Comparing Model Results

~—————— Debye model

----------- Einstein model

Review

» For two systems in diffusive equilibrium
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— Chemical potential is the same at equilibrium
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| dU =TdS—PdV + zN




Chemical Potential
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Different Types of Particles

* Initially, we assumed only one type of particle in system

+ If it contains several different types of particles
— Need to consider chemical potential for each one
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— Thermodynamic identity becomes

dU =TdS—PdV + >_udN,
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More on Diffusive Equilibrium

» Now consider system in thermal equilibrium and diffusive
equilibrium with reservoir at temperature, T

— System can exchange particles with environment

» Ratio of probabilities for two different microstates
P(s) _ ()
P(s) Qg(s)




Gibbs Factor

« Starting from P(Sz) Q- (S,) eR(SZ)/k: [Sk(5)-Sr(5)]/k
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Calculating Absolute Probabilities

» Normalizing function for Gibbs factor:

* Grand Partition Function (or Gibbs sum)
— Sum over all possible states (including all possible N)

:% Z_ Ze—[E(S)—,uN (s)]/kT

» @Gibbs factor for different types of particles (example two)
e_[E(S)_/uANA (s)-ugNg ()] /KT




Stat Mech Terminology

» For isolated system (as in the ones just used),
— All microstates have same probability W e ) N
— Microcannonical ensemble

» For system in thermal equilibrium with a reservoir at T,
— State probabilities determined from Boltzmann factors
. -E(Y T
— Cannonical ensemble L) e

* For system in thermal and diffusive equilibrium with reservoir,
— State probabilities determined from Gibbs factors

— Grand cannonical ensemble L> @,_@CGX%N(S‘)J/ T

Quantum Statistics

» Useful application of Gibbs factors

* Consider an ideal gas

— Partition function derived for N indistinguishable, non-
interacting particles
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Ztotal = W Zl
— Number of single-particle states much greater than number
of particles

Z >>N




System of Non-interacting Particles

«  Start with a system of two non-interacting particles that can ~ © .,2
occupy any of five single-particle states ) D) W\ W\ .\

» Each single particle state has E=0 so each Boltzmann factor is
1 so Z is same as
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« If distinguishable particles, Z=25
o If 1ndlst1ngu1shable particles, Z= 1 5 - not Boltzmann value
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Distribution Functions

» If Z,>>N not valid, can use Gibbs factors instead of Boltzmann
factors

— Need to consider if particles are bosons or fermions

 Start with one single-particle state of system,
— Energy when occupied is €, when unoccupied is 0
— If can be occupied by n particles, probability is

P(n) = e —(ng—un)/KT :le—n(g—y)/kT
Z




Fermi-Dirac Distribution

R . — coununet share shte
For a fermion, SIS A0

— n can either be 0 or 1

— So grand partition function is

Z =14k

— Average number of particles in state (its occupancy)
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Bose-Einstein Distribution

* For a boson,
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— N can be any non-negative integer 0, | y

— So grand partition function is
Z=1+e K L2

1

= |_ g ek

— Average number of particles in state (its occupancy)
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