PHY?293 Oscillations Lecture #8
September 27, 2010

1. Went back several times throughout this lecture to:

o http://faraday.physics.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/CoupledSHM/CoupledSHM.html
o http://www.walter-fendt.de/ph14e/cpendula.htm

Begin Lecture material
1. General solution of Coupled Oscillator Problem

e Need a general method to solve problems where guessing isn’t so obvious

o Cases where the pendulum bobs have different masses,
o Where the pendulum lengths are different
o Or where we have more degrees of freedom

o Instead of knowing the answer, use the tools of linear algebra to find it

2. Equations of motion:

maza+ (mag/l+k)xa —krg =0
mprp + (Mpg/l+ k)xp — kzxa =0

. . . o T
e Can write these in a vector form using a state vector: ¥ = [xA]
B

e Note that these are both positions along the x-axis, just a notation that keeps track of the state of the system

e Using this notation we can re-write the equations of motion as:
ma 0 Cﬁ Ta n mag/l+k —k zal _
0 mp| dt2 |zB —k mpg/l+ k| |zp|

ma 0 } as the Mass matrix

0 mp

mag/l+k —k
—k mpg/l + k

e Defining [M] = [

e And [K] = [ ] as the Spring matrix — generalised to include all restoring forces — get:

[M)Z + [K|Z =0

e This alot like m#@ + kx = 0 from SHO in first week of course
e Solved that equation by:

(a) Assuming solutions of the form z = C cos(wt + §)
(b) Substitute into the equation of motion to find wq
(c) Using the initial conditions to determine C, §

e Do the same again here, but matrices = we’ll need some linear algebra, rather than just a simple division, to find frequencies

mi + kx = 0 — —mwiC cos(wot + 8) + kC cos(wot + 8) = 0
(—mwd + k)C cos(wot + ) =0

e Has the trivial solution C' = 0 — we ignored this one
e The dynamic solution has w3 = k/m ... and we never looked back
e Try a similar approach for our new equations

(a) Assume & = C€ cos(wt + ¢) s0 F = —w2T



(b) Substituted into equations of motion:

[M)Z + [K|Z =0
—wW[M]Z+ [K]Z# =0
(—w*[M]+ [K])T =0

o

This equation represents two simultaneous, coupled, equations in two unknowns

o

Has the trivial solution again = 0 — nothing moves
o To find the non-trivial solutions we need to take the determinant of the coefficient matrix and set it equal to O

det(—w?[M] + [K]) =0

[¢]

This gives the characteristic equation or frequency equation for this coupled system

o

Will give us constraints for the normal frequencies w; and wo
o These are the two natural frequencies of this coupled system, or the eigenfrequencies
(c) Now determine the nature of the motion associated with each eignfrequnecy
o This is a step that was not needed for the SHO case
Atw; we'll have & = C1 & cos(wit + ¢1)
At wsy we’ll have & = ngg cos(wat + ¢2)

o Knowing w; and wy we can substitute, one at a time, into the equations of motion to find {1 and 52

@]

o

o These will be the eigenmodes or eigenvectors associated with each eigenfrequency
(d) The general solution is then the sum of all harmonic responses

Z(t) = C1€ cos(wit + ¢1) + Cas cos(wat + ¢o)

o Where C; » and ¢ » are determined from the initial conditions

e Try this new formalism on our simple system (equal masses) that we guessed the solution for in the previous lecture

) = [ma 0] [m o0 K] = mag/l+k —k _ [mg/l+k —k
10 mp| |0 m N —k mpg/l+k| —k mg/l+k
(a) Assume harmonic response [M]Z = —w?[M]Z

o Makes the equations of motion —w?[M] + [K])Z = 0
|

(b) To solve this need the determinant: det | — w?[M] + [K]| =0
om0 mg/l+k —k _
det |~ {0 m]—i_{ & mg/l+k)| =0
—w?m +mg/l +k —k _
det’ —k —w?m+mg/l+k =0

(—w?*m+mg/l+k)? —k*=0

This is the eigenfrequency equation and it has solutions for —w? +mg/l + k = +k

[}

o Thus we have two equations for w? (one for the + root and the other for the — root) giving:
—wm+mg/l=0 or w}=g/l for + root

—wim+mg/l+2k=0 or ws=g/l+2k/m for — root

[¢]

These are just the frequencies we found from our guessed solutions in last lecture

[¢]

But this method would have given us answers even if m4 # mp orly # [p etc.



3. Normal Modes

e We have shown that our linear algebra formalism recovers the same natural frequencies as our guessed solution
e Have not determined what kind of motion is associated with each frequency

o These will be the normal modes of the system
o They are related to the g; variables we guessed for our solution in the last lecture

o In the first mode the two pendula swing together

e w; = 4/g/l doesn’t depend on spring strength — spring length doesn’t change

- T 1
xr = |:x2:| = |:1:| Cl COS(w1t + d)l)
e Notice that with this result for 5 if the first bob moves 1 c¢m to the left the second one also moves 1 cm to the left.
e The second mode has the two pendula opposing one another

e wy = +/g/l + 2k/m ahigher frequency where the spring is doubly extended for each movement of one pendulum bob

B

7 |:.7JA:| _ {_11} Cy cos(wit + ¢2)

e This solution is anti-symmetric: If the left bob moves 1 cm to the right then the right-one moves 1 cm to the left

o General solution is just sum of these two modes (with arbitrary amplitudes (C' 2) and possibly different phases (¢1,2))

e Superposition works because equations of motion are linear, which is a result of only considering linear restoring force(s))
e Normal modes are special because

o They are associated with a single eigenfrequency, or natural frequency

o They are orthogonal to one another, which simplifies calculations (energy, power, etc.)

o An excitation in one mode will not transfer to another mode, because energy is not transferred between modes
o They are a complete set, capable of describing all excitations of a system



mass vs. hormal coordinates

(both normal modes excited)
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mass vs. hormal coordinates

(one normal mode excited)
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