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Introduction 
 
The Fourier Transform 

Two functions defined by 
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are said to constitute a Fourier transform pair.  f(x) and g(s) are called Fourier transforms of each other.  
If f(x) and g(s) are even functions then the imaginary parts of (1) and (2) disappear and thus 
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Equations (3) and (4) are called cosine Fourier transforms.  Cosine Fourier transforms are more 
commonly introduced in the following way. 

If f(x) is defined only for 0 < x < ∞ then f(x) can be represented by 
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Equations 5 and 6 constitute a cosine Fourier transform pair.  An analogous set of equations define the 
sine Fourier transform. 
 
The Fourier Transform and the Michelson Interferometer 

Consider a beam of light incident on the beam splitter with an electric field given by 
)2(
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where σ = 1/λ is the inverse wavelength.  σ is related to the wave number by σ = k/2π.  The flux density 
B(σ) is proportional to E0

2(σ).  In this derivation we will ignore all proportionality constants since we 
will eventually only be interested in the variation in a signal and not in its absolute magnitude. 
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Figure 1. Schematic of a Michelson Interferometer. 

 
In the Michelson interferometer, after amplitude splitting there are two beams which have 

traveled distances x1 and x2.  They recombine to form a resultant electric field ER(x1, x2, σ).  Each beam 
has undergone one reflection from, and one transmission through the beam splitter so both should have 
the same amplitude.  The resultant electric field, aside from a proportionality factor to account for losses 
is 
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The flux for a particular value of σ is given (within a multiplying factor) by the square of the electric 
field: 

*
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which, written explicitly, becomes 
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where δ=x1−x2.  The total flux at any path difference δ is obtained by integrating over σ: 
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Equation 13, which gives IR(δ) will have a constant part and a varying part.  The constant part could be 
determined by measuring IR(0) when the path difference is zero or by measuring IR(∞) which is the 
constant level to which the signal tends when the path difference becomes very large (see the reference 
Bell p.41 for further information on this point).  In actual fact, if the beam splitter in the interferometer 
does not split the incoming beam into two equal components then there will be a constant flux, I, which 
is independent of the path difference and this will add another constant term.  If we agree to interpret 
IR(δ) as the fluctuation of the interferogram from its final constant level and not from zero then equation 
13 becomes 
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Again, ignoring proportionality constant we may replace 2E0
2(σ) by B(σ): 
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But this is just one of a cosine Fourier transform pair and so we may also write: 
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So within a multiplicative constant the incident power spectrum can be computed by a cosine Fourier 
transform of the interferogram. 

The interferogram IR(δ) as observed in this experiment consists of a rapidly oscillating 
component modulated by a slowly varying envelope.  In order to obtain B(σ) one would have to sample 
IR(δ) several times per rapid oscillation and this would involve an unreasonable amount of work and 
computation.  In the special case when B(σ) is symmetric about some central value σ0, one may obtain 
B(σ) from the Fourier transform of the envelope of IR(δ).  This is true because, if B(σ) is symmetric 
about some central value σ0, then B(σ) is just an even function Be(σ) shifted to the right by σ0.  The 
Fourier transform of B(σ) is given by 

)()( 02 δδ δπσ IeI i
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where I(δ) is the Fourier transform of the even function Be(σ). 
IR(δ) is the observed interferogram and it is real. Be(σ) also is real since it is just the flux density 

spectrum B(σ) shifted so that it is symmetric about σ =0.  I(δ) is the Fourier transform of Be(σ) which is a 
real and even function and thus I(δ) must be real.  Equation 17 then becomes  

)()2cos()( 0 δδπσδ IIR =      (18) 
where IR(δ) is the observed interferogram and cos(2πσ0δ) is the rapidly oscillating component.  I(δ), the 
modulating envelope is the Fourier transform of Be(σ) which is B(σ) shifted so that it is symmetric about 
the origin.  Be(σ) is also the Fourier transform of I(δ). 

The shape of B(σ) is given by the shape of Be(σ): 
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where I(δ) is the envelope of the observed interferogram.  The central wavelength of B(σ) is obtained 
from cos(2πσ0δ), the rapidly oscillating component of the observed interferogram. 

 
Experiment 
 
Adjustment of the Michelson Interferometer 

Disengage the motor drive from the interferometer.  The motor drive is disengaged when the 
magnetic clutch switch is set to off.  The mercury lamp is powered by a DC current.  If it doesn’t 
illuminate within about 30 seconds of turning it on, you can tip the column of mercury horizontally 
briefly to complete the circuit, then allow the column to return to its vertical position.   Use the glass rod 
on top to do the tipping.  Do not touch the metal supports holding the lamp, as there is a small risk of 
electric shock. 

a) With only a lens and a ground glass screen on the optical bench, use the mercury lamp 
and try to find fringes.  Move the ground glass screen to bring any fringes into focus and 
if none are found then proceed to (b).  If fringes are observed then proceed to (d). 
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b) If no fringes are observed, remove the ground glass screen and check by eye for very 
narrow fringes.  If these are observed then proceed to (d) but if not then proceed to (c).   

c) If no fringes are observed, it means that the mirrors are not properly aligned.  The mirrors 
may be aligned by looking at the image of a set of crosshairs in both mirrors 
simultaneously.  One way is to insert a frosted glass screen at the input to the 
interferometer, in addition to having the ground glass screen. Using a laser, one should be 
able to see interference patterns even when far away from zero path difference (why?). 
Attempt to centre the pattern on the ground glass screen. This roughly aligns the mirrors. 
Another way is to remove the ground glass screen in the input beam as well as the lens in 
the output beam.  A set of crosshairs mounted in the centre of a 5 cm square aluminium 
plate is provided.  Locate the holder and place it in the input beam and illuminate it from 
the side with a desk lamp.  You should see two bright images of the crosshairs and a 
fainter one in the mirrors.  Adjust the thumbscrews on the fixed mirror until the two 
brighter images fall exactly on top of one another (you will still see the third fainter 
image separately). Remove the crosshairs and lamp and replace the ground glass screen, 
lens and the mercury lamp in the input beam.  Fringes should now be observed. 

d) In this section and those that follow, the use of a ground glass screen in the output beam 
may be useful as a screen onto which the fringes may be focused.  The use of this tool is 
left as an option to the student.  Adjust the thumbscrews until circular fringes are 
observed. 

e) As you face the output arm of the interferometer, the moveable mirror moves to the right 
when the hand crank turns clockwise.  When the hand crank turns counter clockwise we 
must rely on a weight which pulls the mirror back.  If the mirror holder sticks when the 
hand crank is turning counter clockwise (the ring pattern is stationary) then it will be 
necessary to pull back on the large metal shaft holding the mirror.  Whenever 
measurements are taken, the mirror should be moving to the right.  Use the hand crank to 
decrease the path difference.  Should the rings collapse into the centre or expand from it?  
See Appendix II if you are uncertain.  As the path difference becomes smaller the ring 
pattern will become larger, i.e., there will be fewer and larger rings.  It may take many 
turns of the hand crank to accomplish this. 

f) Decrease the path difference until there are only a few rings on the screen.  At this point 
it may be useful to use the fine adjustments available through the piezoelectric crystals on 
which one of the mirrors is mounted.  Turn on the power supply to the crystals on which 
one of the mirrors is mounted.  Turn on the power supply to the crystals and adjust the 
voltages so that a clear ring pattern is maintained.  Keep increasing the size of the rings 
until the ground glass screen is completely filled successively with the different colours 
of the mercury spectrum.  You are now near zero path difference.  If you pass zero path 
difference then the ring pattern will expand from the centre. 

g) To find zero path difference, replace the mercury source with a desk lamp which is a 
white light source.  The output beam will probably be white and not coloured.  Slowly 
keep decreasing the path difference until coloured fringes appear.  It may be 
advantageous to remove the ground glass screen in the output beam now if you have been 
using it and observe with your eye alone.  When you have found zero path difference and 
the mirrors are perfectly aligned, the whole field of view will be alternately completely 
white and black or at least all of one colour.  To obtain this condition you will probably 
have to make fine adjustments with the piezoelectric crystals. 
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Obtaining an Interferogram  
a) Put an interference filter in the input arm and illuminate it with parallel white light.  The 

transmission characteristics of interference filters change if the incident light is not 
parallel.  The wavelength of maximum transmission shifts to lower wavelengths and the 
transmission curve broadens.  You will be measuring the transmission characteristics of 
filters and comparing them to measurements made using a monochromator, so it is 
important that the light be parallel. 

b) When you are near zero path difference the rings are so large that the whole field of view 
is covered by a circle which is one ring.  Focus this circle onto the ground glass screen.  
Move the mirror and note the change in intensity of the circle.  Actually there are two 
overlapping circles, one fainter than the other and the fainter one changes very little in 
intensity.  What gives rise to this fainter circle?  How does it affect the mathematical 
treatment of the results (see equation 13) 

c) The next step is best accomplished without the lens or ground glass screen in the output 
arm.  Move the mirror slowly and adjust the piezoelectric crystals so that the pattern is 
centred and the whole field of view becomes alternately bright and dark. 

d) Figure 2 shows the position of the piezoelectric crystals on the fixed mirror as you look 
into the interferometer.  The crystals which are actually behind the mirror are numbered 
to correspond with the numbers on the coaxial cables.  Note that crystal 3 has the same 
motion as the top thumbscrew. 

3

2 1

 
Figure 2. Location of the piezoelectric crystals on the fixed mirror. 

e) Insert the lens and photomultiplier and bring the circle to a focus in a plane containing the 
pinhole. 

f) Connect the high voltage to the photodiode and connect the output to the chart recorder.  
Make sure the photodetector is set to amplifier not detector. A voltage of order mV 
should be seen. Adjust the chart recorder using zero adjust knob on the recorder and the 
voltage zero on the photodetector to centre the needle on the recorder.    

g) With the mirror moving, turn on the chart motor to start the chart moving down the page.   
h) Try to maximize the sensitivity of the scale used. Remember, the sensitivity dial can 

produce fine and course adjustments. 
i) Obtain an interferogram and repeat this procedure for at least one more interference filter.  

When taking data, be sure to include the side-lobes as far out as there is signal. (Do not 
stop at the first node.) In the analysis program, you may want to enter the side-lobes as 
alternating in sign, assuming there is a π phase shift at every node. 

 
Analysis of the Data 
 

You may use a variety of programs to analyze the data.  There a program on faraday called 
“fourier”.  Also, a sample Matlab program is described in Appendix I and is available for download on 
the course web site. 
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The first step is to create the data-set (Step 1) from your data.  The values for this first variable 
will be the I(δ)  values taken from the envelope of the I(δ) curve.  The values of the other variable, δ, 
will be the corresponding distances that the mirror has moved from zero path difference.    

For the second variable (Step 2), one requires knowledge of the distance that the mirror moves 
when there is one rapid oscillation within the envelope of the interferogram.  You should know how to 
determine an estimate of this, knowing that there are 40 threads per inch (1 inch = 2.540 cm) on the 
screw that drives the moveable mirror and also that the outer gear ratio is 150 to 1.  However, since even 
a small error will shift the central maximum of B(σ) by a relatively large amount, it is permissible to use 
the value of λcentral from the curves in Appendix III as if they were given quantities. 

To make calculation of δ easier, the first value from the envelope of I(δ) should be for δ=0.  
Subsequent readings from the envelope should be taken at equally spaced values of δ.  One need not 
take readings from the envelope at every rapid oscillation since this would be too time consuming. 
Every third or fifth oscillation will be sufficient depending on how rapidly the envelope is changing.  
Note that I(δ) will usually change sign every time the envelope goes to zero! 

If one follows the procedure in the paragraph above, one need only define and enter values for 
one variable which gives the values of I(δ).  The other variable may be calculated.  For example, if 
λcentral=500 nm, and if values of I(δ) were entered for every third rapid oscillation, then δ could be 
defined by δ=3×500×(datapoint−1). 

Using the Program 
The input spectrum which has been sampled at regular intervals in the value of the independent 

variable δ, consists of a non periodic set of real numbers.  Since the transmission curve of the filter is 
assumed to be symmetric, then the Fourier transform of I(δ) is an even function. 

Output from the Program 
The number of values of the transformed variable FT is equal to the number of I(δ) values in 

your data set (or half the number if you have dropped the upper half of the transformed spectrum). 

An examination of a table of values or a graph o the output shows that while the results should 
agree reasonably well with the transmission curve of the interference filter, the number of “usable” 
points, which means the number of points in the output data which can be compared to the filter 
transmission curve data is limited to about four or five.  In addition, your calculated transmission curve 
will be artificially wide in the wings and also be non-zero away from the central maximum.  The limited 
number of “usable” points, the artificial broadening and the non-zero asymptote are not a fault of the 
program but are a consequence of the limited amount of information in your data set.  The Fourier 
transform program needs more information and fortunately you have more 

The Problem of “Usable” Points 
Recall that the number of points in the output from the program is equal to the number of points 

in your data set.  However, the number of “usable” points results from the restricted range of δ for which 
you have entered values of I(δ) and not from the spacing between the values of I(δ) in your data set. 

If you have sampled the spectrum every x units, the Fourier Transform will have a period of 1/x.  
For example, if x (i.e.  δ) goes from 0 to 10 and you enter 10 points which give a spacing of x of 1 then 
1/x will have a period of 1 and also 10 points which give a spacing of 1/x of 0.1 Suppose you now keep 
the same range for x, 0 to 10, but you increase the number of points to 20 by decreasing the spacing in x 
to 0.5.  The period for 1/x will now be 2 which is larger than before but since there will be 20 values for 
the 1/x the spacing for 1/x will remain 0.1 which is the same as before and this leaves unchanged the 
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number of “usable” points or the number of points which can be compared to the transmission curve of 
the filter. 

The additional information that you have which allows you to generate more “usable” points is 
that I(δ) = 0 for large values of δ.  For example, if you wish for times as many “usable” or non-zero 
values of FT then you must extend the range of δ by a factor of four and enter values of I(δ) equal to 
zero in the extended range.  However, one must not extend the range too far because this can also 
influence the artificial broadening and the non-zero asymptote. 

The Problem of Artificial Broadening and the Non-Zero Asymptote 
You have assumed that the envelope of the I(δ) data is continuous curve but the data you have 

entered is really a histogram.  You can produce more closely spaced data points by fitting a smooth 
curve through your data points and have the computer generate points from that curve. 

Final Results 
Photocopy the appropriate transmission curves from Appendix III and superimpose on them the 

transmission curves for the interference filters that you obtain from the program.  The transmission 
curves in Appendix III were obtained using a scanning monochromator. 

Questions 
 

1. If you see a ring shaped pattern when you look into the interferometer does this mean that there 
is coherence between the two beams that travel through different paths in the interferometer?  Is 
the beam of light entering the interferometer coherent? 

2. The fringes in the Michelson interferometer are called fringes of equal inclination.  What does 
the term “equal inclination” refer to? 

3. Consider the situation where the mirrors are exactly parallel.  If the lens and detector were 
removed from the output arm of the interferometer and replaced by a white screen, would 
interference fringes be seen on the screen?  Why or why not?  Does your answer depend on 
whether or not the separation between the mirrors is zero? 

4. As the distance between the mirrors becomes smaller what happens to the ring pattern? Why? 
5. In your interferogram, what distance, d, has the moving mirror moved when the pen on the chart 

recorder has moved from the peak of one rapid oscillation to the peak of the next rapid 
oscillation? 

6. [Answer this question if you have used the red (632.8 nm) filter with the narrow (3.6 nm) 
bandwidth.]  The transmission curve for this filter is approximately Gaussian.  For a Gaussian, 
I(δ) is given by  
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where k is a constant, Δλ is the full width at 1/e points in the transmission curve, and λ0 is the 
central wavelength of the transmission curve.  When I(δ) falls to 1/e of its maximum at δ= δe 
then from the equation above, 
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Find δe in units of λ0 from your interferogram and calculate Δλ by assuming a value for λ0.  Does 
this value agree with your FT data? 

7. Consider a two line source as in Figure 3. 
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Figure 3. Intensity profile for two discrete lines. 

B(σ1) = B0 
B(σ2) = B0 
B(σ) = 0 for σ ≠ σ1 and σ ≠ σ2. 

a. Show that ⎥⎦
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b. Sketch the shape of I(δ). 
c. If σ2 increased by 100 wavenumbers and σ1 decreased by 100 wavenumbers, how would 

this affect the sketch in (b)? 
d. If the intensity of the two lines were not the same, for example, if B(σ1) = B0 and B(σ2) = 

B0/2, how would the sketch in (b) change? 
8. Consider a source with a rectangular shape such as that in Figure 4. 

σ

B(  )

B0

1 2

σ

σσ

τ

 
Figure 4. Rectangular intensity profile. 

B(σ) = 0 for σ < σ1 
B(σ) = B0 for σ1 ≤ σ  ≤ σ2 
B(σ) = 0 for σ > σ2. 
Call σ1 − σ2 = τ 
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b. Sketch the shape of I(δ). 
c. What effect does the width of the spectral line, τ, have on the shape of your sketch in (b)? 

9. Show that for a filter which has a transmission curve which is either a rectangle or a triangle with 
a width at half maximum of Δλ, the interferogram will have its first node for a path difference 

λ
λδ
Δ

=
2

0 .  Hint: if 0λλ <<Δ then 2
0λ
λσ Δ

≅Δ . 
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From one of your interferograms, find δ at the first node in terms of λ0 (ie. the number of rapid 
oscillations) and hence determine Δλ.  How does this value compare with your FT data? 
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Appendix I: Fourier Analysis in the Matlab Development Environment 
By Mike Pritchard 2003 

 
Matlab has excellent Fourier analysis algorithms which are designed for discrete data. 
Note: For help on any command, type “help commandname” in the Command window. 
 
Suggested Matlab Algorithm for Fourier Spectroscopy Analysis (available for download from the 
course web-site as FTSanalysis.m )  
 

1. Define a vector containing the data points corresponding to the data spaced at intervals of n 
times the central wavelength: 

lambda_central = 499.6; 
I = [13.4, 13.2, 12.6, 11.7, 10.5, 9.0, 8.5, 6.0, 4.5, 3.1, 1.9, 1.0, 0.3, 0.5, 
0.8, 0.8, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3]; 
 

2. Now define a vector of the same length corresponding to the values of delta at each data point: 
n = 3;  %initialized n 
delta = (0:n:length(I)*n-1)*lambda_central;  
 

3. The following steps fit the data to a cubic-spline and then interpolate to an N_newpts-point 
vector called Icsi: 

N_newpts = 101; 
cs = spline (delta, [0 I 0]); 
dd = linspace (delta(1), delta(end), N_newpts); 
I2 = ppval (cs, dd); 
 

4. Now we do the Discrete Fourier Transform (DFT), using the command fft.  If your data has 
been set up in a decreasing sense as in Step 1, this will work.  If not, refer to the help associated 
with the fft command.  Note: If N is longer than N_newpts, the vector will be zero-padded; 
this is a good thing.  Also, we drop off the upper half of the matrix to eliminate the data aliased 
into the frequency regime greater than the Nyquist frequency. 

N = 500; 
I_fft = (fft(I2,N)); 
I_fft = I_fft(1:N/2); 
 

5. Take the real part of the DFT and normalize it to get a transmission spectrum out of a total of 1: 
transmission = abs(I_fft)/ max(abs(I_fft)); 
figure(2), clf; 
plot (transmission); 
 

6. We also have to define the frequency vectors corresponding to this new spectral information.  
This will define the wavenumbers that correspond to each element of the I_fft vector. 

nyquist = 1/n/lambda_central; 
wavenumbers = [0]; % initialized wavenumbers  
wavenumbers = sort((0:N/2-1)/N*2*nyquist); 
wavenumbers = wavenumbers (1:N/2); %changed wavenumber to wavenumbers 
 

7. These frequency vectors can be converted to wavelength: 
for (j = 1:N/2) 
        lambda_lower (j) = 1/(1/lambda_central + wavenumbers(j)); 
        lambda_greater (j) = 1/(1/lambda_central - wavenumbers(j));%-
1/(1/lambda_central+ wavenumbers(250)); 
end 
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8. Now we’re ready to plot the Fourier transform.  First we plot the values lower than the central 
wavelength, and then we can superimpose the wavelengths greater than the central wavelength. 

figure(3), clf; 
plot (lambda_lower, transmission, 'o'); 
hold on; 
plot (lambda_lower, transmission, '-'); 
plot (lambda_greater, transmission, 'o'); 
plot (lambda_greater, transmission, '-'); 
 

Make sure that your final results are independent of “N_newpts” and “N”. 


