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Interferometers 
 

(Two weights for all experiments with Michelson interferometer 

and one weight more for experiments with Fabry-Perót interferometer) 
 

1. Introduction 
Interferometers are devices employed in the study of interference patterns produced by 
various light sources. They are conveniently divided into two main classes: those based 
on division of wavefront, and those based on division of amplitude. 

 
2. Michelson interferometer: theory 

The Michelson interferometer employs a division of amplitude scheme. It can be used to 
carry out the following principal measurements: 

 Width and fine structure of spectral lines. 
 Lengths or displacements in terms of wavelengths of light. 
 Refractive indices of transparent solids. 

 Differences in the velocity of light along 2 diffe rent directions. 
 

It operates as follows: we “divide” the wave amplitude by partial reflection using a beam 
splitter G1, with the two resulting wave fronts maintaining the original width by having reduced 
amplitudes [1]. A beam splitter is nothing more than a plate of glass, which is made partially 

reflective: as such, the splitting occurs because part of the light is reflected off of the surface, 
and part is transmitted through it. 
 

The two beams obtained by amplitude division are sent in different directions against plane 
mirrors, then reflected back along their same respected paths to the beam splitter to form an 

interference pattern. The core optical setup, which is labelled in Fig.1, consists of two highly 
polished plates, A1 and A2, acting as the above-mentioned mirrors, and two parallel plates of 
glass G1 and G2 - one is the beam splitter, and the other is a compensating plate, whose purpose 

will be described below. The light reflected normally from mirror A1 passes through G1 and 
reaches the eye. The light reflected from the mirror A2 passes back through G2 for a second 

time, is reflected from the surface of G1 and into the eye. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic diagram of the Michelson interferometer. 
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The purpose of the compensating plate G2 is to render the path in glass of the two rays equal 
[1]. This is not essential for producing effective, sharp, and clear fringes in monochromatic 

light, but it is crucial for producing such fringes in white light (a reason will be given in the 
“White Light Fringes” section). The mirror A1 is mounted on a carriage, whose position can be 

adjusted with a micrometer. To obtain fringes, the mirrors A1 and A2 are made exactly 
perpendicular to each other by means of the calibration screws (Fig. 1), controlling the tilt of 
A2. 

 
There are two very important requirements that need to be satisfied along with the above set up 

in order for interference fringes to appear: 
 
1. Use an extended light source. The point here is purely one of illumination: if the 

source is a point, there is not much space for you to see the fringes on. You can 
convince yourself of the usefulness of using an extended source by positioning a 

variable size aperture in front of an extended source and shrinking its radius to the 
minimum possible (thus effectively converting it to a point source). As you can see, the 
field of view over which you can see the fringes shrinks right with it. Hence, it is in 

your best interest to use as big of a source as possible (a different screen is of 
further great aid here). 

 
2. The light must be monochromatic, or nearly so. This is especially important if the 

distances of A1 and A2 from G1 are appreciably different. The spacing of fringes for a 

given colour of light is linearly proportional to the wavelength of that light: hence the 
fringes will only coincide near the region where the path difference is zero. The 

solid line here corresponds to the intensity of interference pattern of green light, 
and the dashed curve — to that of red light.  We can see that only around zero path 
difference will the colours remain relatively pure: as we move farther away from 

that region, colours will start to mix and become impure and unsaturated - already 
about 8-10 fringes away the colours mix back into white light, making fringes 

indistinguishable. Hence the region where fringes are visible is very narrow and hard to 
find with non-monochromatic light. 

 

Some of the light sources suitable for the Michelson interferometer are a sodium flame or a 
mercury arc. If you use a small source bulb instead, a ground-glass diffusing screen in front 

of the source will do the job; looking at the mirror A1 through the plate G 1 , you then see 
the whole field of view filled with light. 

 
Circular Fringes 
 

To view circular fringes with monochromatic light, the mirrors must be almost perfectly 
perpendicular to each other. The origin of the circular fringes is understood from Fig. 2. 
The real mirror A2 has been replaced by its virtual image A’2 formed by the reflection 
in G1 : hence A’2 is parallel to A1. 
 
Since light in the interferometer gets reflected many times, we can think of the extended  

source as being at L, where L is behind the observer as seen in Fig. 2; L forms 2 virtual  
images, L1 and L2, in mirrors A1 and A2’, respectively. The virtual sources in L1 and L2 
are said to be in phase with each other (such sources are called coherent sources), in that the 

phases of corresponding points in the two are exactly the same at all times. If d is the 
separation of A1 and A2’, the virtual sources are then separated by 2d, as can be seen in 
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the diagram (Fig. 2). 

 

Figure 2: Virtual images from the two mirrors created by the light source and the beam 

splitter in the Michelson interferometer. 

 
 

When d is exactly an integer number of half wavelengths, every ray that is reflected normal 

to the mirrors A1 and A’2 will always be in phase. The path difference, 2d, must then be 
an integer number of wavelengths. Rays of light that are reflected at other angles will not, 
in general, be in phase. This means that the path difference between two incoming rays from 

points P’
 
and P”

 
will be 2dcosθ, where θ is the angle between the viewing axis and the 

incoming ray. We can say that θ is the same for the two rays when A1 and A2’ are parallel, 

which implies that the rays themselves are parallel. Since the eye is focused to receive the 
parallel rays, it is more convenient to use a telescope lens, especially for looking at interference 
patterns with large values of d.

 
The parallel rays will interfere with each other, creating a fringe pattern of maxima and 
minima for which the following relation is satisfied: 

                                                                                                                                      (1) 
 

where d is the separation of A1 and A’2, m is the fringe order, λ is the wavelength of the 
source of light used, θ is as above (if the two are nearly collinear, we, of course, have 
θ ≈ 0 — this is the case for the fringes in the very centre of the field of view). 
 
Since, for a given m, λ, and d the angle θ is constant, the maxima and minima lie on a 

circular plane about the foot of the perpendicular axis stretching from the eye to the 
mirrors. As was mentioned before, the Michelson interferometer uses division by 

amplitude scheme: hence the resultant amplitudes of the waves, α1 and α2, are fractions of 
the original amplitude A, with respective phases α1 and α2. We can calculate the phase 
difference between the two beams based on the respective mirror separation. If the path 

difference is 2d cos θ, then the phase difference δ for light of wavelength λ is simply 
 

δ = 2π 
2d cos θ 

 

 

λ 
(2) 

Here the ratio of the path difference to the wavelength tells you what fraction of a 

wavelength have you passed, and multiplication by 2π makes it a fraction of the full 
period of a sinusoid, thus giving you exactly the sought phase difference. 

 md cos2
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By starting with A1 a few centimeters beyond A’2, the fringe system will have the general 

appearance which is shown in Fig.3, where the rings of the system are very closely spaced. As 
the distance between A1 and A’2 decreases, the fringe pattern evolves, growing at first until the 

point of zero path difference is reached, and then shrinking again, as that point is passed. 
 
 

 
 

 
 

 

 

 

 

 
Figure 3: The circular fringe interference pattern produced by a Michelson interferometer. 

 
This implies that a given ring, characterized by a given value of the fringe order m, must 
have a decreasing radius in order for (2) to remain true. The rings therefore shrink and 

vanish at the centre, where a ring will disappear each time 2d decreases by λ. This is 
because at the centre, cos θ = 1, and so we have the simplified version of equation (2), 

 
                                                                2d = mλ                                                     (3) 

 
From here we see that the fringe order changes by 1 precisely when 2d changes by λ, 
hence for a fringe to disappear we need to decrease 2d by λ, as claimed above. 

 
Localized fringes 
 

In case when the mirrors are not exactly parallel, fringes can still be observed in 
monochromatic light for path differences not much greater than a few millimeters. The 

space between the mirrors is wedge-shaped (Fig. 4): thus the two rays reaching the eye 
from the mirrors are no longer parallel and appear to diverge. Hence, the interference 

picture will be more like that of Fig. 5: the fringes are now semi-circles, with the centre 
lying outside the field of view — such fringes are often called localized fringes. The reason 
these fringes are almost straight is primarily because of the variation of the thickness of 

air in the wedge, as that is now the main reason for the variation of the path difference 
between the two beams across the field of view.  

 
One would expect all fringes to be perfectly straight, parallel to the edge of the wedge: 
however, that is not the case, as the path difference still does vary somewhat with the angle 

θ, especially if d is large. Depending on the magnitude of d, we can observe different 
interference patterns:  as we change the path difference the fringes become straighter, 
until we hit point of zero path difference. At that point, if we were looking at circular 

fringes, they would fill the whole field of view, become very large circles — that means 
that localized fringes would become parallel lines, as if there were small sections of the 

circumferences of very large circles. 
 
The association “large circular fringes — parallel localized fringes” will be important in 

the next section, when we use it to locate white light fringes. 
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Figure 4: Formation of localized fringes with non-perpendicular mirrors — the air wedge is 

clearly seen. 

 
 
 

 
Figure 5: The localized fringe interference patterns produced by a Michelson 

interferometer: (a) and (c) are depictions of curved fringes, implying the mirror 

is far from the region of zero path difference, and (b) shows straight, parallel 

fringes — this must be at or very near the point of zero path difference. 

 

 
White Light Fringes 

If instead of using monochromatic light, we wish to study the fringes created by white light, no 
fringes will be seen at all except for when the path difference between A1 and A’2 does not 
exceed a couple of wavelengths. They are extremely difficult to find, so have patience — 

they do exist. 
 

This is well-demonstrated in Fig. 6: the dashed line corresponds to the intensity of the 
interference pattern of green light, while the solid line — to that of yellow light. As you can see 
from the diagram, the patterns only overlap over the narrow range of zero path difference 

between the two incoming beams: now if there are many different wavelengths involved in an 
interference process, as is the case for white light, one can conclude that anywhere too far away 

from the region of zero path difference the colours will mix back up into white light and no 
fringes will be visible. 
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Figure 6: The intensity curves of interference of green light (dashed line) and yellow light 
(solid line). The dispersion of the interference patterns away from the region of 
zero path difference is readily observed. 

 
With white light, there will be a central dark fringe, bordered on either side by 8 or 10 

coloured fringes. Since the region over which the white light fringes are visible is so 
narrow, trying to search for it with white light alone is too time-consuming. Instead you 

can first approximate its location by using monochromatic light and finding the region of 
zero path difference. It will correspond to one of two regions: (a) if the mirrors are 
perfectly parallel and we are observing circular fringes, the region with the largest circular 

fringes is the region of zero path difference (b) if the mirrors are almost parallel and we 
are observing localized fringes, then the region with straight, parallel fringes will be the 

region of zero path difference.  
 
Once we have approximately found the right region, we switch back to white light, and 

move VERY slowly through the region: the bright fringes should come into view. These 
fringes will only occur over a very narrow range of path difference values, corresponding 

to about a 20 degree turn on the micrometer — hence the need to move slowly, otherwise 
you can miss them. We advise that, upon finding the fringes, you mark the approximate 
position of the micrometer, to simplify future search (as the position of white light fringes 

will be needed for other experiments). 

 

3. Michelson interferometer setup 
 

NOTE: Most mirrors in the apparatus are front surface aluminized. Do not touch the surfaces, 

nor wipe them. They can easily be permanently damaged. 

 

The Michelson Interferometer is a fundamental design of a large variety of two-beam 
interferometer configurations. Demonstration of the laboratory Michelson interferometer is 
here: https://www.youtube.com/watch?v=KWWGrj8wc_c  

Interferometer in detecting and measuring gravity waves in LIGO (Laser Interferometer 
Gravitational Wave Observatory) is here: https://www.youtube.com/watch?v=RzZgFKoIfQI 

https://www.youtube.com/watch?v=KWWGrj8wc_c
https://www.youtube.com/watch?v=RzZgFKoIfQI
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In this experiment we will use the most basic apparatus (Fig. 7).  
 

Light from a source unit N (a mercury or sodium lamp, in this experiment), passing through a 
diffusing screen/filter holder unit D, is incident on the plane-parallel beam splitter plate with 

compensating plate (they are together in one whole unit C) and is divided into two beams, the 
axes of which, 1 and 2, fall normally on the mirrors A and B, respectively.  
 

The diffusing screen is a piece of ground glass used to spread out, or diffuse, the light across the 
field of view, to get soft light. 

 
It is important to make use of an extended light source — one needs to illuminate as large part 
of the field of view as possible, to simplify fringe observation. 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
Figure 7: The Michelson interferometer setup used in this experiment — letters indicate units, 

as noted in the explanation above. 
 
The returned beams re-unite at the semi-reflecting surface of C. The interference pattern can be 

viewed directly with the naked eye or by means of a telescope at the viewing position. 
 

The compensating plate at C is identical in thickness to the beam splitter plate and is set 
accurately parallel to it. Its insertion then equalizes the glass paths in the two beams, as 
mentioned earlier. When the mirrors A and B are perpendicular, and A is slightly closer than B, 
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the image from A will fall in front of that from B and a series of interference fringes will be 
seen. When the mirrors are equidistant and perpendicular, the interference field will be covered 

by one large circular fringe. When the surfaces B and A are not precisely parallel and the 
separation distance is very small, a series of fringes in shapes of approximately straight lines 

will be seen. For a non-laser source, fringe contrast increases as distance apart is reduced. 
 

4.   Vacuum pump 
 

For one part of this experiment, you will need to use a vacuum pump to find the index of 
refraction of a gas at normal atmospheric temperature and pressure. Specifically, you will 
be using an Edward High Vacuum Ltd. rotary vacuum pump (parts of the technical 

manual are available in the resource room, 229). The pump apparatus consists of several 
parts: 

a. The pump itself, housing the rotor and the oil chamber: attached to its vacuum 
connection (see the manual for a diagram) is the main access valve, separating the gas 
cell from the insides of the pump. 

b. A gas cell, connected to the pump via three reinforced plastic tubes. 
c. A tall dial gauge, indicating the pressure inside the gas cell, in mm Hg (operates 

between 1 and 760 mm Hg). 
d .  A release valve, also connected to the gas cell, to control the pressure level.  
 

The pump is operated as follows: 
1) Ensure the gas cell is properly connected to the pump. 

2) Connect the pump to a wall outlet. 
3) Slowly open the main access valve and establish a pressure of 760 mm Hg in the gas 

cell. 

4) Use the release valve to vary the pressure inside the gas cell. 
 

Be sure to keep the release valve open when you unplug the vacuum pump to let the pressure 

slowly leak from the pump. When you turn on the pump, it will make ungodly noise — that is 
to be expected. 
 

5. Initial adjustments, observation of fringes, and calibration 
 

The arrangement of the interferometer outlined in the section “Michelson interferometer 
setup” will be the arrangement used for the entire experiment (except for when you will 
need to switch between the light sources used). 

 
Dim the room lights.  

 
Position the sodium lamp (it will take some time for it to warm up after you turn it on) in 
front of the diffusing screen holder D, and insert the diffusing screen into the holder.  

 
Looking through the opening at the viewing position (usually the closer, the better the 

view), you will observe dark fringes on a yellow/orange background: they will most likely 
be localized fringes (if you do not see any fringes at all, try rotating the micrometer screw 
until they appear).   

 
Adjust the calibration screws on mirror B to make it perpendicular to mirror A: you will 

know they are perpendicular when you see complete circular fringes, with the centre of 
the fringes right in the centre of your field of view. 
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Once you have observed the fringes, locate the region where the path difference between the 
two beams of light is close to zero. Recall that when viewing circular fringes, this region is the 

region where the fringes observed are largest, covering the entire field of view; whereas when 
viewing localized fringes, this region corresponds to the region where the fringes are parallel to 

each other. It is advisable to use the latter to locate the region of zero path difference. Mark the 
approximate location of the region by noting the micrometer reading to speed up the procedure 
for next time. 

 
Switch the source of light to white light. By rotating the micrometer and moving the mirror 

carriage very slowly through this region, you can observe the elusive white fringes. As was 
noted earlier, these fringes are only observable over a range of about a 20-degree rotation of the 
micrometer head: the range is about 20 fringes wide, so be sure to rotate the micrometer very 

slowly. The fringes in white light can only be viewed when the path difference 2d cos θ ≈ 0. 

 

Now switch the light source back to the sodium lamp, and adjust mirror B until you see circular 
fringes of medium to large size.  

 
You are going to set up a calibration curve between the motion of the micrometer screw and the 
actual displacement of mirror A. Since there is a rather non-trivial system of levers connecting 

the mirror carriage with the micrometer screw-head, not all of the motion of the micrometer is 
translated into the motion of the carriage: we need to determine the exact relationship. To do so, 

we will make use of equation (3) and our earlier observation that if the distance 2d changes by 
the wavelength λ, then one fringe passes out of the field of view. Hence if we count the number 
of fringes that disappeared from the field of view in a given distance moved by the micrometer, 

we can directly relate the two, as, using the number of fringes and equation (3), we can calculate 
how much the mirror actually moved, and relate that to what we took down for the motion of 

the micrometer. 
 

NOTE: The mirror carriage should always be driven towards the observer when making 

readings. Overshoot cannot be easily corrected by reversing the direction of rotation of the 

micrometer screw because of backlash between the screw thread and the carriage (i.e. 

reversal of the direction of rotation of the micrometer screw does NOT result in 

immediate reversal of motion of the carriage: over an angle of a few degrees, the screw 

rotates without moving the micrometer at all). Ask the demonstrator to explain this 

point if it is not clear to you. 

 
There are multiple ways to build a calibration curve, but we propose the following 

scheme: 
1) Note the initial position of the micrometer.  
2) Slowly rotate the micrometer and count the number of fringes that disappear in the 

middle of the field of view (you need to be moving the mirror toward you). 
3) Record the micrometer position for every 50 fringes as well as the total number of 

fringes you’ve moved and proceed until you have counted 1000 fringes. 
4) Plot the micrometer displacement values as a function of fringes and, using eq. (3), 

calculate the path distance moved per 50 fringes (you may use the mean 

wavelength value of the sodium spectral line λ = 589.3 nm). 

5) Finally, plot the micrometer reading against the corresponding actual motion of the 
carriage, and perform a linear fit. Consequently, the slope of the fit can be used 
t o  convert micrometer readings into actual distance moved by the mirror carriage. 

6) Remark on the uniformity of the micrometer screw (i.e. on the linearity of the 
data). 
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6. Refractive index of a transparent solid (1 weight) 
 

As mentioned earlier, one of the possible uses of a Michelson interferometer is to 
measure the index of refraction of a transparent solid. By inserting such a solid into the 

optical path of the beam aligned with the movable mirror, you displace the interference 
pattern (since the path difference is now increased due to the fact that the index of 
refraction of the solid is different from that of air): by making note of exactly how much 

the interference pattern was displaced, you can find out how much the path difference 
increased and, consequently, the index of refraction of the material.  

 

In particular, in this part of the experiment we will do so for a small microscope slide, 

provided along with the other components in the box. There are limitations to this 
technique: for example, if the added path difference is too large (if, say, the solid is too thick), 
then the displacement of the interference pattern will be too large to account for - no motion of 

the mirror will restore the original picture. Thus the limitations of using the method depend on 
the bounds of motion of the mirror carriage - that is, on the size of the interferometer. 

 
Consider a thin parallel plate solid, with index of refraction µ, flat on both sides and sufficiently 
transparent (we will also assume it is uniform, otherwise the index of refraction would vary on 

the exact place where the beam passes through the solid), of thickness t.  If we place it in the 
optical path of the beam going toward mirror A, the path length of that beam will increase by δ 

= 2d (µ − 1). The beam traverses a distance t through the solid. Before the solid is inserted into 

place, the optical path length across a stretch of air of length t with index of refraction µair = 1 is 

simply r0 = 2tµair = 2t (the factor of two accounts for the fact that the beam traverses this stretch 
of air twice: on the way to the mirror, and on the way back).  After the solid is put into place, 

the new optical path length is r = 2tµ. Hence the path difference δ, introduced by the solid, is 
simply δ = r − r0 = 2t(µ − 1). 
Since the displacement of one complete fringe is equivalent to changing the path difference δ = 

2t(µ − 1) by one wavelength λ, for m fringes we will have 2t(µ − 1) = mλ or  
       
                                                                                                                       (4) 

 
Thus, using a light of known wavelength, along with the thickness of the solid, and noting 

the number of fringes that the pattern was displaced by, we can find the index of refraction 
of the solid. 
 

Procedure 
 

In practice, it is slightly more complicated. First of all, you want to make the solid parallel to 
the mirror to make sure the distance it travels through the solid a distance equal to the thickness 
(and not longer — if, say, the beam was incident on the plate at an angle). To achieve this, try to 

make sure the solid is as parallel to the mirror as possible: it is advisable that you use a holder, 
which you can screw to the optical bench — then put a simple white light source into position, 

and try to align the three images of it produced by the beams at the viewing position by tilting 
and rotating the solid.  
 

Moreover, since the transition of the interference pattern is sudden, there is no way to count the 
fringes “as they pass”, like you did to get a calibration curve. And if you use a monochromatic 

light source, all the fringes are virtually indistinguishable — they have different radii, but 
without a precise scale it would be impossible to find the displacement of the interference 
pattern.  

Instead, we shall do the following: as in the previous part of this experiment, we locate the 

1
2


d

m

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white light fringes and note the reading of the micrometer. The fact that they only occur over a 
narrow range of mirror positions will be to our advantage this time. As soon as you insert the 

solid in the optical path of the beam headed toward mirror A, the interference pattern will be 
displaced and you will no longer see the white light fringes.  

 
However, if you then slowly move the carriage (toward the observer, as you have to account for 
increased path difference by decreasing the geometric distance between the mirror and the beam 

splitter), you can locate the fringes once again. The difference in the reading of the micrometer 
between these two positions can be related, via your calibration curve, to the amount the 

mirror actually moved, which can be tied back to eq. (4). Using eq. (3) in the form 2d = 
mλ and noting that d = Mf , where M is the micrometer distance reading and f is the 
conversion factor (slope of calibration curve obtained earlier), we obtain 
 

                                                                                                                                        (5) 

 
All we really need is to measure the thickness of the plate and, having found the fringe pattern 
again, to note the distance traversed by the micrometer.  

 
Nevertheless, even finding the displaced fringes is difficult: you can estimate the index of 

refraction of your microscope slide (they are usually made out of soda lime or borosilicate glass, 
with indices of refraction around 1.5) and from that you can outline a range of distances you 
have to explore with the micrometer to find the fringes. Be aware that it might take quite some 

time to find them even still.  
 

Once you found the region, it is advisable to mark its approximate location on the micrometer. 
Having done this several times, calculate the index of refraction using eq. (5). 

 

7. Refractive index of gas (1 weight) 
 

Another useful application of the Michelson interferometer is the measurement of the index 
of refraction of a gas by exploiting the relationship between the index of refraction n and 

pressure P in the gas chamber. 
 

Consider an evacuated cylindrical gas cell, positioned on the viewing axis of mirror A, of 
length l. Suppose the gas with the index of refraction n is admitted into it. The change 
in the optical path length will be simply 2l(n – 1) that gives the exact same relationship as 

in the previous section, for a light of wavelength λ 
 

2l(n − 1) = Nλ, 

 
where N is the number of fringes counted. Take the derivative with respect to pressure: 

 
                                                                                                                                                  (6) 
 

It is an experimental fact that for gases the number n − 1 is proportional to the density of the 
gas ρ, as long as the chemical composition of the gas does not change, i.e. n – 1 = cρ for 

some constant c [4]. Assume the gas obeys the ideal gas law, 

m 
P V =  RT 

M 
 

where V is the volume, m and M the total and the molar masses, respectively, R is the 
universal gas constant and T is the absolute temperature. We will rewrite it in the form 

1
t

Mf


dP

dnl

dP

dN



2

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                                                                                                                                                  (7) 

 
where ρ ≡ m/V. Let us consider the gas in two states: one will be defined by the variables P, 

V, ρ, T, n, and the other will be the gas in some other (reference) state, with the 
corresponding variables P0, V0, ρ0, T0, n0. Then, 

 

                                                                                                                                               (8) 

 

From the ideal gas law (7), 

                                                                                                                  

                                                                                                                             

 

and thus, combining this with (8)                                                                                  (9) 

 
Let us take the reference state to be at normal temperature and pressure, i.e. let T0 = 273 K, P0 = 

760 mm Hg. The reason for choosing such strange pressure units becomes clear if you recall the 
description of the vacuum pump apparatus used in this experiment — those are the units its 
gauge readings are in. Take the derivative with respect to pressure on both sides. We assume the 

process is isothermal, so that temperature remains constant throughout the measurements and 
does not vary with pressure:  

 
 
 

Substituting into equation (6) yields 
 

                                                                                                                                                 (10) 
 

From this equation we see that if we measure the rate of change of passage of fringes through 
the field of view with pressure (i.e. take several measurements of the number of fringes passed, 
counting from zero, and the corresponding pressure, do a linear fit on the data and take the 

slope), while noting the temperature at which the measurements are taking place, we can find 
the index of refraction of a given gas n0 at normal temperature and pressure. 

 

Procedure 
 

Connect the gas cell via three reinforced plastic tubes to the vacuum pump and measure its 
length. Since you do not want to take into account the thickness of the glass walls of the cell, it 

is best to measure the overall length of the gas cell, then measure the thickness of one of the 
walls and perform the subtraction.  
 

Attach the cell to the stand between mirror A and the beam splitter by inserting the two screws 
into the holes in the optical bench and tightening the nuts. Since we only want to take into 

account the path difference created by the gas and not the glass walls of the glass cell, we need 
to compensate for them by inserting two thick circular glass plates into a holder in the path of 
the other beam. 

 
Plug in the vacuum pump, and open the valve so that the gauge reads 760 mm Hg. By 

slowly turning the release valve (the small attachment with a knob on it) you can lower 
and raise the pressure by an incremental amount.  

RT
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Now set up the interferometer to view circular fringes with a monochromatic light source. 

Using a sodium lamp is advisable.  
 

By setting up the pressure as above, take measurements of the change in pressure, and how 
many fringes cross the field of view, all the while keeping track of ambient temperature. One 
person should slowly vary the pressure, and another should count the fringes and announce the 

number of them that passed by at specific pressure increments. Try to conduct measurements 
quickly, so that the temperature does not have time to change. 

 
Use eq. (10) to find the value for the index of refraction you determined and calculate the ratio 
of your value vs. the accepted value of naccepted = 1.000277. 

 
8. Instructor’s expectations (Michelson interferometer) 

Initial adjustments, observation of fringes, and calibration 
 

1) Produce a calibration curve, as discussed in the “Experiment and Procedure” section, 

using Python or any other software. Explain what was programmed and which goodness 
of fit criteria are expected as outcomes. 

2) Be sure to include a χ2 value for the fit and, in its light, discuss the uniformity of the 
screw thread. 

 

Refractive index of a transparent solid 
 

1) Find the index of refraction of a microscope slide, following the procedure outlined 
in the “Refractive index of a transparent solid: procedure” section. 

2) Compare with known values of index of refraction of material employed in 
manufacturing microscope slides and comment on the accuracy of the 

measurement. 

 
Refractive index of gas 

 

1) Fit a curve of pressure versus the number of fringes having passed the field of view, 
and from its slope calculate the index of refraction of air at normal temperature 

and pressure, as described in section “Refractive index of gas”.  
2) In your error estimates and calculations, evaluate the significance and impact of 

the following (possible) sources of error:  
(a) change in cell length when the cell is partially evacuated,  
(b) influence of relative humidity of air. 

 
9.  Fabry-Perót interferometer: theory 

 

Another commonplace division-of-amplitude interferometer is the Fabry-Per´ot interferometer, 
which uses a principle similar to that of the Michelson interferometer to produce interference 

fringes. The core of this device consists of two parallel flat glass plates, one movable, one fixed, 
the inner surfaces of which are coated with a partially reflective metallic layer (see Fig. 8). 
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Figure 8: The reflected and transmitted beams of light going through the two glass surfaces of a 
Fabry-Per´ot interferometer (letters indicate points of reflection/refraction). Source: 

http://what-when-how.com/radial-velocities- in-the-zodiacal-dust-cloud/hicks-
and-reay-mnras-paper-1974-zodiacal-dust-cloud-part-2/  

 

Due to coating, a beam of light incident on the first plate at an angle θ to the horizontal 
produces a series of beams passing through to the other side, as each continuously gets either 

transmitted through the second plate to go on to the observer, or bounces back and forth 
between the inner surfaces until it does (it could also potentially come back out from the 
side the original beam entered the arrangement, but those rays are of no consequence to 

us).  
 

Each of the beams arrives at the point of observation with a path difference of δ with the 
one before and after it: thus they reinforce each other and produce an interference pattern. 
Let the distance between the plates be t. From Fig. 7, the path difference δ between the 

rays exiting at B and D is exactly 
 

δ = BC + CK 
 

In the diagram, the line BK is normal to CD. The angle between BC and CK is 2θ, and 

the triangle BCK is a right angle one. Hence we may write 
 

CK = BC cos 2θ 
 

Moreover, we can relate the hypotenuse BC to the distance between the plates via 
 

BC cos θ = t 
The path difference 
 

                               δ = BC + CK = BC(1 + cos 2θ) = 2BC cos2 θ = 2t cos θ                (11) 
 

The condition for constructive interference is 
 

                                                             nλ = 2t cos θ                                                     (12) 
 

where n is the fringe order, and λ is the wavelength. We can vary the separation between the 

glass plates and watch the fringes disappear in the centre of the field of view, thus allowing us 
to do almost exactly the same measurements as we could with a Michelson interferometer. The 
advantage of the Fabry-Per´ot is its high resolving power: it makes it a valuable tool in the study 

http://what-when-how.com/radial-velocities-in-the-zodiacal-dust-cloud/hicks-and-reay-mnras-paper-1974-zodiacal-dust-cloud-part-2/
http://what-when-how.com/radial-velocities-in-the-zodiacal-dust-cloud/hicks-and-reay-mnras-paper-1974-zodiacal-dust-cloud-part-2/
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of the Zeeman Effect and the hyperfine structure of certain spectral lines. 
 

One point has to be made concerning this device: since the interference only occurs for light 
incident on the plate as an angle θ, a perfectly parallel beam of light may not produce fringes: 

hence we must once again use an extended light source to remedy this problem. 
 
10. Fabry-Per´ot interferometer setup 
 

The Fabry-Per´ot interferometer used in this experiment is depicted in Fig. 9. Light originates 

from an extended source, e.g. a sodium lamp, in the back of the setup, passes through the first 
mirror A, installed in the top position, and into the second mirror E. It continues along the 
viewing axis and into the telescope L, clamped in a holder H with a screw. Adjust the telescope 

magnifying unit until the light source is in focus. Do not use any collector lenses, as they only 
obstruct the view. 

A video of setting up and aligning the Fabry-Perót interferometer can be watched here: 
https://www.youtube.com/watch?v=r2ip14zIFmw  
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

Figure 9: The Fabry-Per´ot interferometer setup used in this experiment — letters indicate units, 
as noted in the explanation above. 

 

https://www.youtube.com/watch?v=r2ip14zIFmw
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11. Experiment with the Fabry-Perót interferometer (1 weight) 
 

The chief advantage of the Fabry-Per´ot interferometer is its higher resolving power compared 
to that of the Michelson interferometer: as such, it is often used to investigate the fine structure 

of spectral lines.  In this experiment we will study the spectral line of sodium, which is actually 
a doublet of two lines separated by a very small wavelength difference. We will be able to 
discern them and quantify the separation. 

 
Set up the interferometer as described above, with the mirror A set all the way back. The first 

task is to make the adjustable mirror of unit E almost exactly parallel to mirror A: begin by 
employing an incandescent light bulb and, without the telescope, adjusting the calibration 
screws of mirror E to make the light bulb electrical arc aligned with its multiple reflections.  

 
Once this is accomplished, the two mirrors are approximately parallel: now finer adjustments 

are needed. Replace the light bulb with the sodium lamp and observe the interference fringes 
(again without the telescope): the pattern is hard to discern, as the mirrors are likely still not 
perfectly aligned — there might be several underlying interference patterns. Focus on the ones 

in the background, and try to align them with each other by bringing the centre of the circular 
fringes to the centre of the field of view.  

 
Insert the telescope tube, first without the magnifying piece, and make more adjustments to 
move the pattern to the centre. Next, insert the magnifying piece and focus on the pattern by 

adjusting the depth of insertion of the magnifying piece into the telescope tube; once you are in 
focus, complete the final adjustments center the pattern at the field of view of the telescope.  If 

at any point of this procedure you feel you completely lost the pattern, go back to the light bulb. 
In the end, you should observe perfectly focused circular fringes, with the doublet clearly 
visible (to check if you got it right, try turning the micrometer screw - the fringes should come 

in and out of coincidence). The view should resemble Fig.10. 
 

 
Figure 10: Circular fringes from a sodium light source as seen in the Fabry-Perót 

interferometer. 

 
If that is not the case, try starting from scratch: reset the adjustable mirror E to the very back, 
then start from the beginning with the light bulb. 
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After locating the circular fringes, proceed to calibrate the device just as you have done for the 
Michelson interferometer: count fringes passing the field of view and record the micrometer 

readings every 50 fringes (have the mirror carriage move toward you, as before). 
 

With the calibration curve, use the interference pattern to determine the wavelength separation 
of the doublet.  
 

Let the two wavelengths of the spectral lines in the doublet be λ1 and λ2, with λ2 < λ1. For certain 
path difference, the two interference patterns produced by the spectral lines may be interfering 

with each other (on top of with interfering with themselves to produce the fringes in the first 
place), moving in and out of complete coincidence with each other. The coincidence condition 
is   fλ1 = gλ2  where f and g are some integers. The next time a coincidence will occur, as we 

increase the fringe order, is when the condition 
 

   (f + h)λ1 = (g + h + 1)λ2 
 
is satisfied, where h is another integer. Subtracting the two, we obtain hλ1 = (h + 1)λ2 , 

or, rearranging for the difference  
 

                                                                                    
 
where ∆λ is the sought wavelength separation. Knowing the number of fringes h between 

positions of coincidence of the two wavelengths, along with the wavelength value of one of the 
lines in the doublet, λ2, find the separation of the lines in the doublet.  

 
Use the calibration curve: instead of patiently counting the fringes, let us note the micrometer 
readings of displacements — call it M — and convert it to actual mirror displacement d via the 

conversion factor, d = f M. Knowing the mirror displacement d, we use the basic result that   hλ1 
= 2d, which gives 

 
 
 

The product of the two wavelengths can be treated as their geometric mean squared, i.e.  λ1λ2  ≈

<λ>2  — where we take the value of the average sodium spectral line wavelength to be <λ> = 

589.3 nm. Hence our final expression for the wavelength difference is 
                                                                                                                                       (13) 

 
 
 

12. Instructor’s expectations (Fabry-Perót  interferometer). 
 

1) Build a calibration curve for the micrometer. 
2) Using this calibration curve, find the wavelength separation of the doublet of sodium 

spectral lines. Compare to the expected values and comment on the uncertainty. 
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