

Review

Degenerate Fermi gas:

- Conduction electrons in metal treat as free particles
 Non Interacting
- Defined Fermi energy, ε_F , equal to $\mu(T=0)$
 - $\mathcal{V}_{\alpha} = \left(\frac{\lambda}{\sqrt{2\pi}mkT}\right)^{3}$

- Degenerate gas
 - Almost all states below ε_F are occupied and all above are unoccupied

Degenerate Fermi Gas Wavefunctions for free electron in metal block - Represented by standing wave wavefunctions $\varepsilon = \frac{\left|\vec{p}\right|^2}{2m} = \frac{h^2}{8mI^2} \left(n_x^2 + n_y^2 + n_z^2 \right) \qquad \vec{n} \rightarrow n_x \, n_y \, n_z$ - Each "lattice point" (n_x, n_y, n_z) is pair of electron states • One for each spin orientation n_z - Surface of sphere \Rightarrow radius n_{max} n_{\max} n_y n_x **Number of Occupied States** • Energy of state on surface of sphere $\varepsilon_F = \frac{h^2 n_{\text{max}}^2}{2 m I^2}$ number of occupied states $N = 2 \times \frac{1}{8} \times \frac{4}{3} \pi h_{max}^{3}$ = Thmax -> nmax = 23/3N 3 $\Sigma_{f} = \frac{L^{2}}{R_{n-1}^{2}} \left(\frac{3N}{T}\right)^{2/3}$ $=\frac{l^2}{2m}\left(\frac{3N}{TV}\right)^{2/3}$ -> does not depend on size of metal

$$T=0$$

$$T=0$$

$$T=0$$

$$U = 2\sum_{x} \sum_{nx} \varepsilon(\vec{n}) = 2 \int \int \int \varepsilon(\vec{n}) dn_x dn_y dn_z$$

$$U = 2\int_{x} \sum_{nx} \varepsilon(\vec{n}) = 2 \int \int \int \varepsilon(\vec{n}) dn_x dn_y dn_z$$

$$U = 2\int_{x} \sum_{nx} \varepsilon(\vec{n}) dn \int dq \int s dq$$

$$= T\int_{x} \sum_{nx} \sum_{nx} \int dn \int dq \int s dq$$

$$= T\int_{x} \sum_{nx} \sum_{nx} \int dn \int dq \int s dq$$

$$= T\int_{x} \sum_{nx} \int dn \int dq \int s dq$$

$$= T\int_{x} \sum_{nx} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

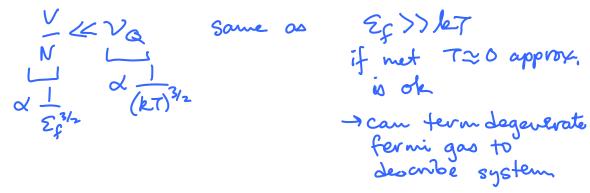
$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

$$= T\int_{x} \int dn \int dq \int s dq$$

Comparing Energies

- Fermi energy for conduction electrons in typical metal – A few eV
- Thermal energy of a particle at room temperature ٠ $- kT \approx 1/40 \text{ eV}$
- Same as comparing quantum volume and volume per particle



k~ 8×10-5 eV/k Ef= ET for Equilev Tf ~ 11,600K fermi temperature **Degeneracy Pressure** • Using $P = -\left(\frac{\partial U}{\partial V}\right)_{ch}$ \rightarrow thermodynamic identity $P = -\frac{\partial}{\partial v} \left[\frac{3}{5} N \cdot \frac{h^2}{2} \left(\frac{3N}{T} \right)^{2/3} V^{-2/3} \right]$ $= -\frac{3}{5}N\frac{l^{2}}{l^{2}}\left(\frac{3N}{l^{2}}\right)^{2/3}\cdot -\frac{2}{3}V^{-5/3}$ $=\frac{2}{5}\frac{N}{V} \epsilon_{f}$ $P = \frac{2}{3} \frac{U}{V} \quad \text{at } T = 0$

Temperatures above Zero K At T=0, cannot determine heat capacity Need small non-zero temperatures to do this Increase temperature from zero, all particles typically gain thermal energy of kT Only electrons within ~kT of Fermi energy can acquire Move to unoccupied states above Fermi energy

Temperatures above Zero K

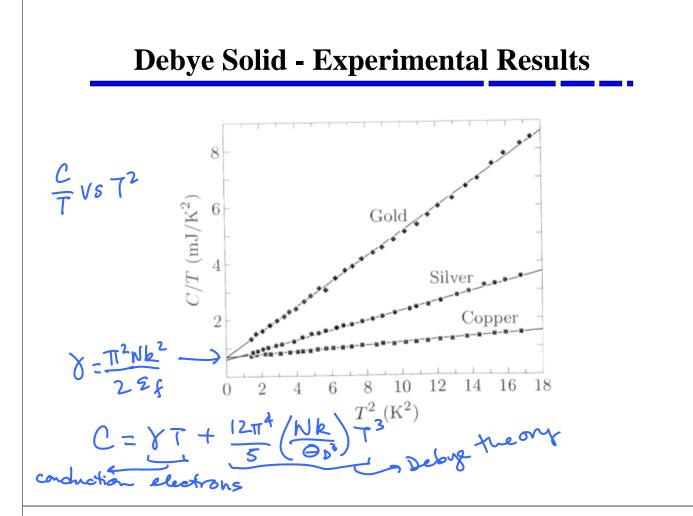
• At T=0, cannot determine heat capacity

- Need small non-zero temperatures to do this

- Increase temperature, all particles gain thermal energy of kT
 - Only electrons within $\sim kT$ of Fermi energy can acquire
 - Move to unoccupied states above Fermi energy
- Additional energy gained related to temperature
 - Number of affected electrons proportional to kT and N

Degenerate Fermi Gas Above 0 K

see text for further Dimensional analysis approach: Additional energy = (number of affected electrons) x (energy acquired by each) a (NET) (ET) $\alpha N(kT)^{2}$ - divide by Ef - constant of system - proportionality constant TT2/4 Li from Sonnerfeld Expansion $U = \frac{3}{5}N\Sigma_{f} + \frac{11^{2}}{4}\frac{N(leT)^{2}}{\Sigma_{f}}$ from additional peol to be in low 7 lowit T << Ef/k room T meets this requirement $C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = \frac{\Pi^{2}}{4} \frac{N}{\Sigma_{C}} 2\left(k^{2}T\right)$ $= \frac{TT^2 N \mu^2}{2 \cdot 2c} T$ linear term in Cu



Distribution Functions Used

Distribution functions describe the average number of particles in $\bar{h} = \sum_{n} n \bar{P}(n)$ a state Quantum statistics for cases when $Z_1 >> N$ condition is not met:

- Fermi-Dirac Distribution (fermions) $\overline{n}_{FD} = \frac{1}{e^{(\varepsilon - \mu)/kT} + 1}$
- Bose-Einstein Distribution (bosons) $\overline{n}_{BE} = \frac{1}{e^{(\varepsilon \mu)/kT} 1}$

Relation to Planck Distribution

• Bose-Einstein Distribution for photons and phonons becomes the Planck Distribution

$$\overline{n}_{BE} = \frac{1}{e^{(\varepsilon - \mu)/kT} - 1} \longrightarrow \overline{n}_{Pl} = \frac{1}{e^{hf/kT} - 1} = \frac{1}{e^{\varepsilon/kT} - 1}$$

• Because $\mu=0$ for photons and phonons

$$M = \begin{pmatrix} \partial f \\ \partial N \end{pmatrix}_{T,V}$$
 at eq. = 0 f has to be
minimum at
equilibrium
photons not conserved
NOTE: Not responsible for density of states
or sommerfeld Expansion in Sec 7.3