
PHY293 Oscillations Lecture #16
October 18, 2010

1. Looked at a Flash simulation of waves reflected/transmitted at a density change

• http://paws.kettering.edu/ drussell/Demos/reflect/reflect.html

Begin Lecture material

1. Reflection/Transmission of Traveling waves

• Have seen how two traveling waves can interfere to make a standing wave

• Normally we’ll have a mixture of standing waves and traveling waves

◦ Since the pure standing wave solution we had required the two traveling waves have exactly the same amplitude.
◦ If the amplitudes of interfering traveling waves are not exactly the same will lead to a standing wave plus something

left over which continues to propagate as a traveling wave

• When waves approach/encounter a boundary the incoming and outgoing amplitudes are rarely equal and we get a mixture of
standing and traveling waves

• This manifests itself as reflections from the boundaries

• For an arbitrary boundary we want to predict the reflection and transmission

• We can model a boundary with two different media sitting next to one another

• In our case we’ll look at two strings, joined at x = 0, that have different mass densities

◦ For x < 0 we’ll have µ1 and T1 which results in a wave-speed c1 =
√
T1/µ1

◦ For x > 0 we end up with c2 =
√
T2/µ2

• We’ll want to solve two versions of the wave equation, simultaneously:
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• To figure out what is going on we need to understand what goes on at x = 0

• Aside: Vertical component of force on a string is given by Fy = −T sin θ (look back at the notes from October 6 to see
diagrams of what is going on here)

• We would normally have tan θ = dy/dx but for small angles sin θ ≈ tan θ so we can write Fy = −T sin θ = −T ∂y
∂x

• Use this when we consider what is going on at the interface between the two types of string at x = 0 : End Aside

• At the string interface we require:

◦ The forces on the two sides of x = 0 balance each other: T ∂y
∂x (x−) = T ∂y

∂x (x+)
◦ The string be continuous from below x = 0 to above x = 0: y(x−, t) = y(x+, t)

• Where I use x− to denote the approach to x = 0 from below and x+ the approach to x = 0 from above

• While we have used physical arguments (force balance and continuous string) to derive these conditions it is a general
property of second-order differential equations that the 0th and 1st derivatives must be continuous

2. Reflection and Transmission of Traveling Waves at Boundaries

• Last time we setup the problem of waves moving from one medium to another having different wave speeds

• Look at the three possible wave solutions we’ll have on our hybrid string (ie. string made of two different densities of strings)

• We’ll have three waves:

◦ An incident wave, incoming from the left (x < 0) traveling to the right: yi = A sin(ω1t− k1x)
◦ A transmitted wave, outgoing to the right (x > 0): yt = D sin(ω2t− k2x)
◦ A reflected wave, reflected back to left (x < 0): yr = C sin(ω1t+ k1x)



• Establish the boundary conditions we discussed in lecture yesterday:

(a) y(x−) = y(x+) the string must be continuous at x = 0 giving:

A sin(ω1t) +B sin(ω1t) = D sin(ω2t)
(A+B) sin(ω1t) = D sin(ω2t)

◦ Where we have set x = 0 in the wave solutions for each side of the boundary
◦ Looking at this, for it to be true at all t we are forces to conclude ω1 = ω2 ≡ ω
◦ In this case the first constraint reduces to A+B = D [I]
◦ We also note at this point that ω1 = ω2 ≡ ω implies that k1 = ω/c1 and k2 = ω/c2

(b) Now we can balance the forces on either side of x = 0
◦ To do this we must differentiate y− = yi + y + r and y+ = y + t and equate the forces
◦ Equating the forces at x = 0 gives us:

T1k1[−A cos(ωt− k1x) +B cos(ωt+ k1x)] = −T2k2D cos(ωt− k2x)

• As an aside we see why we wrote these waves in the slightly unconventional form sin(ωt − kx) rather than the more
conventional sin(kx− ωt). In the latter formulation, setting x = 0 would still leave arguments like −ωt and we would have
to keep track of these signs in the algebra that follows

• Setting x = 0
T1k1(B −A) cos(ωt) = −T2k2D cos(ωt)

• Since we’ve already concluded the waves on either side of the of boundary must have the same frequency we see the cos(ωt)
terms balance out in this equation leaving (after dividing through both sides by −1):

T1k1(A−B) = T2k2D

• Using the relationship between ki = ω/ci we can further “simplify” this to:

T1/c1 (A−B) = T2/c2 D [II]

• How do we interpret the ratio Ti/ci? It is an intrinsic property of the string. Already seen ci =
√
Ti/µi ⇒ Ti/ci =

√
Tici

• This comes up over-and-over in the study of waves propagating in media (though we’re near the end in this course – there’s
much more we could study). So we call it Zi ≡ Ti/ci =

√
Tiµi

• We’ll call this the Impedance of the string (see why later in this lecture)

• Thus the two equations become:

[I ] A+B = D

[II ] Z1(A−B) = Z2D

• Since this is two equations in three unknowns (A,B,D) we can’t solve them in closed form

• All we can do is make predictions for two ratios: r = B
A and t = D

A

• r is the ratio of reflected to incident wave amplitudes

• Similarly, t is the ratio of transmitted to incident wave amplitudes

• Physically we can think of controlling the incident amplitude (by generating the incident wave with a controllable forcing
function) and then predicting the reflected and transmitted amplitudes relative to this “known” incident amplitude

• If we take Z1 · [I] + [II] we get: 2Z1A = (Z1 + Z2)D which gives D/A ≡ t = 2Z1/(Z1 + Z2)

• Then look at [I]/A = 1 +B/A = D/A but this is jut 1 + r = t or R = t− 1

• So we get r = 2Z1/(Z1 + Z2)− 1 = Z1−Z2
Z1+Z2

• We can look at a few limiting cases to check these predictions:

(a) If the string is connected to a fixed point at x = 0 this is equivalent to it being connected to a second length of string
that has infinite mass density (ie. the x > 0 part of the string is so heavy it can’t move)
◦ In this case r = Z1−Z2

Z1+Z2
→ −1 as Z2 →∞



◦ The reflected wave has the same absolute amplitude but it is inverted in the process of being reflected
(b) If the two lengths of string (x < 0 and x > 0) have the same mass density then Z1 = Z2 giving t = 1 and r = 0

◦ There is no reflected wave and the transmitted wave looks just like the incident wave
◦ It’s as if the boundary wasn’t there at all – but of course it is not since we have same density on both sides of x = 0

(c) In the second flash demo the end of the string at x = 0 is free to move up and down. This is as if the second length of
string is massless (ie. Z2 = 0)
◦ In that case we see that r → 1 and t→ 0
◦ Agreeing with what the wave looks like in the demo.

• We looked a Flash demonstrations of waves reflected in these two cases and for waves transitioning both from denser to less
dense (and vice-versa) portions of the string. I worked through one of them in each class but you should see if the behaviour
of the waves at x = 0 makes sense,to you, in these latter two cases (Z1 > Z2 and Z1 < Z2)


