
PHY293 Oscillations Lecture #8
September 27, 2010

1. Went back several times throughout this lecture to:

• http://faraday.physics.utoronto.ca/GeneralInterest/Harrison/Flash/ClassMechanics/CoupledSHM/CoupledSHM.html

• http://www.walter-fendt.de/ph14e/cpendula.htm

Begin Lecture material

1. General solution of Coupled Oscillator Problem

• Need a general method to solve problems where guessing isn’t so obvious

◦ Cases where the pendulum bobs have different masses,
◦ Where the pendulum lengths are different
◦ Or where we have more degrees of freedom

• Instead of knowing the answer, use the tools of linear algebra to find it

2. Equations of motion:

mAẍA + (mAg/l + k)xA − kxB = 0
mBẍB + (MBg/l + k)xB − kxA = 0

• Can write these in a vector form using a state vector: ~x =
[
xA

xB

]
• Note that these are both positions along the x-axis, just a notation that keeps track of the state of the system

• Using this notation we can re-write the equations of motion as:[
mA 0
0 mB

]
d2

dt2

[
xA

xB

]
+
[
mAg/l + k −k
−k mBg/l + k

] [
xA

xB

]
= 0

• Defining [M ] =
[
mA 0
0 mB

]
as the Mass matrix

• And [K] =
[
mAg/l + k −k
−k mBg/l + k

]
as the Spring matrix – generalised to include all restoring forces – get:

[M ]~̈x+ [K]~x = 0

• This alot like mẍ+ kx = 0 from SHO in first week of course

• Solved that equation by:

(a) Assuming solutions of the form x = C cos(ωt+ δ)
(b) Substitute into the equation of motion to find ω0

(c) Using the initial conditions to determine C, δ

• Do the same again here, but matrices⇒ we’ll need some linear algebra, rather than just a simple division, to find frequencies

mẍ+ kx = 0 −→ −mω2
0C cos(ω0t+ δ) + kC cos(ω0t+ δ) = 0

(−mω2
0 + k)C cos(ω0t+ δ) = 0

• Has the trivial solution C = 0 – we ignored this one

• The dynamic solution has ω2
0 = k/m ... and we never looked back

• Try a similar approach for our new equations

(a) Assume ~x = C~ξ cos(ωt+ φ) so ~̈x = −ω2~x



(b) Substituted into equations of motion:

[M ]~̈x+ [K]~x = 0

−ω2[M ]~x+ [K]~x = 0

(−ω2[M ] + [K])~x = 0

◦ This equation represents two simultaneous, coupled, equations in two unknowns
◦ Has the trivial solution again ~x = 0 – nothing moves
◦ To find the non-trivial solutions we need to take the determinant of the coefficient matrix and set it equal to 0

det(−ω2[M ] + [K]) = 0

◦ This gives the characteristic equation or frequency equation for this coupled system
◦ Will give us constraints for the normal frequencies ω1 and ω2

◦ These are the two natural frequencies of this coupled system, or the eigenfrequencies
(c) Now determine the nature of the motion associated with each eignfrequnecy

◦ This is a step that was not needed for the SHO case
◦ At ω1 we’ll have ~x = C1

~ξ1 cos(ω1t+ φ1)

◦ At ω2 we’ll have ~x = C2
~ξ2 cos(ω2t+ φ2)

◦ Knowing ω1 and ω2 we can substitute, one at a time, into the equations of motion to find ~ξ1 and ~ξ2
◦ These will be the eigenmodes or eigenvectors associated with each eigenfrequency

(d) The general solution is then the sum of all harmonic responses

~x(t) = C1
~ξ1 cos(ω1t+ φ1) + C2

~ξ2 cos(ω2t+ φ2)

◦ Where C1,2 and φ1,2 are determined from the initial conditions

• Try this new formalism on our simple system (equal masses) that we guessed the solution for in the previous lecture

[M ] =
[
mA 0
0 mB

]
=
[
m 0
0 m

]
[K] =

[
mAg/l + k −k
−k mBg/l + k

]
=
[
mg/l + k −k
−k mg/l + k

]
(a) Assume harmonic response [M ]~̈x = −ω2[M ]~x

◦ Makes the equations of motion −ω2[M ] + [K])~x = 0
(b) To solve this need the determinant: det | − ω2[M ] + [K]| = 0

det
∣∣∣∣−ω2

[
m 0
0 m

]
+
[
mg/l + k −k
−k mg/l + k

]∣∣∣∣ = 0

det
∣∣∣∣−ω2m+mg/l + k −k

−k −ω2m+mg/l + k

∣∣∣∣ = 0

(−ω2m+mg/l + k)2 − k2 = 0

◦ This is the eigenfrequency equation and it has solutions for −ω2 +mg/l + k = ±k
◦ Thus we have two equations for ω2 (one for the + root and the other for the − root) giving:

−ω2
1m+mg/l = 0 or ω2

1 = g/l for + root

−ω2
2m+mg/l + 2k = 0 or ω2

2 = g/l + 2k/m for − root

◦ These are just the frequencies we found from our guessed solutions in last lecture
◦ But this method would have given us answers even if mA 6= mB or lA 6= lB etc.



3. Normal Modes

• We have shown that our linear algebra formalism recovers the same natural frequencies as our guessed solution

• Have not determined what kind of motion is associated with each frequency

◦ These will be the normal modes of the system
◦ They are related to the qi variables we guessed for our solution in the last lecture

• In the first mode the two pendula swing together

• ω1 =
√
g/l doesn’t depend on spring strength→ spring length doesn’t change

~x =
[
xA

xB

]
=
[
1
1

]
C1 cos(ω1t+ φ1)

• Notice that with this result for ~ξ if the first bob moves 1 cm to the left the second one also moves 1 cm to the left.

• The second mode has the two pendula opposing one another

• ω2 =
√
g/l + 2k/m a higher frequency where the spring is doubly extended for each movement of one pendulum bob

~x =
[
xA

xB

]
=
[

1
−1

]
C2 cos(ω1t+ φ2)

• This solution is anti-symmetric: If the left bob moves 1 cm to the right then the right-one moves 1 cm to the left

• General solution is just sum of these two modes (with arbitrary amplitudes (C1,2) and possibly different phases (φ1,2))

• Superposition works because equations of motion are linear, which is a result of only considering linear restoring force(s))

• Normal modes are special because

◦ They are associated with a single eigenfrequency, or natural frequency
◦ They are orthogonal to one another, which simplifies calculations (energy, power, etc.)
◦ An excitation in one mode will not transfer to another mode, because energy is not transferred between modes
◦ They are a complete set, capable of describing all excitations of a system



mass vs. normal coordinates

 

 

 

 

(both normal modes excited)



mass vs. normal coordinates

 

 

 

 

(one normal mode excited)




