
PHY293 Oscillations Lecture #2
September 13, 2010

1. Tutorials start this week

2. First problem set will be posted Tuesday, during the day

Start of material

5. Other oscillating systems

• a) Pendulum: mlθ̈ +mgθ = 0 and ω0 =
√
g/l

• b) Torsion Oscillator: Iθ̈ + cθ = 0 and ω0 =
√
c/I

• e) Water U-tube: ρlẍ+ 2gρx = 0 and ω0 =
√

2g/l

• g) Bobber in fluid Torsion: mẍ+Agρx = 0 and ω0 =
√
AGρ/m

• d) Mass on a tensioned string: mẍ+ 2Tx/l = 0 and ω0 =
√

2T/lm

1. Damped Simple Harmonic Motion

• Perpetual motion machines do not exist because of damping

• Energy juggling cannot go on forever

• Resistance, friction, dissipation is always present

◦ We only know about oscillating systems because of dissipative phenomena
◦ Hearing a tuning fork⇒ vibrations transmitted to air
◦ Observe LC oscillation⇒ voltage dropped across a resistor
◦ Feel waves⇒ because of the viscosity of the medium they are moving in

• Dissipation proportional to ẋ (velocity)

◦ Microscopically there is no dissipation
◦ Dissipation comes from increased randomness, averaged over a system gives the overall damping
◦ eg. Heat is generated by increased randomness, averaged over whole system that gets hot)

• What form should damping take? x, ẋ or ẍ?

(a) If we reverse time, should reverse the effect (things always slow down as time goes forward)
◦ F ∝ d2x/dt2 reversed gives d2x/d(−t)2 ⇒ same effect
◦ F ∝ x doesn’t depend on time
◦ Only F ∝ dx/dt gives the opposite in dx/d(−t)
◦ Tempted to conclude dissipation must be proportional to ẋ

(b) What about higher odd derivatives?
◦ x = 1

2gt
2; ẍ = g ⇒ dẍ

dt = 0
◦ Physical effects will vanish for third and all higher derivatives
◦ Could have powers of ẋ or combinations but ẋ is simplest non-trivial effect

• As with linear restoring force, the damping force acts opposite the velocity: Fdamp = −bẋ

2. Equation of Motion for Damped SHO
F = −kx− bẋ = mẍ

ẍ+ γẋ+ ω2
0x = 0

• This is a second order, ordinary differential equation

◦ Has two linearly independent solutions
◦ Requires two initial conditions to be fully determined

• Look for solutions like x ∝ eαt subbing this into equation of motion get:

(α2 + γα+ ω2
0)eαt = 0



• Which means:
α2 + γα+ ω2

0 = 0

• Find roots: α1,2 = −γ
2 ±

√
γ2

4 − ω
2
0

• General solution is of the form: x = C1e
α1t + C2e

α2t

◦ Where C1,2 are determined from initial conditions (eg. x(0) and ẋ(0))
◦ Note: If α1 = α2 (ie γ2 = 4ω2

0) then the solution is of the form: x = (C1 + C2t)e−γt/2

◦ This is a special case of critical damping (come back next time)

3. Underdamped Solution

• This is the only solution that exhibits oscillations

• Roots α1,2 are complex since for ω2
0 > γ2/4 the argument of the square-root is negative

α+ 1, 2 =
−γ
2
±

√
γ2

4
− ω2

0 =
−γ
2
± i

√
ω2

0 −
γ2

4
=
−γ
2
± iω′

• We’ll see that ω′ is the damped oscillation frequency ω′2 = ω2
0 −

γ2

4

• The general solution can be written in several ways

x = C1e
−γt/2eiω

′t + C2e
−γt/2e−iω

′t

x = e−γt/2[D1 sin(ω′t) +D2 cos(ω′t)]

x = Ae−γt/2 cos(ω′t+ φ)

• In each case there are two constants to be determined from initial conditions (C1,2;D1,2, A;φ)

• The first practice problems suggest you find the relationship between these different forms of the solution for practice

◦ ie. the relationship between the different constants

• The last form of the solution makes manifest how damping modifies our original (un-damped) SHO solution (see figures)

◦ The oscillations are shifted to lower frequencies: ω′ =
√
ω2

0 −
γ2

4 < ω0

◦ Damping increases the period of a full oscillation: Td = 2π
ω′ = 2π√

ω2
0−

γ2
4

→∞ as γ → 2ω0

◦ But in this case oscillatory motion stops and the nature of the solution changes (see next time)
















