Family Name, Given Name (Please print)

Student Number

Tutorial Leader's Name

PHY293 – Oscillations – Practice Midterm

September 28, 2010

PLEASE read carefully the following instructions.

Aids allowed: A non-programmable calculator without text storage.

Before starting, please **print** your name, tutorial group, and student number **at the top of this page and on the cover of your answer booklet**.

There are three questions on this midterm test. Each question is worth one-third of the total grade.

Partial credit will be given for partially correct answers, so show any intermediate calculations that you do and write down, **in a clear fashion**, any relevant assumptions you are making along the way.

POSSIBLY USEFUL EQUATIONS:

	Amplitude	Velocity	Power
Peak Frequency	$\omega = \omega_0 \sqrt{1 - 1/(2Q^2)}$	$\omega = \omega_0$	$\omega=\omega_0$
Peak Value	$a_m = \frac{a_0 Q}{\sqrt{1 - \frac{1}{4Q^2}}}$	$v_m = a_0 \omega_0 Q$	$P_m = \frac{1}{2}ma_0^2\omega_0^3Q$
General	$a(\omega) = \frac{a_0\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\gamma\omega)^2}}$	$v(\omega) = \frac{a_0\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2/\omega^2 + \gamma^2}}$	$< P(\omega) >= P_{\mathrm{m}} rac{\gamma^2}{(\omega_0^2 - \omega^2)^2 / \omega^2 + \gamma^2}$
	$ \tan \delta = \frac{\omega \gamma}{(\omega_0^2 - \omega^2)} $		$< P >= P_{\rm m} \frac{\gamma^2/4}{(\omega_0 - \omega)^2 + \gamma^2/4} Q \gg 1$

Do no separate the two stapled sheets of the question paper. Hand in the question sheets with your exam booklet at the end of the test.

- 1. Explain succinctly (ie. in three sentences or less) the meaning *and* significance of each of the following, in the context of harmonic oscillations we've discussed in this class. Your answer should make clear not only what the term, or concept, *is*, but also put it in the context of this course and make it clear why it is *important*.
 - (a) Natural frequency;
 - (b) Resonance in an LRC circuit;
 - (c) Power resonance;
 - (d) The Q of an oscillator.
- 2. Suppose that a mass m is attached between two walls a distance d apart:

The springs have spring constants k_1 and k_2 and equilibrium lengths l_1 and l_2 , respectively.

- (a) Is it necessary for $d = l_1 + l_2$, if not, why not?
- (b) Derive an expression for the equilibrium position of the mass between the walls, x_{equil} .
- (c) If the springs were identical $(k_1 = k_2 \text{ and } l_1 = l_2)$ where would you expect the equilibrium position to be? Show that your result from part (b) agrees with this physical intuition.
- (d) By considering the forces on the mass (you can assume it slides on a frictionless surface) derive the equation of motion and show that it will execute simple harmonic motion.
- (e) What is the period of oscillation for this mass?
- (f) How does the period of oscillation depend on d?
- 3. An object of mass 1 kg hangs from a spring of negligible mass. The spring is extended by 5 cm when the object is attached. The top end of the spring is oscillated up and down in a simple harmonic manner with an amplitude of 2 mm. The Q of the system is 25.
 - (a) What is the natural frequency ω_0 for this system?
 - (b) What is the (distance) amplitude of the forced oscillations of the mass at $\omega = \omega_0$?
 - (c) What is he mean power input to maintain the forced oscillations at a frequency that is 1% greater than ω_0 ? [You can use the near-resonance approximation we discussed in class]