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Review

• For two systems in diffusive equilibrium

– Chemical potential is the same at equilibrium



Chemical Potential

• Consider relation
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Different Types of Particles

• Initially, we assumed only one type of particle in system

• If it contains several different types of particles

– Need to consider chemical potential for each one

– Thermodynamic identity becomes
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More on Diffusive Equilibrium

• Now consider system in thermal equilibrium and diffusive 
equilibrium with reservoir at temperature, T

– System can exchange particles with environment

• Ratio of probabilities for two different microstates
P(s2)

P(s1)
=

ΩR (s2)

ΩR (s1)



Gibbs Factor

• Starting from P(s2)

P(s1)
=

ΩR (s2)

ΩR (s1)
=

eSR (s2 ) / k

eSR (s1 )/ k = e S R (s2 )−SR (s1 )[ ] / k

Calculating Absolute Probabilities

• Normalizing function for Gibbs factor:

• Grand Partition Function (or Gibbs sum)

– Sum over all possible states (including all possible N)

• Gibbs factor for different types of particles (example two)

    
Z = e

− E (s)−μN (s)[ ]/ kT

s
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e− E(s)−μA NA (s)−μB NB (s)[ ] / kT



Stat Mech Terminology

• For isolated system (as in the ones just used),

– All microstates have same probability

– Microcannonical ensemble

• For system in thermal equilibrium with a reservoir at T,

– State probabilities determined from Boltzmann factors

– Cannonical ensemble

• For system in thermal and diffusive equilibrium with reservoir,

– State probabilities determined from Gibbs factors

– Grand cannonical ensemble

Quantum Statistics

• Useful application of Gibbs factors

• Consider an ideal gas

– Partition function derived for N indistinguishable, non-
interacting particles

– Number of single-particle states much greater than number 
of particles

Ztotal =
1

N!
Z1

N

Z1 >> N



System of Non-interacting Particles

• Start with a system of two non-interacting particles that can 
occupy any of five single-particle states

• Each single particle state has E=0 so each Boltzmann factor is 
1 so Z is same as Ω
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• If distinguishable particles, Z=25

• If indistinguishable particles, Z=15 - not Boltzmann value

Distribution Functions

• If Z1>>N not valid, can use Gibbs factors instead of Boltzmann 
factors 

– Need to consider if particles are bosons or fermions

• Start with one single-particle state of system,

– Energy when occupied is ε, when unoccupied is 0

– If can be occupied by n particles, probability is

P(n) =
1
Ζ

 e−(nε −μn ) / kT =
1
Ζ

e−n(ε −μ ) / kT



Fermi-Dirac Distribution

• For a fermion,

– n can either be 0 or 1

– So grand partition function is

– Average number of particles in state (its occupancy)

Z = 1 + e−(ε −μ ) / kT

n = nP(n)
n

∑ =
e−(ε −μ ) / kT

1+ e−(ε −μ ) / kT

n FD =
1

e(ε −μ ) / kT +1

Bose-Einstein Distribution

• For a boson,

– n can be any non-negative integer

– So grand partition function is

– Average number of particles in state (its occupancy)

  

Z = 1 + e−(ε −μ ) / kT + e−2(ε −μ ) / kT +K

=
1

1− e−(ε −μ ) / kT

n = nP(n)
n
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