Classical versus Quantum Systems

» Translational partition function for N ideal gas particles
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» Usually have very large number of states available and much
smaller number of particles

* When v(=l®) << VIN, there is very little chance for two
particles to be in the same state (dilute gas, ideal gas...)

Bosons versus Fermions

* As we move to discussing more interesting systems, we need
to consider quantum statistics

» So far, have assumed that two particles in our system could
occupy the same state but it was unlikely

» However, some types of particles can share the same state but
others cannot

— Bosons (e.g. photons, He atoms) - can share same state

— Fermions (e.g. electrons) - cannot share the same state
(Pauli exclusion principle - two identical fermions cannot
occupy the same state)




Blackbody Radiation

» Consider radiation given off by “object” when heated
— Such as a stove burner, resistive heater element

» As temperature of “object” increases, peak in emitted
frequencies increases

— Exact shape of frequency spectrum depends on “object”

» ldeal is a “blackbody”

— Emits and absorbs all frequencies of radiation F’”’r%'c’@“}
— Radiation emitted is “blackbody radiation”

Description of Electromagnetic Field

Starting with a classical description of EM field:
» Radiation field exists inside a box at a given temperature

» Box can support various standing wave patterns and each acts
as a harmonic oscillator (f=c/ 4)

 In this classical description,
— Each has average thermal energy, kT
— Total thermal energy is infinite
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Blackbody Radiation
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Photons

» Photons are bosons - consider as a photon gas
— Number of photons is not conserved in system
— Don’t need to consider chemical potential ()
— Special case of Bose-Einstein distribution

» Want to calculate total energy of photons in box
— Count number of photons for given energy
— Convert number distribution to energy distribution
— Sum over all energies
— Convert sum to integral and calculate integral




Planck Distribution

Quantum mechanical description is needed
» For asingle wavelength (single mode)
— photon<=> harmonic oscillator
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Planck Distribution

* Number of oscillators inside box that contribute to energy is
finite 1
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Allowed Frequencies for Photon Gas

Consider 1-D box of length L
» Allowed wavelengths and momenta for photons
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Planck Spectrum
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