
PHY293 Oscillations Lecture #4
September 17, 2010

1. First problem set ( http://www.physics.utoronto.ca/ phy293h1f/waves/phy293 ps1.pdf ) Due Monday at 5:00pm

2. Flash Demo ( http://www.upscale.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/DrivenSHM/DrivenSHM.html )

Start of material

1. Driven Simple Harmonic Motion: Equation of Motion

• Take mass on spring and move platform that spring is attached to

• This gives driven oscillations: XF (t) = a0 cos(ωt) (Note: Dimensions of a0 are length.)

• Now the position of the spring’s fixed point is time-dependent

Fspring = −k(x− xF (t))

• So the equation of motion for the mass becomes:

F = −k(x− xF (t))− rẋ = mẍ

• Or dividing through by m as usual gives the canonical form:

ẍ+ γẋ+ ω2
0x =

ka0

m
cos(ωt)

ẍ+ γẋ+ ω2
0x = A0 cos(ωt)

• Where we’ve simplified the coefficient in front of the driving term to A0 = ω2
0a0 = ka0

m (Note: Dimensions of A0 are
length/time2)

• This is the general equation of motion for a forced simple harmonic oscillator

• This is a complicated as we’ll make it in this course. All other cases we considered up to now were simplifications (A0 = 0
Free SHO, γ = 0 undamped SHO, etc.)

• We now have a second-order, linear, non-homogeneous, ordinary, differential equation

• From the general theory of O.D.E. solutions (eg. Boyce & Diprima secs. 3.6 and 3.9)

◦ Look for a solution of the form: X(t) = C1x1(t) + C2x2(t) + X (t)
◦ The first two terms are the complementary solutions of the homogeneous equation (ie. un-driven SHO studied up to

now)
◦ These solutions are transient (oscillations will die away as energy is dissipated)

• The third term is more interesting. It describes the forced response of the system

• After the transient solutions have died away (like e−γt/2) this will be the only steady-state part of the solution

• Since our forcing function has cos(ωt) time dependence “try” a solution like:

X (t) = G cos(ωt) +H sin(ωt)

• To solve we’ll need the time derivatives:

Ẋ (t) = −Gω sin(ωt) +Hω cos(ωt)

Ẍ (t) = −Gω2 cos(ωt)−Hω2 sin(ωt)

• Plugging these back into the equation of motion get:

[−Gω2 +Hωγ +Gω2
0 ] cos(ωt) + [−Hω2 −Gωγ +Hω2

0 ] sin(ωt) = A0 cos(ωt)

• But sin(ωt) and cos(ωt) are linearly independent function forms so this leads to separate constraints:

G(ω2
0 − ω2) +Hωγ = A0

H(ω2
0 − ω2)−Gωγ = 0



• We can solve these two equations for G and H giving:

G = A0
ω2

0 − ω2

(ω2
0 − ω2)2 + (γω)2

In− Phase

H = A0
ωγ

(ω2
0 − ω2)2 + (γω)2

Out− of − Phase

• Now use the identity a cosφ+ b sinφ = c cos(φ− δ) where a2 + b2 = c2 and δ = tan−1(b/a) to get:

X (t) = a(ω) cos(ωt− δ)

• With a(ω) = A0√
(ω2

0−ω2)2+(γω)2

• Sometimes see this written as: a(ω) = a0ω
2
0√

(ω2
0−ω2)2+(γω)2

◦ Where a0 is the amplitude (in length) of the driving force, whileA0 is the driving acceleration (in units of length/time2).

• And tan δ = ωγ
(ω2

0−ω2)

• This is the forced response of a damped simple harmonic oscillator (see plots)

• Note that tan−1 only has a result between −π/2 and π/2 so we can also specify:

δ = cos−1[
ω2

0 − ω2√
(ω2

0 − ω2)2 + (γω)2
]

• This form gives a phase δ for all ω0, γ, ω etc.

2. Resonance in Forced Oscillations

• Looking at a(ω) we find a frequency where the amplitude is maximal

• As γ is reduced the peak gets higher and narrower (see plots)

• The peak frequency can be found by differentiation:

a(ω) =
A0√

(ω2
0 − ω2)2 + (γω)2

stationary at
da(ω)
dω

= 0⇒ d

dω
[(ω2

0 − ω2)2 + (γω)2] = 0

• This is the condition for the minimum or maximum and gives:

2(ω2
0 − ω2)(−2ω) + 2γ2ω = 0

2ω(2ω2 − 2ω2
0 + γ2) =

• Has two real solutions: ω = [0,
√
ω2

0 − γ2/2]

• The first solution is the local minimum at ω = 0 (a0)

• This second solution is a maximum at:
ωm =

√
ω2

0 − γ2/2

• Note that for γ2 > 2ω2
0 there is no resonance (this is not (quite!) the condition for critical damping and overdamped

solutions⇒ no oscillations)

• Still resonance only happens for low damping

• At this resonance frequency the amplitude is

a(ωm) =
A0√

(γ2/2)2 + (ω2
0 − γ2/2)γ2

=
A0√

ω2
0γ

2 − γ4/4
= a0

ω0

γ

1√
1− γ2

4ω2
0

3. Phase Lag

• Up to now we’ve focused on the amplitude of the driven oscillations: a(ω)



• There is also physics in the phase lag:

X (t) = a(ω) cos(ωt− δ); tan δ =
ωγ

(ω2
0 − ω2)

• The phase is a smooth connection between two regimes (see plots):

(a) At low driving frequencies δ → 0
◦ The mass and platform move in unison (rigid regime): X (t) = a0 cos(ωt) for ω � ω0

◦ In this regime a(ω)→ a0
ω2

0
ω2

0
= a0

◦ The response of the system is determined by the stiffness of the spring
(b) At high frequency

a(ωm) =
A0√

(γ2/2)2 + (ω2
0 − γ2/2)γ2

−→
ω � ω0

a0
ω2

0

ω2

◦ And the phase: tan δ = ωγ
(ω2

0−ω2)
−→
ω�ω0

−γ
ω

◦ This gives δ → 180◦

◦ The mass lags 180◦ out of phase, ie. it moves in the opposite direction to the driving force
◦ This system is inertia dominated (ie. dominated by the inertia of the mass)
◦ The amplitude still falls off at high ω like ω−2 but it is not due to the damping
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