PHY293 Oscillations Lecture #2

September 13, 2010

- 1. Tutorials start this week
- 2. First problem set will be posted Tuesday, during the day

Start of material

- 5. Other oscillating systems
 - a) Pendulum: $ml\ddot{\theta} + mg\theta = 0$ and $\omega_0 = \sqrt{g/l}$
 - b) Torsion Oscillator: $I\ddot{\theta} + c\theta = 0$ and $\omega_0 = \sqrt{c/I}$
 - e) Water U-tube: $\rho l \ddot{x} + 2g\rho x = 0$ and $\omega_0 = \sqrt{2g/l}$
 - g) Bobber in fluid Torsion: $m\ddot{x} + Ag\rho x = 0$ and $\omega_0 = \sqrt{AG\rho/m}$
 - d) Mass on a tensioned string: $m\ddot{x} + 2Tx/l = 0$ and $\omega_0 = \sqrt{2T/lm}$
- 1. Damped Simple Harmonic Motion
 - Perpetual motion machines do not exist because of damping
 - Energy juggling cannot go on forever
 - Resistance, friction, dissipation is always present
 - We only know about oscillating systems because of dissipative phenomena
 - \circ Hearing a tuning fork \Rightarrow vibrations transmitted to air
 - \circ Observe LC oscillation \Rightarrow voltage dropped across a resistor
 - \circ Feel waves \Rightarrow because of the viscosity of the medium they are moving in
 - Dissipation proportional to \dot{x} (velocity)
 - Microscopically there is no dissipation
 - Dissipation comes from increased randomness, averaged over a system gives the overall damping
 - eg. Heat is generated by increased randomness, averaged over whole system that gets hot)
 - What form should damping take? x, \dot{x} or \ddot{x} ?
 - (a) If we reverse time, should reverse the effect (things always slow down as time goes forward)
 - $F \propto d^2 x/dt^2$ reversed gives $d^2 x/d(-t)^2 \Rightarrow$ same effect
 - $\circ F \propto x$ doesn't depend on time
 - Only $F \propto dx/dt$ gives the opposite in dx/d(-t)
 - \circ Tempted to conclude dissipation must be proportional to \dot{x}
 - (b) What about higher odd derivatives?
 - $x = \frac{1}{2}gt^2; \ddot{x} = g \Rightarrow \frac{d\ddot{x}}{dt} = 0$
 - Physical effects will vanish for third and all higher derivatives
 - Could have powers of \dot{x} or combinations but \dot{x} is simplest non-trivial effect
 - As with linear restoring force, the damping force acts opposite the velocity: $F_{\text{damp}} = -b\dot{x}$
- 2. Equation of Motion for Damped SHO

$$F = -kx - b\dot{x} = m\ddot{x}$$
$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$$

- This is a second order, ordinary differential equation
 - Has two linearly independent solutions
 - Requires two initial conditions to be fully determined
- Look for solutions like $x \propto e^{\alpha t}$ subbing this into equation of motion get:

$$(\alpha^2 + \gamma\alpha + \omega_0^2)e^{\alpha t} = 0$$

• Which means:

$$\alpha^2 + \gamma \alpha + \omega_0^2 = 0$$

- Find roots: $\alpha_{1,2} = \frac{-\gamma}{2} \pm \sqrt{\frac{\gamma^2}{4} \omega_0^2}$
- General solution is of the form: $x = C_1 e^{\alpha_1 t} + C_2 e^{\alpha_2 t}$
 - Where $C_{1,2}$ are determined from initial conditions (eg. x(0) and $\dot{x}(0)$)
 - Note: If $\alpha_1 = \alpha_2$ (ie $\gamma^2 = 4\omega_0^2$) then the solution is of the form: $x = (C_1 + C_2 t)e^{-\gamma t/2}$
 - This is a special case of critical damping (come back next time)
- 3. Underdamped Solution
 - This is the only solution that exhibits oscillations
 - Roots $\alpha_{1,2}$ are complex since for $\omega_0^2 > \gamma^2/4$ the argument of the square-root is negative

$$\alpha + 1, 2 = \frac{-\gamma}{2} \pm \sqrt{\frac{\gamma^2}{4} - \omega_0^2} = \frac{-\gamma}{2} \pm i\sqrt{\omega_0^2 - \frac{\gamma^2}{4}} = \frac{-\gamma}{2} \pm i\omega'$$

- We'll see that ω' is the damped oscillation frequency $\omega'^2 = \omega_0^2 \frac{\gamma^2}{4}$
- The general solution can be written in several ways

$$x = C_1 e^{-\gamma t/2} e^{i\omega' t} + C_2 e^{-\gamma t/2} e^{-i\omega' t}$$
$$x = e^{-\gamma t/2} [D_1 \sin(\omega' t) + D_2 \cos(\omega' t)]$$
$$x = A e^{-\gamma t/2} \cos(\omega' t + \phi)$$

- In each case there are two constants to be determined from initial conditions $(C_{1,2}; D_{1,2}, A; \phi)$
- The first practice problems suggest you find the relationship between these different forms of the solution for practice • ie. the relationship between the different constants
- The last form of the solution makes manifest how damping modifies our original (un-damped) SHO solution (see figures)

 - The oscillations are shifted to lower frequencies: \$\omega' = \sqrt{\omega_0^2 \frac{\gamma^2}{4} < \omega_0\$}\$
 Damping increases the period of a full oscillation: \$T_d = \frac{2\pi}{\omega'} = \frac{2\pi}{\sqrt{\omega_0^2 \frac{\gamma^2}{4}}\$}\$ \rightarrow \infty as \$\gamma \rightarrow 2\omega_0\$\$
 - But in this case oscillatory motion stops and the nature of the solution changes (see next time)

Underdamped solution

 $\gamma = 0.1 \omega_{\rm d}$

