider radiation given off by "object" when heated - Such as a stove burner, resistive heater element
- As temperature of "object" increases, peak in emitted frequencies increases
 - Exact shape of frequency spectrum depends on "object"
- Ideal is a "blackbody"
 - Emits and absorbs all frequencies of radiation perfectly

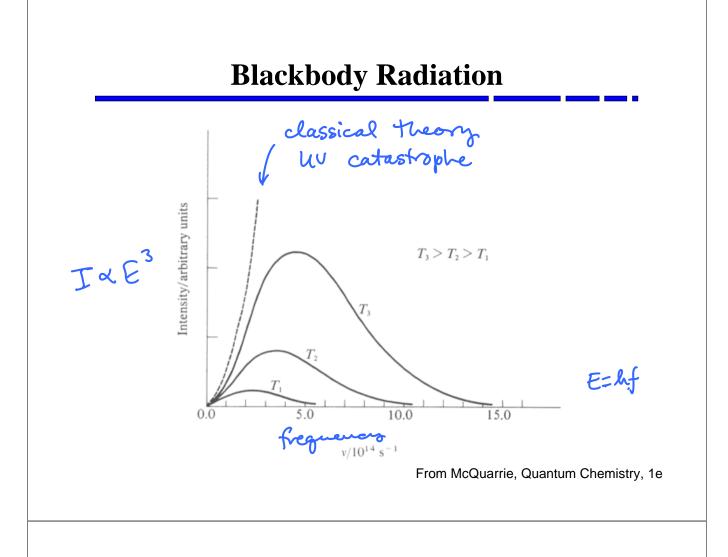
- Radiation emitted is "blackbody radiation"

Description of Electromagnetic Field

Starting with a classical description of EM field:

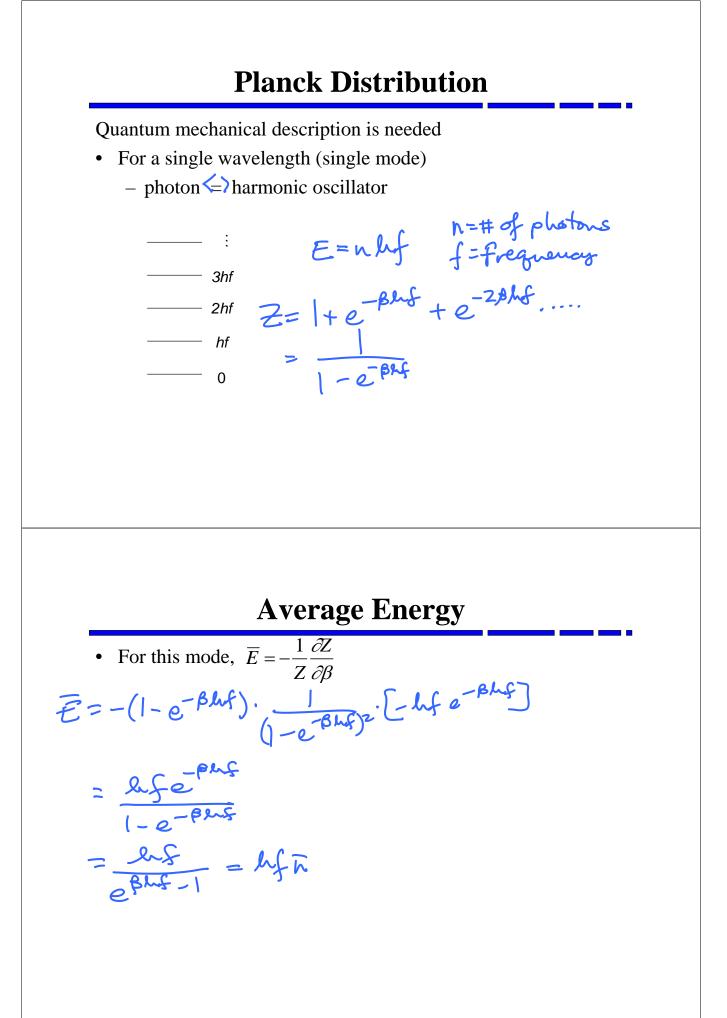
- Radiation field exists inside a box at a given temperature
- Box can support various standing wave patterns and each acts as a harmonic oscillator ($f = c / \lambda$)
- In this classical description,
 - Each has average thermal energy, kT

- Total thermal energy is infinite from number of $\mathcal{U}=\mathcal{U}=\mathcal{U}$ hodes can be supported



Photons

- Photons are bosons consider as a photon gas
 - Number of photons is not conserved in system
 - Don't need to consider chemical potential (μ)
 - Special case of Bose-Einstein distribution
- Want to calculate total energy of photons in box
 - Count number of photons for given energy
 - Convert number distribution to energy distribution
 - Sum over all energies
 - Convert sum to integral and calculate integral



Planck Distribution

• Number of oscillators inside box that contribute to energy is finite

$$\overline{n}_{pl} = \frac{1}{e^{h/kT} - 1}$$
as hef to be a number of oscillators with
thes arrays because small
puts finite window tobal number of
oscillators cantroning to mergy
seconds we catastrophe
Allowed Frequencies for Photon Gas
Consider 1-D box of length L
• Allowed wavelengths and momenta for photons

$$M_{T=L} \qquad h=2U$$

$$P = \frac{h}{2u} \cdot n \qquad h= moder label
E=M_{T} = \frac{f}{f} = \frac{f}{2u}$$

3D $E = p.c = \sqrt{p_x^2 + p_y^2 + p_z^{-2}} \cdot c$ = hc [h,2+ny2+nz] ~ magnitude of 24 [h,2+ny2+nz] mode label vector = hen **Total Energy** E.n = n.l.f U=Znfhf = 22 hcn _ | /hx, nyhz ehcn/2kTL_| herd factor of two for independent polarizations of each mode = <u>Lacn</u>. <u>J</u> <u>hand</u> <u>with the polarizations</u> <u>polarizations</u> <u>polarization</u> nx, ny, nz =0,1.... = Janxanyanz he Nnx2+ny2+nz ohen/2k72_1

to spherical coordinates figure show $n_{x_3}n_{y_3}n_z \rightarrow n_{,\varphi}, \varphi$ in fig7.11 dnydnz ->n2sihødødn $\frac{\ln_{x} dn_{y} dn_{z}}{U = \int dnn' \frac{\ln cn}{L} \frac{1}{e^{hcn/2k-TL}} \int sindo \int d\phi}{\int \frac{1}{T_{y_{z}}}}$ $= \frac{\pi}{2} \int dn n^{2} \frac{hcn}{l} \frac{h$ E= hen de= hedn $\mathcal{U} = \frac{8\pi L^3}{\hbar^3 c^3} \int_{0}^{\infty} \frac{\varepsilon^3 d\varepsilon}{\varepsilon^{5/k7} - 1}$ $\int_{3}^{3} = V$ $\frac{\mathcal{U} = 8\pi}{V} \int_{-1}^{\infty} \int_{-1}^{\infty} \frac{\mathcal{E}^{2} d\mathcal{E}}{\mathcal{E}^{2} \mathcal{E}^{2}}$ spectrum of energy density (4) per unit energy (2)

