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PHY 293F – WAVES AND PARTICLES 
DEPARTMENT OF PHYSICS, UNIVERSITY OF TORONTO 

 
PROBLEM SET #6 - SOLUTIONS 

 
Marked Q1 (out of 7 marks) and Q4 (out of 3 marks) for a total of 10. 
 
1. Problem 2.11 on page 60 of Schroeder. 
 

For two interacting two-state paramagnets, with N=100 dipoles in each, we have 80 energy 
units to share between the two paramagnets.  The total number of macrostates available for this 
system is 81.  This equation is used to calculate the multiplicity of each paramagnet in each 
macrostate and total multiplicity: 
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Using a computer program, we can determine multiplicities of each paramagnet and system of 
two paramagnets.  For brevity, some macrostates are omitted from table below. 
 

Two two-state paramagnets q_total =  80 
N_A =  100 N_B =  100  
q_A omega_A q_B omega_B omega_total 

0 1 80 5.35983E+20 5.35983E+20 
1 100 79 2.04184E+21 2.04184E+23 
2 4950 78 7.33207E+21 3.62937E+25 
3 161700 77 2.48653E+22 4.02071E+27 
4 3921225 76 7.97761E+22 3.1282E+29 
… … … … … 

37 3.42003E+27 43 3.81165E+28 1.3036E+56 
38 5.67005E+27 42 2.82588E+28 1.60229E+56 
39 9.01392E+27 41 2.01164E+28 1.81328E+56 
40 1.37462E+28 40 1.37462E+28 1.88959E+56 
41 2.01164E+28 39 9.01392E+27 1.81328E+56 
42 2.82588E+28 38 5.67005E+27 1.60229E+56 
43 3.81165E+28 37 3.42003E+27 1.3036E+56 
44 4.93782E+28 36 1.9772E+27 9.76309E+55 
45 6.14485E+28 35 1.09507E+27 6.72902E+55 
46 7.3471E+28 34 5.80717E+26 4.26659E+55 
47 8.44135E+28 33 2.94692E+26 2.4876E+55 
48 9.32066E+28 32 1.43013E+26 1.33297E+55 
49 9.89131E+28 31 6.63246E+25 6.56037E+54 
50 1.00891E+29 30 2.93723E+25 2.96341E+54 
51 9.89131E+28 29 1.24108E+25 1.2276E+54 
52 9.32066E+28 28 4.99881E+24 4.65922E+53 
53 8.44135E+28 27 1.91735E+24 1.6185E+53 
… … … … … 

78 7.33207E+21 2 4950 3.62937E+25 
79 2.04184E+21 1 100 2.04184E+23 
80 5.35983E+20 0 1 5.35983E+20 
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Also, we produced a graph of the multiplicity of the whole system (Ωtotal) versus qA the number of 
energy units in paramagnet A. 
 

 
 

Using the results from above, the most probable macrostate of the whole system is when 40 units 
of energy are in each of the two-state paramagnets. 

  

! 

P (qA = 40) =
"(qA = 40)

"total

=
1.89x10

56

1.65x10
57

=11.5%. 

The least probable macrostate is when all the energy units are in one of the two-state 
paramagnets (either qA = 0 or qB=0). 

  

! 

P (qA = 0) =
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= 3.25x10
#37
. 

 
Note that the most probable state for the whole system is when the energy is evenly distributed 
between the two paramagnets (qA and qB=40).  However, the most probable state for each 
individual paramagnet is when qA (or qB)=50 (not 40), the state where there are an equal 
number of spin-up and spin-down dipoles. 

 
 
2. In class, we derived a formula for the multiplicity of a large Einstein solid in the “high temperature” 

limit by using Stirling’s approximation.  Using these same methods, derive a formula for the 
multiplicity of a large Einstein solid in the “low temperature” limit.  In your derivation, remember to 
clearly state the approximations you made and justify why they could be made.  Why is it sufficient 
to use the less exact form of Stirling’s approximation? 

 
Using expressions derived in class for a large Einstein solid where q and N are both large, we 
can omit “-1” from expression because of magnitudes of q and N: 
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Applying Stirling’s approximation for the natural logarithm of the multiplicity, we get: 
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This can be done because both q and N are large. 
 

Because q<<N, we can apply the same type of logarithm manipulation technique that was used 
in class with the Taylor expansion approximation.  From here, we can simplify ln(q+N) to: 
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Then this can be plugged into the lnΩ expression.  After collecting terms, we get:  
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For the low temperature case (q<<N), the q2/N term is very small and can be neglected.   
 
By exponentiating, we get:  
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Here, we could use the less exact form of Stirling’s approximation because of the difference in 
magnitude between q and N (q<<N).  The additional factors cancel when the orders of 
magnitude of N and q are considered in the approximation. 
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3. For a single large two-state paramagnet, the multiplicity function is very sharply peaked about    
N↑=N / 2. 
a. Estimate the height of the peak in the multiplicity function using Stirling’s approximation. 

 
The most likely macrostate for the system is N↑=N↓=N/2.  So the peak in the multiplicity function 
is: 
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Here you need to use the more exact form of Stirling’s approximation because N and N/2 are 
both large and are of the same order of magnitude.   

 
 

b. Use the method that we used in class to derive a formula for the multiplicity function in the 
vicinity of the peak, in terms of x ≡ N↑ – N / 2.  Verify that your formula agrees with your result 
for part (a) when x = 0. 
 
Using Stirling’s approximation, the multiplicity of this system is: 
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 Substituting in for N↑ and N↓ in terms of x and N/2, we get: 
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 Working with the natural logarithm is a little easier at this point, so we can express as lnΩ: 
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Using the relative size of x and N (x<<N) and the Taylor expansion approximation for small 
values (as we have done before), we can simplify the expressions in the various ln terms:  
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Substituting these back into the expression for lnΩ and collecting terms, we get: 
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From here, the term in 2x2/N2 is omitted since it is very small compared to the rest of the terms. 
Exponentiating the expression to get the multiplicity expression, we get: 
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This is a Gaussian function with the maximum value at x=0 (as we found in part (a)), 
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c. Calculate the width of the peak in the multiplicity formula using the width definition given in 

class. 
 

The width of the peak is found when 

! 

" =
1

e
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.  So to find the width, we solve the 

relation
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N
 for x to get  
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x =
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2
.  The full width of the peak is 2x or 

! 

2N . 

 
d. Consider a case where you flipped 1,000,000 fair coins.  Would you be surprised to get 501,000 

heads and 499,000 tails?  Would you be surprised to get 510,000 heads and 490,000 tails?  
Explain why.  
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Since the two-state paramagnet is very similar to the coin flip, we can use the results from part 
(c) in this explanation.   
 
For a set of N=106 coins, the half-width (x or the distance away from the most probable state 
where we are very likely to find the system) is 

! 

x = N = 500,000 ~ 700. 
 
So, obtaining a result that has 501,000 heads is not too far away from the half-width of the most 
probable states we calculated above.  This is not really a surprising result. 
 
Now, obtaining a result that has 510,000 heads (or x=10,000) is much more surprising.  Using 
the expression for Ω derived in part (b), we can compute the multiplicity of this state as a 
fraction of the maximum value: 
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To obtain this result is much more surprising (to the point of shock) because of how far from the 
peak in multiplicity this result lies. 

 
4. Problem 2.29 on page 77 of Schroeder. 

 
For a system of two Einstein solids, with NA=300, NB=200 and qtotal=100.  The total multiplicity 
of this system can be calculated for each of the macrostates using a computer program or it was 
given in the Schroeder in Sec. 2.3/Figure 2.5. 
 
The most likely macrostate occurs at qA=60, so the entropy in units of Boltzmann’s constant is: 
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The least likely macrostate occurs at qA=0 (or qA=100), so the entropy is: 
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.  

 
 The difference in entropy is much smaller than the difference in probabilities. 
 

Over long times scales all microstates are accessible, so need the sum over the multiplicity of all 
macrostates to calculate the entropy over long time scales.  This is: 
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It is not much larger than the entropy in the most probable macrostate! 


