PHY293 Oscillations (Review Ch. 1-3)

September 24, 2010

1. Review of Forced Damped SHO

- (a) Given : $\ddot{x} + \gamma \dot{x} + \omega_0^2 = a_0 \omega_0^2 \cos(\omega t)$
 - And two initial conditions (like $x(0) = x_i$ and $\dot{x}(0) = v_i$
 - We find a solution $x(t) = x_c(t) + \mathcal{X}(t)$
 - Where the complementary solutions are

- In all three cases $C_{1,2}$ are determined by x_i and v_i
- Independent of the drive frequency ω or its amplitude a_0 these contributions die away like $e^{-\gamma t/2}$ (or faster).
- The steady state solution has an amplitude and phase independent of time

$$\mathcal{X}(t) = a(\omega)\cos(\omega_t - \delta)$$

• Where:

$$a(\omega) = \frac{a_0 \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (\gamma \omega)^2}} \qquad \tan \delta = \frac{\omega \gamma}{(\omega_0^2 - \omega^2)}$$

any γ
resonance
of initial conditions

Normalized frequency (ω)

- This will be the solution for any γ
- But for $\gamma^2 > 2\omega_0^2$ there is no resonance
- This solution is independent of initial conditions

• The steady state solution can be de-composed into its two phases

$$\mathcal{X}(t) = G\cos(\omega t) + H\sin(\omega t)$$
$$= a(\omega)[\cos\delta\cos(\omega t) + \sin\delta\sin(\omega t)]$$

(b) There are three frequency regimes for forced oscillations

low ω	Resonant ω	High ω
$\delta \rightarrow 0$	$\delta = \pi/2$	$\delta \to \pi$
$a \rightarrow a_0$	$a = a_0 Q \frac{1}{\sqrt{1 - 1/4Q^2}}$	$a \to a_0 \frac{\omega_0^2}{\omega^2}$

Stiffness dominated spring/damping balanced Inertia dominated

- (c) Velocity Response
 - Resonance at $\omega = \omega_0$

$$\dot{\mathcal{X}}(t) = -\omega a(\omega) \sin(\omega t - \delta) \equiv -v(\omega) \sin(\omega t - \delta)$$
$$v(\omega) = \frac{a_0 \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 / \omega^2 + \gamma^2}}$$

- For low $\omega, v \to 0$; for high $\omega, v \to a_0 \omega_0^2 / \omega$
- At resonance the reactive elements of the system cancel each other out
- The system becomes easy to drive: viscosity/damping and restoring force/spring work together resulting in resonance
- (d) Power Absorbed by an oscillator
 - Power averaged over a complete cycle is only absorbed by out-of-phase component of solution

$$< P(\omega) > = < P_{\max} > \frac{\gamma^2}{(\omega_0^2 - \omega^2)^2/\omega^2 + \gamma^2}$$

- Resonant at $\omega = \omega_0$, $\langle P_{\max} \rangle = \frac{1}{2}ma_0^2\omega_0^3Q$ At high Q: $\langle P \rangle = P_{\max} \frac{\gamma^2/4}{(\omega_0 \omega)^2 + \gamma^2/4}$
- In either case the full width at half maximum of the power curve is γ and $Q = \omega_0/\gamma$

		Amplitude	Velocity	Power
(e) Summary of Resonance	Frequency	$\omega = \omega' = \sqrt{\omega_0^2 - \gamma^2/2}$	$\omega = \omega_0$	$\omega = \omega_0$
	Peak Value	$a_m = \frac{a_0 Q}{\sqrt{1-1}}$	$v_m = a_0 \omega_0 Q$	$\langle P_m \rangle = \frac{1}{2}ma_0^2\omega_0^3Q$
	Comments	$\omega \gg \omega_0^{1 - \frac{1}{4Q^2}}$	reactive elements cancel	FWHM = $\gamma = \omega_0/Q$
		$a ightarrow a_0 \omega_0^2 / \omega^2$	Easy to drive	Narrow for large Q
		$\delta ightarrow \pi$		