## PHY405-L06

Analog Meets Digital: Arduinos

#### Logistics

- Reading week next week
- No lecture, no scheduled lab
- Lab 4 due date extended to Feb 21/24
- I'll probably be in the department next week.
- If you need to get into the lab, email me **ahead of time**...

#### Lab 4 - Op Amps

Students should upload their lab submission here.

The lab instructions are available at https://www.physics.utoronto.ca,

Please contact the course Instructor if you have any questions.

Points 10 Submitting a file upload

| Due                 | For       |  |  |  |  |
|---------------------|-----------|--|--|--|--|
| Feb 21 at 11:59a.m. | 1 Section |  |  |  |  |
| Feb 24 at 11:59a.m. | 1 Section |  |  |  |  |
| + Rubric            |           |  |  |  |  |

#### Analog and digital signals

- Analog signals: signals that have a continuous range of values within some specified limits and can be associated with continuous physical phenomena
- Digital signals: signals that can take only a finite number of values and are appropriate for any phenomena that involve counting or integer numbers



https://www.guru99.com/analog-vsdigital.html

3

#### Analog vs digital











#### **Analog Computer**

Vs.



**Digital Computer** 

https://en.wikipedia.org/wiki/Analog \_computer

#### Analog vs digital: pros and cons

- Analog:
  - High data density, faster processing, doesn't require high bandwidth
  - Distortion due to noise, transmission quality can be challenging
- Digital:
  - Less subject to noise distortion, easy to edit, easy to store
  - Lower data density, needs higher bandwidth, requires conversion from physical measurements, processing can be challenging



https://www.predig.co m/whitepaper/reducing -signal-noise-practice



1.57 = 0f3FF91EB851EB851F

### Analog-to-Digital Converters (ADC)

- An ADC converts an analog input voltage or current into a digital output signal.
- The number of bits that an ADC has determines its precision.
  - e.g. an 8-bit ADC can output numbers between
    0 and 2! 1 = 255, so if it has an input range of
    10 V, the correspondence between digital output
    and analog input is
  - $\circ \quad 0 \to 0 \ V$
  - $\circ \quad 1 \rightarrow 39 \text{ mV,}$
  - $\circ \quad 2 \rightarrow 78 \text{ mV,}$
  - o ...,
  - $\circ~~254 \rightarrow 9.961$  V, and
  - $\circ$  255  $\rightarrow$  10 V



#### Analog-to-Digital Converters (ADC)

- An ADC converts an analog input voltage or current into a digital output signal.
- For best accuracy, always check the linearity and calibration of an ADC
- WARNING: You can fry an ADC if you input a voltage outside its measurement range.



#### ADC vs DAC



http://www.cmm.gov.mo/eng/exhibit ion/secondfloor/MoreInfo/ADConver ter.html

# Lab 5: mini-project to build a system to automatically measure temperature

- First make measurements with subcircuit components:
  - <u>Thermistor</u>
  - <u>Arduino</u> micro-controllers
  - Analog-to-Digital Converter (ADC)
  - Op-amp Follower
  - potentiometers (variable resistors)
  - Communicating with the Arduino via Python.
- Then put together and read out with Python

#### "Temperature" vs "Time"

#### From Arduino Serial Plot



10

#### **Microcontrollers**

- Micro controllers are small special purpose computers on a single chip or board with input and output capabilities that allow them to control or otherwise interact with external apparatus.
  - a microprocessor (single chip CPU) & memory
  - digital input/output
    - e.g. serial or parallel or USB or ...
  - often have dedicated
    - ADC & DAC
    - timers, <u>interrupts</u>, <u>counters</u>
    - pulse-width-modulation
- They are ubiquitous in modern "smart" devices. A modern car might have 10<sup>2</sup>.



11

#### Arduinos

Common inexpensive microcontrollers that come in several models. We use the Arduino Uno.







Arduino LilyPad 00<sup>[48]</sup> (rev 2007) (No USB)



Arduino Robot<sup>[49]</sup>



Arduino Esplora<sup>[50]</sup>



Arduino Ethernet<sup>[51]</sup> (AVR + W5100)



Arduino Yún<sup>[52]</sup> (AVR + AR9331)



Arduino Due<sup>[53]</sup> (ARM Cortex-M3 core)

#### Arduino Data Sheet

Top view



Board topology

| Ref. Description |                                | Ref.                                                                      | Description                           |
|------------------|--------------------------------|---------------------------------------------------------------------------|---------------------------------------|
| X1               | Power jack 2.1x5.5mm           | U1                                                                        | SPX1117M3-L-5 Regulator               |
| X2               | USB B Connector                | U3      ATMEGA16U2 Module        Capacitor      U5      LMV358LIST-A.9 IC |                                       |
| PC1              | EEE-1EA470WP 25V SMD Capacitor |                                                                           |                                       |
| PC2              | EEE-1EA470WP 25V SMD Capacitor | F1                                                                        | Chip Capacitor, High Density          |
| D1               | CGRA4007-G Rectifier           | ICSP                                                                      | Pin header connector (through hole 6) |
| J-ZU4            | ATMEGA328P Module              | ICSP1                                                                     | Pin header connector (through hole 6) |
| Y1               | ECS-160-20-4X-DU Oscillator    |                                                                           |                                       |



#### **Arduino Simulator**

TinkerCad Blinking LED Example

https://www.tinkercad.com/things/4Pqq9BwlvHG

| TIN<br>KER<br>CAD | TODESK"<br>KERCAD | Gallery | Blog     | Learn                      | Teach                   | ۹         | Sign in | JOIN NOW |
|-------------------|-------------------|---------|----------|----------------------------|-------------------------|-----------|---------|----------|
|                   | Blink             |         |          |                            |                         |           | 0       |          |
|                   |                   |         |          | des<br>Jia                 | ign by:<br><b>a-Nin</b> | g L       | uo      |          |
|                   |                   |         | Edited 3 | link<br>8/4/18, Cr<br>Sign | eated 3/4,<br>up to co  | /18<br>py |         |          |
|                   |                   |         |          |                            |                         |           |         |          |
|                   |                   |         |          |                            |                         |           |         |          |
|                   | Simulate          |         |          |                            |                         |           |         |          |

#### Arduino Uno

- The Arduino Uno has:
  - 6 ANALOG IN input pins (A0-A5) with 10-bit ADC that digitize 0 5 V.
  - 13 DIGITAL pins that can receive or transmit digital signals, where 0 V is OFF and 5 V is ON.
    - pins 3, 5, 6, 9, 10, 11 can be used as <u>Pulse Width Modulation</u> (PWM) outputs to control suitable motors and other devices.
  - 5 POWER pins that can output power to external circuits or devices.
- <u>Fancier microcontrollers</u> can have faster processors, higher resolution ADCs, analog outputs, <u>Time-to-Digital Converters</u>, ...
- There is a very wide range small specialized circuit boards ("<u>Arduino Shields</u>") that can be attached directly to an Arduino 16

#### Arduino Sketches

- Start with the Arduino IDE
  - Arduino programs are called "sketches"
- Try out the "<u>blink</u>" example with the built-in LED first





#### Arduino Temperature Sketch

- You want to print temperature out on the serial port.
- Outline to get you started: <u>arduino\_thermistor.ino</u>
- Read the code first...

#### Measuring a thermistor's output

• A thermistor is a resistor whose resistance  $(R_t)$  depends on temperature.



 R<sub>25</sub> is nominal resistance at 25° C



#### Potentiometers

- A potentiometer is a small 3-wire variable resistor used as a potential divider.
  - "trimpot" is a small "trimming" potentiometer
  - If a voltage is is applied across the outer two wires, the middle wire provides an output voltage that can be adjusted by rotating the slot on top with your little screwdriver.
- When only two terminals of a variable resistor are used, it is called as a rheostat.





### **Breadboard Organization**

- Makes it easier to build correctly and debug when things go wrong
- Use consistent colour wires. For example:
  - Black wires  $\rightarrow$  Common.
  - Yellow wires  $\rightarrow$  DC Power Supply Output 1.
  - Green wires→DC Power Supply Output 2 (V+supply)
  - Blue wires→DC Power Supply Output 3 (V-supply).
  - $\circ$  White or Orange wires—internal connections.
  - Red wires are Input or Output
  - Use power rails columns for V+supply and V-supply.
  - Create Common rows or columns to provide easy access
    - In general best to only have a single Common connection for any circuit.
- Some short white wires hold Arduino on the board.



#### **Arduino Python Communications**

- Can interact with Arduinos using Python.
  - Often via serial communication
- Useful examples
  - Open up <u>arduino\_LED\_user.py</u> in your preferred python environment
  - Replace: port = '/dev/cu.usbmodem143301'
    - run <u>port\_check.py</u> to list computer's serial ports.
  - Control Arduino LED (same as Blink sketch)
- Read from Arduino
  - Run sketch: Examples --> Basics --> AnalogReadSerial
  - Open up <u>arduino\_Serial\_reader.py</u>.
  - Read the instructions at the beginning of the python file.
  - Read Serial port output into your computer and make quick plot.

#### Final project

- The final two weeks of the semester are dedicated to a project that will be marked on the basis of originality, execution, testing, and the quality of the final report.
  - Project topics are up to you, but can be discussed with the instructor.
- See the project guidelines for more information.
- Lab 5 provides the basis for many possible projects.
- Suggest thinking about final project during reading week
  - Can start discussing with the instructor when coming back

## Questions?

#### Clean up after you are done

Yea, this is still here

