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Experimental study of the Faraday instability 

By S. DOUADY 
Laboratoire de Physique de 1’Ecole Normale Superieure de Lyon, 46 Allee d’Italie, 

69364 Lyon Cedex 07, France 

(Received 1 June 1988 and in revised form 16 May 1990) 

An experimental study of surface waves parametrically excited by vertical vibrations 
is presented. The shape of the eigenmodes in a closed vessel, and the importance of 
the free-surface boundary conditions, are discussed. Stability boundaries, wave 
amplitude, and perturbation characteristic time of decay are measured and found to 
be in agreement with an amplitude equation derived by symmetry. The measurement 
of the amplitude equation coefficients explains why the observed transition is always 
supercritical, and shows the effect of the edge constraint on the dissipation and eigen 
frequency of the various modes. The fluid surface tension is obtained from the 
dispersion relation measurement. Several visualization methods in large-aspect-ratio 
cells are presented. 

1. Introduction 
Several simple hydrodynamic instabilities have been intensively studied in the 

past ten years in order to find universal basic mechanisms of transition from a 
perfectly ordered system to temporal and spatial disorder. We study here an 
instability first reported by Faraday in 1831 : under vertical periodic motion, the free 
surface of a fluid layer is unstable to standing surface waves. Faraday noticed that 
the waves oscillate at half the excitation frequency, but Mathiessen, in 1868, claimed 
that they oscillate at the excitation frequency. This led Rayleigh (1883) to do his own 
experiment. In two different ways, he found the results to be in accordance with 
Faraday’s statement. Benjamin & Ursell (1954) developed the linear theory of this 
instability, and found that each eigenmode of the free surface is parametrically 
excited. 

Experimentally, we found that this parametric excitation is a simple way to study 
the surface wave modes of a closed vessel, as one measures the eigen frequency and 
the dissipation from the marginal stability curves. But Benjamin & Ursell could not 
describe the excited modes as they used the usual inviscid boundary condition for the 
free surface, which is unrealistic for these experiments where the meniscus dynamic 
is important. To avoid the presence of 4 meniscus, we pin the free surface at  the edge 
of the lateral walls. This simple boundary condition leads to the theoretical problem 
studied by Benjamin & Scott (1979) and Graham-Eagle (1983) in the inviscid limit. 
They concluded that the dispersion relation is changed in a significant way, and we 
indeed found an important effect on both the eigen frequency and the dissipation of 
the free-surface wave modes. 

Since the linear and nonlinear theory is difficult to derive in a realistic way from 
the hydrodynamics, it is tempting to write directly the normal form of the equation 
for the amplitude of an unstable mode by using only symmetry arguments. We used 
a new method to measure small wave amplitudes, and observed behaviour 



384 

A 

S.  Douady 

A 

t = O  
2T 

A 

1 t = T  
tT0 

A 

FIGURE 1 .  Excitation at half the excitation frequency of a fluid layer undergoing a vertical 
oscillation. When the vessel goes down, the fluid inertia tends to create a surface deformation, as 
in the Rayleigh-Taylor instability. This deformation disappears when the vessel comes back up, 
in a time equal to a quarter-period of the corresponding wave (T). The decay of this deformation 
creates a flow which induces, for the following excitation period T, the exchange of the maxima and 
the minima. Thus one obtains = 2T. 

corresponding to the predictions of this amplitude equation. The fit of the curves 
allows us to estimate the amplitude equation coefficients. The significant nonlinear 
dissipation explains why we did not observe the possible subcritical transition. 

Recently, experiments were performed to study the transition to chaos of these 
parametrically excited surface waves in various geometries. Keolian et al. (1981) 
studied the temporal chaos occurring in an annular cell when the excitation 
amplitude is increased far above the instability threshold. Gollub & Meyer (1983) 
stlgdied a small circular cell, and Cilliberto & Gollub (1984, 1985) the interaction of 
two different modes. Wu, Keolian & Rudnick (1984) report the observation of 
soliton-like surface deformation in a long and narrow channel for particular values 
of the excitation parameters. Ezerskii et al. (1986) studied the spatio-temporal chaos 
in very large cells, square and circular. They found that this chaos occurs via the 
dynamics of lines transversely modulating the standing plane wave amplitude. In a 
large square cell, Douady & Fauve (1988) looked a t  the pattern selection and the 
interaction between two symmetric modes. They showed that these lines naturally 
appear for the eigenmode of a rectangular cell and could correspond to defects lines 
joining two regions oscillating with opposite phases. We check this interpretation 
with one of the visualization methods described in $3.2. 

2. Theoretical introduction 
2.1. Parametric excitation 

To understanding the parametric excitation of surface waves, we consider a layer of 
fluid subjected to a vertical periodic motion. If S(z,y) is an eigenmode of the free 
surface, with an amplitude a($), the surface deformation is 

5 = W)S(z ,  Y) 
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with a(t) given to a first approximation by the equation 

a : a + w ; a  = 0, (1) 

where oo is the eigen frequency of the eigenmode. Now, this eigen frequency depends 
on the acceleration due to gravity, and the vertical motion is equivalent in the frame 
of the vessel to a modulation of this acceleration : 

g => g( 1 + E cos ( w t ) ) .  

Therefore the eigen frequency is modulated by the vertical oscillation and the 
eigenmode S is parametrically excited. Figure 1 gives the physical interpretation of 
the resonance at half the excitation frequency, which is characteristic of parametric 
excitation. 

The fact that the waves are excited only through the gravity term of their eigen 
frequency explains why capillary waves are more difficult to excite than gravity 
waves. For instance, in the case of an unbounded layer of depth h (or an inviscid fluid 
with its free surface perpendicular to the vertical lateral walls), the dispersion 
relation is 

wi = Ktanh (Kh) g+---.JP , [ ; I  
where T is the fluid surface tension, p its density and K the wavenumber. The 
equation for the amplitude is then (Benjamin & Ursell 1954) : 

@a+Ktanh(Kh) g(l+scos(wt))+-K2 a = 0. ‘ I  P 

One can non-dimensionalize this equation 

a,2a+(l+s’cos(rr))a = O  (3 b)  

w E 

T ’  
P9 

where r = o o t ,  r = - ,  E ’ =  

w0 1+-K2 

From this form, it is clear that the forcing is less and less effective as the frequency, 
i.e. K ,  is increased. 

Only in the inviscid case are the equations for the wave amplitude always derived 
from the hydrodynamics (for instance Miles 1984; Meron & Procaccia 1 9 8 6 ~ ) .  Thus, 
to a first approximation, the dissipation must be added in a phenomenological way 
as a term 2f a,a in (3a) or 23 a,a with 7 = f / w o  in ( 3 b ) ,  and the value of the coefficient 
must be calculated separately using the energy dissipation. In the external parameter 
space, E versus w ,  the eigenmodes become unstable inside tongues centred on all the 
frequencies w = 2w0/n. The critical value for the first, and most important, tongue is 

E;  = 43, 

thus (4) 

As this critical value increases with w ,  and as the critical values of the various 
tongues increase with n, one sees in figure 2 that only the first resonance will be 
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FIQURE 2. Schematic of the parametric tongues for three eigenmodes of a given vessel, as functions 
of the external parameters : gravitation modulation amplitude B and excitation pulsation w .  One 
observes that the 4 tongues mask the other tongues, because as the critical values increase quickly 
with the excitation number (i, 1, t , . . .  . +n), their critical value E, increase with frequency, the 
tongues are larger. The curve E, ( w )  is the threshold when the density of the mode is large. The 
minimum of the i tongue gives the eigen frequency and the dissipation of the mode. 

observed experimentally. One can also notice that (4) gives approximately the 
marginal stability curve in the limit of an unbounded cell. 

2.2. Boundary conditions 

For the linear inviscid problem, there are only two possible boundary conditions for 
the fluid free surface : 

(i) if the normal vector at the lateral walls, n, is defined at  the contact line, one can 
apply the kinetic boundary condition simultaneously at the free surface and at  the 
wall. The result is that the angle of the free surface and the lateral wall must be 
constant, and so equal to in for vertical walls and an initially horizontal surface 

- constant = 0;  ac _ -  
an 

(ii) if the normal vector at  the lateral wall is not defined at the contact line, for 
instance at  the edge of the lateral walls, then the kinetic boundary conditions impose 
no condition on the free surface. But this happens only for this contact line position, 
thus 

5 = constant = 0. (6) 

The first boundary conditions allow simple algebra, and in rectangular cells the 
eigenmodes are products of cosines (with the origin at a cell corner). The flow is not 
perturbed by the walls, so the dispersion relation is the same as for an unbounded 
layer. But this boundary condition is not compatible with surface tension, so the 
corresponding inviscid solution is quite different from the experimental one when the 
capillary length is not negligible compared to the wavelength. 
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On the other hand, the second boundary condition makes the problem difficult, 
and the eigenmodes are no longer sinusoidal (cf. Benjamin & Scott 1979; Graham- 
Eagle 1983), but they can be roughly approximated by the product of two sine 
waves. If we neglect the first quarter-wavelength near the edges, we find the previous 
situation and the flow is the same. But now the first quarter-wavelength corresponds 
to a flow over the whole cell, and that depends on the number of wavelengths on each 
side, and on their parity (Douady 1988). Now, the dispersion relation results from a 
balance between the variation of kinetic and potential energy. Even if the surface is 
not exactly sinusoidal, the potential is nearly the same as in the previous case, but, 
because of this additional flow, the kinetic energy is different. So the dispersion 
relation is changed. The value of this boundary condition is that it is compatible 
with the introduction of surface tension and viscosity, and is easily obtained 
experimentally. These modes are thus close to the experimental ones. 

2.3. Nonlinear problem 

Standard asymptotic methods were used in the inviscid case to obtain the nonlinear 
amplitude equation for the wave, and with boundary condition (5 ) .  The case of the 
second boundary condition (6) was not studied : this would be much more difficult as 
the flow is no longer simply related to the surface deformation. A realistic description 
of a closed cell is thus difficult. However, one can find the form of the amplitude 
equation directly using symmetry arguments, whatever the modes and the boundary 
conditions are. First we assume that only one mode, S(z, y ) ,  is unstable. This mode 
has an eigen frequency wo close to half the excitation frequency w ,  and is forced 
parametrically to oscillate at &. With a complex amplitude, the surface deformation 
is then 

f; = AS(x,  y )  exp (iiwt) + C.C. + h.0.t. 

As usual for any asymptotic method, we assume that the unstable-mode amplitude 
varies slowly compared to all the other characteristic times, and so we look for a 
relaxation equation for A ,  a,A = F ( A ) .  We also assume that this amplitude is small 
so P ( A )  can be expanded in Taylor series, and that only the first terms need be 
considered. Without any excitation, there is no imposed time origin, so the equation 
must be invariant under any translation in time t * t + to.  This corresponds for the 
amplitude to the phase rotation A * A  exp (&to). So the amplitude equation must 
have the form, up to the third order in A, 

3,A = -(h+iv)A+(a+ip)IAi2A, 

where A ,  v, a, p are real constants. In  first approximation the solution is 

[ =  AoS(x, y)exp(-At)exp(i(v+&~)t). 

Thus one recognizes h as the dissipation of the mode, and v as the detuning: v = 
wo -@. a and /3 can directly be interpreted as the nonlinear dissipation and detuning : 
A’ = A+alAI2, v’ = V+,L?IA~~. This nonlinear detuning results from a nonlinear 
dispersion relation: wk = w0+/3IA(*. We assume /3 to be negative as the frequency of 
an oscillator usually decreases when its amplitude increases, and also h > 0 and a < 
0. The interpretation of A and a as linear and nonlinear dissipation can also be 
checked by making the assumption that the fluid is inviscid. The system is then 
invariant under the time-inversion symmetry, t a - t ,  which corresponds to A =d 
(the bar denotes the complex conjugate) ; and the invariance of the equation imposes 
h = a = 0 .  
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FIQURE 3. Amplitude a and characteristic time 7 of the unstable waves versus the forcing p, in the 
two cases y cos (q-$) > 0 and ycos (q-$) < 0, which respectively correspond to the supercritical 
and subcritical transition cases. 

When a forcing is applied, the continuous time translation is broken and the 
system only has the time translation of an excitation period: t=t+Zn/w,  which 
correspond to A * - A .  Thus one allows new terms in A, A3,  lA12A, A3. We keep only 
the first one, so the amplitude equation becomes 

The time origin is chosen in order to have p, the forcing coefficient, real. This 
forcing term is characteristic of parametric excitation, and comes from the wave 
oscillation at half the excitation frequency. This equation is well known, but as i t  is 
usually derived in the inviscid limit, the nonlinear dissipation coefficient is often 
missing. This construction from symmetry arguments gives the form of the equation, 
but not the value of the coefficients, even if the physical interpretation is easy, We 
can find the linear coefficients, for instance with an asymptotic method from (1) with 
dissipation; this gives (Bogoluibov & Mitropolsky 1961): h =f, v = + - w 0 , p  = $e' 
wo. The assumption that the dynamics of A is slow and A small is generally replaced 
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by the condition that A ,  v and p are small compared to oo. But this assumption upon 
A simply corresponds to the fact that the system is close to the minimum of the 
resonance tongue, which indeed implies that v is small, but only that p and h are 
similar. So we think that it would be possible to justify this equation with h and p 
not small, which is always the case experimentally. 

If we look a t  the stationary solutions of this equation, the arithmetic is easier with 
the notation 

a,A = y e i ~ A + p J + c e i ~ ~ A ( 2 A .  (7b) 

We also decompose A into amplitude and phase: A = aexp (is), which gives 

(7 c) I a = ( y  cos (q) +p cos (28))a + c cos ($) a3, i"' = (ysin (q)-psin (28)) fcsin ($)a2. 

For stationary solutions, we found by eliminating 0 that 

ca2 = - y  cos (q-$) (p2-y2 sin ( q ~ - $ ) ~ ) ; .  (8) 

By drawing this solution, figure 3, one sees that the transition can either be 
supercritical or subcritical, depending on the sign of cos (q-$), i.e. on the detuning 

(i) if cos (v-$) > 0, which corresponds to v > -ha/P, the transition is super- 
critical. In this case, the characteristic time of the wave decay below the threshold, 
with the assumption that the phase remains constant, is 

V :  

1 /70 = - y cos (q)) k (p2 - y2 sin (P)~); ; (9) 

(ii) if cos (q-$) < 0, which corresponds to v < - A  alp, the transition is 
subcri tical. 

The stability of the different stationary states can be found without any further 
calculation by simply using the conservation of the topologic degree, i.e. the 
conservation of the number of stable solutions minus the number of unstable 
solutions (Leray & Schauder 1934), which applies to (5a) .  Figure 4 summarizes the 
various cases in the external parameter plane. By increasing the detuning (i.e. w ) ,  we 
continuously go from a subcritical transition to a supercritical one. The existence of 
hysteresis is due to the nonlinear detuning coefficient p. For an excitation frequency 
that is too small, the mode is non-resonant for a small amplitude; but if it  jumps to 
a significant frequency, this diminishes its eigen frequency, and thus it can resonate 
and become unstable. Note that this subcritical bifurcation does not need a 
higher-order term to saturate: if the amplitude continues to increase, the eigen 
frequency keeps on decreasing, so the mode is again non-resonant and the amplitude 
saturates. If the sign of /3 is changed, the situation is symmetric with the previous one 
with the hysteresis located at the right. The importance of this subcritical region is 
given by the ratio alp (i.e. $): 

(i) if this ratio is small ($ - -in), the hysteresis is observed for w < 2w0 (Hsu 
1977; Nayfeh & Mook 1979; Meron 1987; Gu & Sethna 1987), i.e. for all the left side 
of the tongue, and the hysteresis is maximum ; 

(ii) if this ratio is significant ($ h- -n), the frequency below which the hysteresis 
is observed is pushed to the left, and the hysteresis becomes small (cf. figure 4). At 
the limit $ = -n, the transition is always supercritical (Hsu 1977). 
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FIGURE 4. Stability boundaries as a function of the detuning v ( (w,-?p~) /w, ,  and the forcing p. The 
linear threshold corresponds to the hyperbola p = y and the nonlinear threshold reveals a 
hysteresis in the grey region. This hysteresis is at its maximum for a = 0 and disappears for /? = 
0 (the transition is then always supercritical). 

FIQURE 5. A meniscus, the typical length of which is the capillary length I = (T/pg$, is always 
excited by vertical oscillation. When the cell goes up, the effective gravity is increased and the 
meniscus length decreases. So it emits a surface wave in order to preserve mass. For a vertical 
oscillation of the vessel, the meniscus thus produces an isochronous wave. 

3. Experimental procedure 
3.1. Boundary condition and mode shapes 

Experimentally, the boundary condition for the free surface with a meniscus is not 
clear. The contact line can move and the angle of contact depends on its speed. In 
some cases, the line can remain nearly fixed if the angle oscillation corresponds to 
that of the wave. Experimentally, the maxima of the patterns are never located at  
the lateral walls, and the boundary condition seems to be a surface pinned at a fixed 
contact line. Moreover, an experimental problem arises : a vertically oscillating 
meniscus always emits surface waves at  the excitation frequency. This emission 
happens even if the contact line is pinned at  the edge of the lateral walls, if there is 
still a meniscus, i.e. if the surface is not perfectly flat. This can be physically 
understood by recalling that the typical meniscus length is the capillary length 1 = 
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FIQURE 6. Photograph of the wave emitted by the meniscus of an oil layer of depth h = 2 mm, in 
a square cell 80 x 80 x 5 mm3, atf = 20 Hz, visualized by the vertical reflection of a light beam. The 
waves are clearly generated from the boundaries, and quickly damped, so the centre of the cell is 
still flat. Without any meniscus, the surface remains flat even during vertical oscillation. 

(Tlpg);. In a vertical oscillation, this length oscillates like the effective gravity 
acceleration, so the meniscus becomes alternately large and small. In order to 
preserve the fluid mass, the volume difference between a small and a large meniscus 
must be distributed over the whole free surface, and it happens through the emission 
of a surface wave (cf. figure 5) .  Figure 6 presents a photograph of these meniscus 
waves for an oil layer. Their amplitude increases with the meniscus volume and the 
excitation amplitude. They can cover the whole free surface when their dissipation 
length is larger than the cell length (for instance in water or for small excitation 
frequencies - 15 Hz). For the Faraday instability, these waves give a new initial 
condition, i.e. not a flat surface, and they modify the boundary condition. Moreover, 
they can greatly perturb the parametric waves as they are coupled to them at the 
second order, whereas two parametric waves are coupled only at the third order. 
Thus the modes can be completely deformed (see figure 7) ,  and time-dependent. 

In  order to avoid these problems arising from the curvature of the surface at  the 
boundaries, one solution is to pin the surface at the edge of the lateral walls, and to 
fill the vessel full. The surface is then perfectly flat and remains so even when the cell 
oscillates vertically, below the instability threshold. The modes are then regular and 
stable, and can be described approximately as the product of two sine waves (cf. 
figure 8). 

3.2. Visualization methods 
Vertical illumination 

The simplest method consists in looking at the normal reflection of light at  the free 
surface. One then observes bright regions which correspond to horizontal parts of the 
surface, extrema or saddle points. But without any optical device neither the light 
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FIGURE 7. An example of the patterns observed with oil with a significant meniscus, for the same 
conditions as figure 6, but above the instability threshold, They are nearly perfect squares near the 
centre of the cell, even though they are turned through a certain angle, but completely deformed 
at  the boundaries, where the meniscus wave is still visible. 

FIGURE 8. Mode observed without a meniscus, at 70 Hz, for water containing Kalliroscope. I ts  
regularity shows that it is quite near sinusoidal. 
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FIQURE 9. Schematic of the bright regions observed for a product of two sine waves illuminated 
vertically. They correspond to the horizontal points, extrema and saddle points. When the 
reflection is not purely vertical, one observes segments or surfaces joining these points. 

nor the observer are at infinity, so one also observes lines or surfaces joining these 
points (cf. figure 9). The interest of this method is the independence of time of the 
observed structure (so it does not need any stroboscopic observation), and the direct 
identification of the pattern using simple rules. The modes in a rectangular cell are 
described by the number of nodes in each direction, and figure 10 presents the 
patterns in a square cell corresponding to the mode (9,13), and the superpositions of 
(14,2), (14,4), and (13,7) with their respective symmetrical modes. Figure 11 shows 
computer drawings of the nearly horizontal regions of the surface deformation for the 
corresponding sinusoidal modes. In the case of a single mode, for instance figure 
lO(a), the two node numbers are obtained by counting the number of oblique lines 
along each side. In the case of a superposition of two symmetrical modes, for instance 
in figure 10(b,c),  a larger number of modulations is obtained from the number of 
rapid modulating lines parallel to one side, the second number being given by the 
number of slow modulations. Figure 10(d) presents a case of diagonal modulations 
as 7/13 is larger than tan($), and corresponds to a transient state leading to one 
mode only, (7,13) or (13,7) (Douady & Fauve 1988). 

Flow visualization 
Another visualization method for thin layers (Kh < 1) consists in looking at  the 

fluid motion revealed by small particles (for instance Kalliroscope in water). For 
stationary states, we principally observe a steady convection-like motion related to 
the surface waves: the fluid rises a t  the maxima of the waves, and falls at the nodal 
lines (cf. figure 12). This flow is the rectified flow generated a t  the viscous boundary- 
layer limit by the oscillatory fluid motion due to the surface waves. The acoustic 
streaming escapes from the maxima of horizontal velocity and converges to the 
minima (Batchelor 1967). This streaming had already been observed by Faraday 
(1831) with some sand accumulated at  the cell bottom. Figure 13(a) presents a 
typical example of a streaming pattern, and figure 13 ( 6 )  a computer drawing of the 
extrema of the corresponding sinusoidal mode. This method is more complicated 
than the previous one, as the prediction of the extreme positions for the superposition 
of two sinusoidal modes is not always simple, so pattern identification is harder. 
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FIQURE 10. Photographs of the patterns observed in a square vessel brimful of water, with the 
vertical reflection of a light beam. These patterns correspond to one mode only: (a) (9,13), at f = 
32.7 Hz; or to the superposition of a mode and one symmetric with i t :  (21) (2,14) and (14,2), at 
f =  37 Hz; (c) (4,14) and (14,4), a t f =  33.8Hz; ( d )  (7,13) and (13,7), a t f =  34.2Hz. 

Bicolour stroboscopy 

As the surface waves oscillate at  half the excitation frequency, they can resonate 
with two opposite phases. Thus, in a very large cell, one can imagine that two regions 
could oscillate in phase opposition, separated by a kink-type defect line. We thus 
interpret the transverse amplitude modulation observed in spatio-temporal chaos by 
Ezerskii et al. (1986) as these defect lines. In order to be able to verify this, we 
developed a phase visualization by bicolour stroboscopy . It consists in stroboscoping 
the surface with two complementary colours for each half-period of the wave. For the 
first half-period, we illuminate the surface for instance in green, and thus observe a 
succession of bright and black bands, corresponding to the sides of the waves being 
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FIQURE 11. Computer drawings of the nearly horizontal regions of the surface for the sinusoidal 
modes corresponding respectively to the patterns of figure 10. 

FIQURE 12. Schematic of the steady flow generated by the parametric standing waves. The fluid 
rises at the maxima and goes down at the nodal lines. Thus the bright regions, i.e. regions of 
horizontal motion, correspond to level lines of the wave pattern. This flow is the steady streaming 
created by the viscous boundary layer a t  the bottom of the cell. 
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FIQLJRE 13. (a) Photograph of the flow, visualized by Kalliroscope, due to the parametric wave 
pattern, in a square cell at f = 64 Hz for water. The surface deformation corresponds to  the 
superposition of the mode (21,4) and a symmetric one. It shows the ‘level lines’ of this pattern. ( b )  
Computer drawing of the ’level lines ’ for the corresponding sinusoidal pattern, black corresponding 
to a surface deformation greater than a certain value. 
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FIGURE 15. Pattern photographs with bicolour stroboscopy in a square cell atf=70 Hz. (a) The transient state 
when the mode (21,5) starts to increase; (b) the final state corresponding to the superposition of the two square 
symmetrical modes. This method visualizes the phase opposition between two regions separated by what 
seem to be defect lines, as the two colours are exchanged when one crosses these lines. 

DOUADY (Facing p .  397) 
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FIGURE 14. Principle of bicolour stroboscopy visualization. It consists in looking at the reflection 
of a light beam which alternately changes colour at each excitation period T. For half a resonant 
wave period 4% (= T), the wave is illuminated in green, and for the other half-period in red. Thus 
we observe alternating green and red bands. 

turned or not to the light (cf. figure 14). For the other half-period, we illuminate for 
instance in red, and the black and bright regions are exchanged. Thus, for a plane 
wave, we observe an alternation of green and red bands with a periodicity of one 
wavelength (cf. figure 15a, plate 1). The phase of the local structure is given by the 
fact that a point is green or red, and we observe the phase opposition when one 
crosses each transverse modulation line of figure 15 (a) ,  as red is changed into green 
and green into red. This phase opposition is also verified when one crosses each 
vertical or horizontal modulating line in figure 15b, plate 1). 

In fact, for these figures, the modes are nearly the product of two sine waves, and 
what seems to be a transverse modulation of a plane wave in figure 15(a) merely 
corresponds to the slow and rapid modulation of these products : figure 15 (a )  presents 
the transient of the mode (21,5) growing alone, and figure 15(b) the final state of the 
superposition of the two symmetric modes. So we cannot strictly speak of defect lines 
in these cases, even if they behave like during transient states. But we think that for 
a larger cell (or for a small wavelength), this method could be used to show that the 
observed transverse modulation corresponds to the appearance of these defect lines. 

3.3.  Amplitude measurement method 
The method consists in looking at the image on a vertical screen of a thin laser beam 
reflected a t  the free surface. In the geometrical approximation, and if the screen is 
far enough away, the position of the reflected beam depends only on the surface slope 
at the reflection point. Figure 16 presents the principle and notation. In two 
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FIQURE 16. (a )  The principle of the measurement method of the surface wave amplitude: a laser 
beam is reflected at the free surface, and one looks at  the image point M on a vertical screen far 
away. The origin is chosen as the reflection with a horizontal surface. In the geometrical 
approximation, M only depends on the slope of the surface a t  the reflection point. ( b )  and ( c )  The 
image points on the screen in two cases : the relation can be easily inverted to give the local slopes, 
and thus to measure the amplitude. 

particular cases, when a, 6 = 0 and a, 5 = 0, one can simply find the slopes from the 
position of the reflected beam. I n  the general case, the image on the screen is a 
smooth deformation of the (a, 5, a, c)-plane. As we choose the reflection location, this 
method allows the maximum slope of the unstable wave, and thus its amplitude to 
be measured. 

For instance, we consider a long cell in which the unstable wave is approximately 
descri bed by 

and we also have a meniscus wave coming from the lateral boundaries: 

a sin (nz/L,z) sin (z/L,y) sin (!pwt), 

b sin (ky y) sin (ot + @) 
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FIGURE 17. Image obtained on the screen for a vessel almost brimful with water. The reflection 
point is located at a node for both the parametric and meniscus waves. So the image point M 
describes a Lissajous curve showing the ratio 2 between the frequencies of the two standing waves. 
The extreme vertical points gives the amplitude of the parametric wave. 

(cf. figure 18). We put the laser beam along the x-direction, and a t  the middle of the 
cell @,sin (n/L,y) = 0). At this location, the slopes are 

a, 5 = uK, cos (K,x) sin (tot), a, g = bk, cos (k, y) sin (ot + @), 

with K ,  = nn/L,. The light on the screen thus describes a Lissajou curve, as in figure 
17. To obtain only the slope of the unstable mode, we move the reflection point to 
a maximum of the meniscus wave (cos (ku y) = 0) ,  and to a node of the unstable 
mode : 

a,[=aK,sin(!pt), a , [ = O .  

So the reflected beam oscillates between two extreme vertical positions, which gives 
the maximum slope, i.e. the amplitude of the wave. As far as we know this method 
is new. It provides very sensitive measurements (resolution better than mm) as 
we use the reflection of a light beam, and is especially useful for small wave 
amplitudes (a,[ -= l / tan(tO)).  
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3.4. Experimental procedure 
In spite of the simplicity of a vertically oscillating layer of fluid, experimental 
problems arise from the meniscus effects, the mechanical set-up, and the variation of 
the fluid properties : 

(i) We have seen that the meniscus is important as it generates surface waves 
which can perturb the parametric standing surface waves. There is no general 
solution for this problem. For a moderately wetting fluid, such as water, one can pin 
the free surface a t  the edge of the lateral walls to obtain a perfectly flat surface. In  
our experiments with oil, we used a long cell in order to separate easily the resonant 
wave from the meniscus one. 

(ii) Like the meniscus, horizontal motion generates propagating waves from the 
sidewalls. Rolling motion must also be eliminated in order to have the same 
amplitude excitation in the entire vessel, and thus the same amplitude of the 
resonant wave. So the motion must be purely vertical. The fluid depth must be 
constant (i.e. the vessel must be horizontal). If any of these conditions is not fulfilled, 
the waves can be non-stationary and slowly move, coupled to a large-scale steady 
flow. A simple test for the mechanical system is to use a vessel brimful of water, and 
to check that the surface remains perfectly flat just below the instability threshold. 
The excitation homogeneity is also easily visible just above the threshold. 

(iii) The stability of the experiment over a long time depends on the stability of 
all the fluid-layer characteristics : the fluid depth h, surface tension T ,  and viscosity 
(i.e. dissipation). Thus the system must be thermally regulated, and, for a volatile 
fluid, the atmosphere must be saturated in the fluid vapour to avoid evaporation. 

4. Experiments 
4.1. Experimental set-up 

We used a Briiel & Kjaer 4809 vibration exciter which produces a clean vertical 
acceleration waveform (the horizontal acceleration is less than 1 % of the vertical 
one). The vibration exciter is driven by a Krohn-hite frequency synthesizer 
(frequency precision better than The cell acceleration, which is the relevant 
bifurcation parameter, is measured with an accelerometer. The mechanical system 
was tested with a vessel brimful of water: the surface remained perfectly flat just 
below the threshold, and just above, the amplitude was everywhere the same. 

To study the threshold of the instability, we used a copper vessel of dimension 
65 x 16 x 5 mm3, thermally regulated. We varied the excitation frequency between 
20 and 30 Hz. The first fluid used was a silicon oil (Rhodorsil47V20), a t  30 "C, chosen 
for the stability of its surface tension and non-volatility. As it  wets the cell walls, the 
oil has a significant meniscus. But the geometry of the cell, a long rectangle, was 
chosen in order to separate the meniscus and the parametric wave, as the meniscus 
wave is important only along the lateral walls (the wave due to the nearly round 
meniscus is quickly damped), contrary to the parametric wave (cf. figure 18), which 
presents several modulations in the long direction and only one perpendicularly. 
Even in this case, the modes shape are similar to the product of two sine waves, so 
the real boundary condition seems to be close to a virtual pinning a t  the meniscus. 
We also used this cell filled up with water, then held at 5 "C, to study the influence 
of the boundary condition. 
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FIQURE 18. Experimental vessel used for the study of the threshold. In the case of a significant 
meniscus (with oil) the isochronous standing meniscus wave shows modulations along the small 
dimension, and the half-frequency parametric standing wave is seen along the large dimension. 
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FIGURE 19. Stability boundaries for oil for two fluid depths h. Each measurement corresponds to 
two points, one below and one above the threshold. The precision does not allow us to distinguish 
them on this figure. The 4 tongues of the modes with 11-15 modulations in the long direction are 
observed. The threshold increases with the frequency (cf. (2)) and decreases when the fluid depth 
is increased, showing that the dissipation principally depends on the friction a t  the waIls, including 
the bottom. 

4.2. Threshold 
The threshold is measured for a fixed frequency, by starting with an amplitude 
excitation corresponding to a parametric wave of large amplitude. Then, we slowly 
decrease it in order to obtain a small amplitude, corresponding to a few centimetres 
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FIGURE 20. Stability boundaries for water, for a case of almost no meniscus. The resonance tongues 
are well defined for different modes (m, n), where m and n are the number of modulations in each 
dimension. Two series are observed corresponding to one or two modulations in the small 
dimension, with respective critical-value series increasing. 

deviation of the reflected laser beam on the screen located 1 m away (i.e. a, 5 x 2 lo-' 
and a x 5 x mm). Then we note a first value of the amplitude excitation a t  
which the wave amplitude increases, and a second at  which it decreases. For this 
lower value, we can check that the amplitude goes to zero if we wait long enough. In 
this way, we quickly obtain two points, below and above the threshold, with a good 
precision, as the typical difference is 0.2%. 

Figure 19 presents two threshold curves obtained for two oil depth, h = 2.25 and 
2.40 f 0.05 mm. One can recognize for each curve the various instability tongues 
corresponding to the modes n = 11 to 15, with only one transverse modulation. 
Figure 20 presents the threshold curve for a vessel nearly brimful of water (h  = 
4.85 mm), and two series of instability tongues, corresponding to modes with one or 
two transverse modulations, are observed. 

4.3. Dissipation, eigen frequency and boundary effects 
From the theoretical analysis, we have seen that the minimum of the instability 
tongue gives the characteristics of the surface wave mode, as this tongue is centred 
on the double-eigen frequency, and that the critical value of the excitation is 
proportional to the dissipation of the mode. But this is true only when the tongue is 
plotted in the physical parameter space (acceleration versus frequency), and the 
physical meaning of the minimum is lost when the tongue is plotted in terms of other 
quantities, for instance velocity, or displacement, versus frequency. 

Thus, from the curves one can read the dissipation of the various modes directly. 
In figure 19, the critical value of the tongues increases quickly with frequency, as it 
is harder to excite capillary waves than gravity ones (cf. (4)). The distinction between 
the tongues becomes less clear, and for higher frequencies one only observes a 
continuous increase of the threshold with frequency. The two curves obtained for 
different fluid depth show the great sensitivity of the system to possible evaporation, 
and that the dissipation, increasing with decreasing depth, is mainly due to the 
friction a t  the lateral walls. In figure 20, the threshold also increases with frequency 
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for each series of tongues, but one mainly observes the difference between the two 
series. The increase of dissipation for modes with increasing numbers of transverse 
modulations was also observed in a square cell (Douady & Fauve 1988), and explains 
why modes with a larger number of transverse modulations are not observed in water 
or in oil. This is a direct consequence of the real boundary condition of the free 
surface. 

Concerning the shape of the tongues, one can see that the tongues obtained 
without a meniscus in water can be fitted with a parabola (corresponding to the 
development of the theoretical hyperbola), and that the intersection between two 
tongues is sharp, contrary to the curves obtained with an oil meniscus, where the 
intersection is smooth. This corresponds exactly to the shape of the eigenmodes, 
which are well defined and fixed in case of edge constraint, but which can be 
continuously deformed from one another when there is a meniscus. The position of 
the nodes is then experimentally observed to move continuously with the excitation 
frequency. 

Figure 20 also shows that the dispersion relation is modified by the boundary 
condition from the infinite case (equation (2)). As the observed modes are close to the 
product of two sine waves, the corresponding wavenumber can be easily estimated 
from the two modulation numbers (m,  n )  : 

For our experiments, the dispersion relation is monotonic, so the modes should be 
observed when increasing the excitation frequency by the increasing order of the 
wavenumber: (7, l),  (3,2), ( 8 , l )  quite near (4,2), (5,2), (9, l),  and (6,2). But 
experimentally figure 20 presents a different order: (4,2),  (7,  l),  (5,2),  (8, l),  (6,2), 
and (9 , l ) .  This corresponds to the shift of one series of tongues with respect to the 
other, not only for the eigen frequencies, but also for the dissipation. This shows that 
the flow inside the fluid is influenced by the lateral walls, so that the eigen frequency 
and the dissipation depend not only on the total wavenumber but also on the 
structure of the mode (Benjamin & Scott 1979; Graham-Eagle 1983; Douady 1988). 

However, this effect of the boundary condition for the free surface on the eigen 
frequency must disappear when the cell, i.e. when the wavelength, becomes large. In  
a long cell, 138.2 x 14 x 48 mm3, filled with water, we observed modes with only one 
transverse modulation, but a large number of periodic ones in the long dimension 
(always more than 20). As we used felt to cover the lateral walls, there was almost 
no meniscus and the surface was approximately pinned. The frequency, between 30 
and 200 Hz, is large enough that the wavelength in the long dimension is always 
smaller than the width of the cell, so K ,  K .  The curved obtained by plotting the 
measured wavelength versus half the excitation frequency (cf. fig. 21) can be fitted 
by the dispersion relation (2), by adjusting the only unknown experimental 
parameter, the surface tension. This is thus a way to measure surface tension, and for 
water with traces of ink and Kalliroscope (containing soap), we obtained T =  
29.5 dyn/cm. 

4.4. Amplitude and characteristic time 
With the reflected laser beam, we measure the static amplitude of the unstable wave 
above the threshold, but we can also measure the characteristic time of decay of the 
amplitude when the acceleration is suddenly decreased to 8 value below the 
threshold. The time record of the laser beam position on the screen shows that the 
decay of the amplitude is exponential, which is consistent with the above assumption 
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FIGURE 21. Experimental measurements of the unstable-mode wavelength versus the excitation 
frequency, in polluted water. This curve can be perfectly fitted, and this gives a measurement of 
the surface tension, which is found to be T = 29.5 dyn/cm. 

Acceleration modulation (m/s') 

FIGURE 22. Experimental measurements of the wave amplitude and characteristic time versus the 
acceleration, for three frequencies, for the tongue n = 12 and h = 2.4 mm of figure 19. The 
amplitude presents no hysteresis and the characteristic time diverges at the threshold, so the 
transition is supercritical. 

of a constant phase during the decay. We also confirmed that the corresponding 
characteristic time depends only on the distance from threshold of the final 
acceleration. 

Figure 22 shows three measurements of amplitude and characteristic time at  
different frequencies for the mode n = 12 of figure 19. The characteristic time 7 
diverges very quickly when approaching the threshold: the wave takes only two 
seconds to disappear at 3% below the threshold, but half a minute at  0.5%. l / t  is 
proportional to the distance from threshold. Figure 23 shows that the increase of the 
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FIQURE 23. The preceding figure measurements can be fitted with the amplitude equation. This 
figure presents the fit of the preceding curve made at 32 Hz. One can note that the threshold 
derived from the linear dependence of the inverse of the characteristic time and the one derived 
from the amplitude fit coincide. 
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FIGURE 24. Experimental curves of the amplitude and characteristic time versus acceleration at 
different frequencies for both sides of a t tongue corresponding to n = 9 for oil. The circles 
correspond to the left side of the tongue, from 20.25 to 21.25 Hz, whereas the triangles correspond 
to the right side, from 21.25 to 22.5 Hz. Both sides present a supercritical transition. 

square of the amplitude is not linear. For these three frequencies, the transition is 
supercritical. 

But in this experimental situation we were able to explore only one side of the 
tongue of the mode n = 12, as the other side is hidden by the mode n = 11. We were 
thus obliged to work at  a smaller excitation frequency, where the effect of the surface 
tension decreases and the dissipation at the walls increases, so that the critical values 
of the various tongues start to be constant. The measurements are more difficult as 
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FIGURE 25. One of the amplitude curves from the preceding figure showing the linear saturation of 
the amplitude versus acceleration modulation (higher-order terms must be retained in the 
amplitude equation). 

Excitation Pr 
frequency h ]vI (sz/m) Q B 

31 HZ 0.065 0 0.014 -0.028 -0.32 
32 HZ 0.066 0 0.014 -0.023 -0.40 
33 HZ 0.069 0 0.014 -0.027 -0.41 

TABLE 1 .  The coefficients of the amplitude equation for n = 12. p, is the ratio between the forcing 
coefficient ,a and the acceleration modulation gm (the effective gravity is g+gm cosot). Equation (4) 
is non-dimensionalized with T = ot and a’ = K,a (cf. $2.3). The value of I Y I  is zero up to the precision 
5 x 10-4. 

the meniscus wave in the long dimension starts to be visible, and the amplitude of 
the unstable wave becomes noisy, probably because of .  their interaction. For 
measurements made a t  very small amplitude, for instance of the characteristic time, 
we were then obliged to subtract the amplitude of the meniscus waves. Figure 24 
presents a study of the mode n = 9, around 20 Hz. In  this case, both the inverse of 
the characteristic time and the square of the amplitude are proportional to the 
distance from threshold. Figure 25 shows the linear saturation of the amplitude with 
the acceleration far above the threshold. All the transitions, for both sides of the 
tongue, are supercritical. 

All these curves can be fitted with the theoretical expressions (8) and (9). Figure 
23 presents the measurements and a fitted curve obtained by adjusting the 
amplitude equation coefficients. One can note the agreement between the two 
thresholds derived by the fit of the amplitude and by the characteristic time. From 
both fits, we can obtain all the coefficients of the amplitude equation, which are 
shown in table 1 for each curve of figure 22. As the inverse of the characteristic time 
is proportional to the distance from the threshold, one directly knows that the 
detuning v (=  ysinq) is small (cf. fig. 3). 

I n  the case of the mode n = 9, the linearity of both the inverse of the characteristic 
time and the square of the amplitude versus the distance from threshold shows that 
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Excitation 
frequency 

20,25 Hz 
20,5 Hz 
20,75 Hz 
21,25 Hz 
21,75 Hz 
22,25 Hz 
22,5 Hz 

Ivl 
0.12 0.006 
0.12 0.001 
0.13 0.004 
0.14 0.005 
0.12 0.005 
0.12 0.006 
0.13 0.005 

0.010 -0.090 
0.011 -0.078 
0.012 -0.083 
0.012 -0.095 
0.011 -0.084 
0.011 -0.079 
0.011 -0.084 

TABLE 2. As table 1, but for n = 9, which requires the assumption that = 0 

both the detuning v and the nonlinear detuning pare  small (cf. fig. 3). But in this case 
the two fits do not provide enough information to derive completely the amplitude 
equation parameters. We thus need an assumption, which is to assume /3 equal to 
zero, and the corresponding result is presented in table 2. 

The first conclusion of this study is that the amplitude equation derived from 
symmetry arguments can describe the behaviour in the vicinity of instability 
onset, whatever the real surface wave modes are. Second, we see that we are able to 
obtain from the measurements the coefficient of the amplitude equation, and thus to 
obtain complete information on the surface wave modes. The dissipation is of the 
order of magnitude of the dissipation due to  the solid wall h - K(vw)i, which, for 
w/2n x 30 Hz, 2nK x 2 cm, v = 2 lop5 m2 s-', gives h/w - 0.1. If one assumes that 
the coefficient pr is the same for water and oil, then the ratio between the two 
thresholds is approximately the square root of the ratio between the viscosities, 4 2 0 ,  
so with a threshold for oil of 11 ms-2, one obtains for water a threshold of 2.5msp2 
(cf. figures 19, 20). One can see that despite the decrease of dissipation with 
frequency, as the friction at the walls decreases, the threshold increases, because of 
the difficulty of exciting capillary waves with gravity modulations (cf. (4)). The 
nonlinear dissipation is comparable with the linear, even if it seems to decrease more 
quickly with frequency. On the other hand, the nonlinear detuning increases with 
frequency, which is a classical result as Stokes derived a dependence in K2.  

All the transitions observed were supercritical, and this corresponds of course to 
the coefficients derived. At small frequencies, where both sides of the tongue can be 
studied, p is too small (cf. table 2) ; and a t  higher frequencies, we found a small and 
p important (cf. table l), so an hysteresis is possible on the left side of the tongue, 
but it cannot be observed as this part is hidden by another tongue. For the 
experiments with water, the transition was always observed to be supercritical on 
both sides of the tongue, although it becomes steeper a t  the left. But amplitude 
measurements were difficult in these regions because of mode interactions (cf. 
Ciliberto & Gollub 1984, 1985). 

The main information from tables 1 and 2 is that the detuning is always negligible 
compared to the frequency variation. This means that the mode is always resonant, 
w = 2w,, in other words that the mode is continuously deformed in order to adapt its 
eigen frequency continuously. This is possible because of the complex boundary 
condition for the free surface due to the meniscus. 
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5. Conclusion 
This study shows that parametrically excited waves are very sensitive to the free- 

surface boundary condition. With a meniscus, the vertical oscillation emits a surface 
wave at  the excitation frequency which interferes with the parametric wave. Also, 
the real boundary condition is unclear in this situation, and our experiments show 
that the surface wave mode can be continuously deformed in order to stay at  
resonance for any excitation frequency. On the other hand, when the surface is 
pinned at  the edge of the lateral walls, and the cell filled full, we obtain a perfectly 
flat surface and the modes are well defined. 

But although a complete and realistic hydrodynamical description of the unstable 
modes is difficult, one can simply describe their dynamics with an amplitude 
equation derived with symmetry arguments. Its predictions are in good agreement 
with the experiments, and the coefficients of this equation were derived. As this 
method naturally takes into account the nonlinear dissipation, it explains why the 
observed transition is always supercritical. 

Finally, we note that the study of the threshold of this instability is a simple way 
to study the surface wave modes of a closed vessel: 

(i) the minimum of the tongue gives the dissipation and the eigen frequency of the 
unstable mode. We thus observed the effect on both of the edge constraints as a 
dependence on the structure of the mode, i.e. on the respective number of 
modulations in each direction of the rectangular cell, and not only on the total 
wavenumber ; 

(ii) the derived amplitude equation coefficients also give the nonlinear dissipation, 
and the dependence of the eigen frequency on the amplitude. 
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development of these experiments. We thank the Dret for support under contract 
86/1518. During the revision of this paper, we benefitted from a project done at  the 
GFD Summer Study Program, on ‘hydrodynamic waves of a brimful vessel with 
edge constraint’. We acknowledge W. R. Young for proposing and directing this 
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