PHY293 Oscillations Lecture #16

October 18, 2010

- 1. Looked at a Flash simulation of waves reflected/transmitted at a density change
 - http://paws.kettering.edu/ drussell/Demos/reflect/reflect.html

Begin Lecture material

- 1. Reflection/Transmission of Traveling waves
 - Have seen how two traveling waves can interfere to make a standing wave
 - Normally we'll have a mixture of standing waves and traveling waves
 - Since the pure standing wave solution we had **required** the two traveling waves have **exactly** the same amplitude.
 - If the amplitudes of interfering traveling waves are **not** exactly the same will lead to a standing wave plus something left over which continues to propagate as a traveling wave
 - When waves approach/encounter a boundary the incoming and outgoing amplitudes are rarely equal and we get a mixture of standing and traveling waves
 - This manifests itself as reflections from the boundaries
 - For an arbitrary boundary we want to predict the reflection and transmission
 - We can model a boundary with two different media sitting next to one another
 - In our case we'll look at two strings, joined at x = 0, that have different mass densities
 - For x < 0 we'll have μ_1 and T_1 which results in a wave-speed $c_1 = \sqrt{T_1/\mu_1}$
 - For x > 0 we end up with $c_2 = \sqrt{T_2/\mu_2}$
 - We'll want to solve two versions of the wave equation, simultaneously:

$$\frac{\partial^2 y}{\partial t^2} - c_1^2 \frac{\partial^2 y}{\partial x^2} = 0 \quad \text{for } x < 0$$
$$\frac{\partial^2 y}{\partial t^2} - c_2^2 \frac{\partial^2 y}{\partial x^2} = 0 \quad \text{for } x > 0$$

- To figure out what is going on we need to understand what goes on at x = 0
- Aside: Vertical component of force on a string is given by $F_y = -T \sin \theta$ (look back at the notes from October 6 to see diagrams of what is going on here)
- We would normally have $\tan \theta = dy/dx$ but for small angles $\sin \theta \approx \tan \theta$ so we can write $F_y = -T \sin \theta = -T \frac{\partial y}{\partial x}$
- Use this when we consider what is going on at the interface between the two types of string at x = 0: End Aside
- At the string interface we require:
 - The forces on the two sides of x = 0 balance each other: $T \frac{\partial y}{\partial x}(x^{-}) = T \frac{\partial y}{\partial x}(x^{+})$
 - The string be continuous from below x = 0 to above x = 0: $y(x^-, t) = y(x^+, t)$
- Where I use x^- to denote the approach to x = 0 from below and x^+ the approach to x = 0 from above
- While we have used physical arguments (force balance and continuous string) to derive these conditions it is a general property of second-order differential equations that the 0th and 1st derivatives must be continuous
- 2. Reflection and Transmission of Traveling Waves at Boundaries
 - Last time we setup the problem of waves moving from one medium to another having different wave speeds
 - Look at the three possible wave solutions we'll have on our hybrid string (ie. string made of two different densities of strings)
 - We'll have three waves:
 - An incident wave, incoming from the left (x < 0) traveling to the right: $y_i = A \sin(\omega_1 t k_1 x)$
 - A transmitted wave, outgoing to the right (x > 0): $y_t = D \sin(\omega_2 t k_2 x)$
 - A reflected wave, reflected back to left (x < 0): $y_r = C \sin(\omega_1 t + k_1 x)$

- Establish the boundary conditions we discussed in lecture yesterday:
 - (a) $y(x^{-}) = y(x^{+})$ the string must be continuous at x = 0 giving:

$$A\sin(\omega_1 t) + B\sin(\omega_1 t) = D\sin(\omega_2 t)$$
$$(A+B)\sin(\omega_1 t) = D\sin(\omega_2 t)$$

- Where we have set x = 0 in the wave solutions for each side of the boundary
- $\circ~$ Looking at this, for it to be true at all t we are forces to conclude $\omega_1=\omega_2\equiv\omega$
- In this case the first constraint reduces to A + B = D [I]
- $\circ~$ We also note at this point that $\omega_1=\omega_2\equiv\omega$ implies that $k_1=\omega/c_1$ and $k_2=\omega/c_2$
- (b) Now we can balance the forces on either side of x = 0
 - To do this we must differentiate $y_{-} = y_{i} + y + r$ and $y_{+} = y + t$ and equate the forces
 - Equating the forces at x = 0 gives us:

$$T_1k_1[-A\cos(\omega t - k_1x) + B\cos(\omega t + k_1x)] = -T_2k_2D\cos(\omega t - k_2x)$$

- As an aside we see why we wrote these waves in the slightly unconventional form $\sin(\omega t kx)$ rather than the more conventional $\sin(kx \omega t)$. In the latter formulation, setting x = 0 would still leave arguments like $-\omega t$ and we would have to keep track of these signs in the algebra that follows
- Setting x = 0

$$T_1k_1(B-A)\cos(\omega t) = -T_2k_2D\cos(\omega t)$$

• Since we've already concluded the waves on either side of the of boundary must have the same frequency we see the $\cos(\omega t)$ terms balance out in this equation leaving (after dividing through both sides by -1):

$$T_1k_1(A-B) = T_2k_2D$$

• Using the relationship between $k_i = \omega/c_i$ we can further "simplify" this to:

$$T_1/c_1 (A-B) = T_2/c_2 D [II]$$

- How do we interpret the ratio T_i/c_i ? It is an intrinsic property of the string. Already seen $c_i = \sqrt{T_i/\mu_i} \Rightarrow T_i/c_i = \sqrt{T_ic_i}$
- This comes up over-and-over in the study of waves propagating in media (though we're near the end in this course there's much more we could study). So we call it $Z_i \equiv T_i/c_i = \sqrt{T_i\mu_i}$
- We'll call this the Impedance of the string (see why later in this lecture)
- Thus the two equations become:

$$[I] \quad A+B=D$$

[II]
$$Z_1(A-B) = Z_2D$$

- Since this is two equations in three unknowns (A, B, D) we can't solve them in closed form
- All we can do is make predictions for two ratios: $r = \frac{B}{A}$ and $t = \frac{D}{A}$
- r is the ratio of reflected to incident wave amplitudes
- Similarly, t is the ratio of transmitted to incident wave amplitudes
- Physically we can think of controlling the incident amplitude (by generating the incident wave with a controllable forcing function) and then predicting the reflected and transmitted amplitudes relative to this "known" incident amplitude
- If we take $Z_1 \cdot [I] + [II]$ we get: $2Z_1A = (Z_1 + Z_2)D$ which gives $D/A \equiv t = 2Z_1/(Z_1 + Z_2)$
- Then look at [I]/A = 1 + B/A = D/A but this is jut 1 + r = t or R = t 1
- So we get $r = 2Z_1/(Z_1 + Z_2) 1 = \frac{Z_1 Z_2}{Z_1 + Z_2}$
- We can look at a few limiting cases to check these predictions:
 - (a) If the string is connected to a fixed point at x = 0 this is equivalent to it being connected to a second length of string that has infinite mass density (ie. the x > 0 part of the string is so heavy it can't move)
 - In this case $r = \frac{Z_1 Z_2}{Z_1 + Z_2} \rightarrow -1$ as $Z_2 \rightarrow \infty$

- The reflected wave has the same absolute amplitude but it is inverted in the process of being reflected
- (b) If the two lengths of string (x < 0 and x > 0) have the same mass density then $Z_1 = Z_2$ giving t = 1 and r = 0
 - \circ There is no reflected wave and the transmitted wave looks just like the incident wave
 - It's as if the boundary wasn't there at all but of course it is not since we have same density on both sides of x = 0
- (c) In the second flash demo the end of the string at x = 0 is free to move up and down. This is as if the second length of string is massless (ie. $Z_2 = 0$)
 - $\circ~$ In that case we see that $r \rightarrow 1$ and $t \rightarrow 0$
 - Agreeing with what the wave looks like in the demo.
- We looked a Flash demonstrations of waves reflected in these two cases and for waves transitioning both from denser to less dense (and vice-versa) portions of the string. I worked through one of them in each class but you should see if the behaviour of the waves at x = 0 makes sense, to you, in these latter two cases ($Z_1 > Z_2$ and $Z_1 < Z_2$)