PHY293 Practice Problem Set #2

September 21, 2010

- 1) Forced Oscillation: In class we went through a derivation of the behaviour of a forced oscillator using a driving force $x_{\rm F} = a_0 \cos(\omega t)$. Consider instead a mass driven by $A_0 \sin(\omega t)$:
 - (a) Re-derive the expressions for $A(\omega)$ and $\delta(\omega)$ for the steady state response $x(t) = A \sin(\omega t \delta)$ to see how/if they differ from those we derived in class
 - (b) For $\gamma = 0.1 \text{ s}^1$, $\omega = 10 \text{ s}^1$, $\omega_0 = 5 \text{ s}^1$, and $a_0 = 2 \text{ cm}$, write the full solution x(t). Give all numbers to three significant figures. What are your units? [note: there may be undetermined coefficients.]
 - 2) Oscillator Q: For many oscillatory systems, there is an exponential decay in stored average energy, even though the dissipation is not through viscous damping. For instance, if you can hear a tuning fork, then energy must be leaving the tuning fork and traveling to your ear. In that case, the quality factor Q may still be defined in reference to the rate of decay, i.e., if $\langle E \rangle = E_0 e^{-\gamma t}$, then $Q = \omega_0 / \gamma$, where ω_0 is the natural angular frequency.
 - (a) When the note middle C on a piano is struck, its energy of oscillation decreases to one half its initial value in about 1 s. The frequency of middle C is $\nu = 256$ Hz. What is the Q of the system?
 - (b) If the note an octave higher ($\nu = 512 \text{ Hz}$) takes about the same time for its energy to decay, what is its Q?
 - 3) RLC: Consider an RLC circuit drive with a voltage $V_0 \cos \omega t$:
 - (a) Write the power dissipated versus frequency, in terms of R, L, C, V_0 , and ω .
 - (b) Now assume L = 1 mH, R = 20 Ω , and C = 1 μ F; and a drive amplitude $V_0 = 5$ V. How much power is dissipated at $\omega = 3 \times 10^4$ s⁻¹?
 - (c) Sketch the power dissipation in Watts versus frequency in Hertz. Besides the drive frequency, use all the same values as in part (b) (remember $\omega = 2\pi\nu$, if ω is in s⁻¹ and ν is in Hz.)