PHY?293 Oscillations Lecture #2
September 13, 2010
1. Tutorials start this week
2. First problem set will be posted Tuesday, during the day
Start of material
5. Other oscillating systems

e a) Pendulum: mlf + mg# = 0 and wy = g/l

e b) Torsion Oscillator: 16 + ¢f = 0 and wy = \/0/7[

e) Water U-tube: pl& + 2gpz = 0 and wy = +/2g/1

2) Bobber in fluid Torsion: mi + Agpz = 0 and wy = \/W

e d) Mass on a tensioned string: mi + 27z/l = 0 and wy = \/m

1. Damped Simple Harmonic Motion

Perpetual motion machines do not exist because of damping

Energy juggling cannot go on forever
e Resistance, friction, dissipation is always present

o We only know about oscillating systems because of dissipative phenomena
o Hearing a tuning fork = vibrations transmitted to air

o

Observe LC oscillation = voltage dropped across a resistor
o Feel waves = because of the viscosity of the medium they are moving in

Dissipation proportional to & (velocity)
o Microscopically there is no dissipation
o Dissipation comes from increased randomness, averaged over a system gives the overall damping
o eg. Heat is generated by increased randomness, averaged over whole system that gets hot)

What form should damping take? x, & or £?

(a) If we reverse time, should reverse the effect (things always slow down as time goes forward)
o F oc d?z/dt? reversed gives d?z/d(—t)? = same effect
o F o x doesn’t depend on time

Only F' o dx/dt gives the opposite in dz/d(—t)

Tempted to conclude dissipation must be proportional to &

(b) What about higher odd derivatives?
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o Physical effects will vanish for third and all higher derivatives
o Could have powers of & or combinations but & is simplest non-trivial effect

o As with linear restoring force, the damping force acts opposite the velocity: Faamp = —b

2. Equation of Motion for Damped SHO
F=—-kzr—-br=mi

i+yi+wir=0
e This is a second order, ordinary differential equation

o Has two linearly independent solutions
o Requires two initial conditions to be fully determined

e Look for solutions like z o< ¢®* subbing this into equation of motion get:

(@® +ya + wg)eat =0



e Which means:
o + ya + wg =0
2
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e Find roots: a1 = 5 + 4/ — wp

e General solution is of the form: x = C1e®t 4+ Cye®2t
o Where (' , are determined from initial conditions (eg. x(0) and ©(0))
o Note: If a; = ap (ie 42 = 4w?) then the solution is of the form: 2 = (C + Cat)e74/2
o This is a special case of critical damping (come back next time)

3. Underdamped Solution

e This is the only solution that exhibits oscillations

e Roots g o are complex since for wi > 72 /4 the argument of the square-root is negative
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We’ll see that w’ is the damped oscillation frequency w'? = w§ — I

The general solution can be written in several ways
o o
T = Cle—'yt/Qezw t + 026—725/26—14.0 t

x = e "/2[Dy sin(w't) + Dy cos(w't)]
x = Ae "2 cos(w't + ¢)

In each case there are two constants to be determined from initial conditions (C1 2; D1 2, A; @)

The first practice problems suggest you find the relationship between these different forms of the solution for practice

o ie. the relationship between the different constants

The last form of the solution makes manifest how damping modifies our original (un-damped) SHO solution (see figures)

o The oscillations are shifted to lower frequencies: w’ = /w3 — %2 < wg

o Damping increases the period of a full oscillation: T;; = % = % — 00 as 7y — 2wy
wi—I

o But in this case oscillatory motion stops and the nature of the solution changes (see next time)
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