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1 Introduction

The equations governing the flow of fluids are highly nonlinear [1], which means they are full of
surprises. This reflects the very rich phenomenology of fluid motion. Even in simple cases, the
equations tend to have many solutions. It is not even known if non-singular solutions always exist,
and even when they do, which motion is actually observed depends crucially on the stability of the
solutions. Boundary conditions are of paramount importance. In this experiment, we will study
a situation in which a rather simple, highly viscous flow, a limit for which the motion is governed
by linear equations, nevertheless becomes unstable due to the boundary conditions at a moving
boundary. This instability is of a general class called a Laplace instability. The resulting complex
pattern is a paradigm case of a very common type of fractal growth which includes the dendritic
growth of crystals (like snowflakes), diffusion limited aggregation (DLA), dielectric breakdown,
electrodeposition, the branching of propagating cracks and the growth of bacterial colonies, among
many others [2, 3]. In this experiment, both the initial linear instability and the emergence of the
fractal pattern will be studied.

2 Theory

2.1 general ideas

When a viscous liquid (mineral oil in this experiment) is confined between closely spaced plates,
an arrangement known as a Hele-Shaw cell, it forms an effectively two dimensional arena for fluid
dynamics. The no-slip boundary conditions on the plates enhance the effect of viscosity, putting the
flow into the low Reynolds number, Stokes flow regime, where viscosity dominates over inertia [1].
The fluid is incompressible, so that

∇ · ~u = 0 . (1)

In this limit, the flow obeys the (linear) Stokes equation,

∇p = µ∇2~u , (2)

where ~u is the velocity, p is the pressure and µ is the molecular viscosity of the fluid. Combining
these by taking the divergence of Eqn. 2, we arrive at a Laplace equation for the pressure:

∇2p = 0 . (3)

As shown in Fig. 1, in the thin direction of the cell, ~u(z) forms a parabolic profile and its z-averaged
velocity in the xy plane of the cell is given by [2]

〈~u〉 = − b2

12µ
∇p , (4)

where b is the thickness of the small gap between the plates. This is a version of D’Arcy’s Law,
which governs slow flows inside porous media. Indeed, the instability we are going to study is often
used as a 2D model for a similar 3D instability that limits the recovery of oil from porous rock.
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Figure 1: The Hele-Shaw cell. (a) Side view. (b) The parabolic flow profile in the oil.

Now consider injecting a second, different fluid into the space between the plates, displacing the first
one. This new fluid is immiscible in the first fluid. In this experiment, the first fluid is mineral oil
and the second, injected fluid is compressed air. We can assume that intruding air has a negligible
density and viscosity compared to the more viscous oil. At the moving boundary between the second
fluid and the first, we have the following kinematic boundary condition:

v = n̂ · 〈~u〉 ∼ n̂ · ∇p , (5)

where v is the speed of the fluid-fluid boundary motion and n̂ is a unit normal pointing into the
more viscous liquid. This condition simply requires that the interface move at the same speed as
the liquid does there (hence the name “kinematic”). It amounts to a boundary condition on the
gradient of the pressure in the oil. Another pressure boundary condition is related to the surface
tension at the liquid-liquid interface. The pressure across a curved interface jumps by an amount
proportional to the curvature

∆p = γ κ , (6)

where γ is the surface tension and κ is the geometric curvature of the interface. The curvature κ
is just the inverse of the radius of the “osculating” (kissing) circle tangent to the interface at that
point. The sign of κ is such that the pressure is larger in the fluid when the centre of curvature of
the interface is inside that fluid. So, for example, the air in a circular bubble surrounded by oil is
at a higher pressure than the adjacent oil by an amount proportional to the inverse radius of the
bubble.

You might think that injecting air into an oil-filled Hele-Shaw cell would produce a simple circular
expanding bubble. It does, but only at first. In fact, the growing bubble soon becomes unstable
and develops a complex multi-armed shape. The bifurcating arms are called “fingers”. Curiously,
if the more viscous oil is injected into an air filled Hele-Shaw cell, a stable circular “bubble” of oil
does form. The instability only happens for a lower viscosity fluid injected into a higher one.

The expanding air bubble is unstable due to the Laplace instability shown schematically in Fig 2.
Any tiny protuberance of a flat interface concentrates ∇p at its tip, which causes the protuberance
to extend faster, due to a larger v = 〈~u〉 ∝ −∇p and the kinematic boundary condition, Eqn. 5.
When the injected fluid is air, which has a negligible density and viscosity, then the pressure inside
the air is simply constant. The gradient of the pressure ∇p in the oil is then steepest at the tips of
protuberances, so they grow faster than the surroundings. The relationship between 〈~u〉 and p is in
fact the same as the relationship between the electric field ~E and the electric potential φ, so the fast
growth near the tips of protuberances is analogous to the formation of large electric fields near the
tips of pointed conductors, like lightning rods. The only thing that prevents the protuberance from

3



oil
air

Lines of 
constant 
pressure

protuberance

r2P = 0

Figure 2: The Laplace instability. Any protuberance creates a pressure gradient that causes its
tip to grow faster than the surrounding flat interface. The opposing effect of surface tension is not
shown. Adapted from Couder [2].

becoming infinitely sharp is the surface tension boundary condition, Eqn. 6, which tends to reduce
the pressure gradient ∇p near the tip, tending to smooth out the protuberance. Surface tension
is a larger effect for large curvatures (small radii of curvature — sharp tips). Thus, the fingering
instability sets in when the competition between these two effects favours growth of tips on some
sufficiently large length scale. Thus, an expanding bubble becomes unstable to fingers when it is
large enough.

2.2 linear stability analysis

A common way to approach instabilities is to use a form of perturbation theory called linear stability
analysis. We start by solving the problem for a simple base state — a flat moving front or an
expanding circular bubble. Then we consider the fate of spatially periodic perturbations of this
state. We take the amplitude ξ of the perturbations to be small and linearize the problem to lowest
order in the amplitude. The amplitudes are taken to be proportional to growing exponentials:
ξ ∼ eσt. The growth rate σ is then the solution of a solvable linear problem. If σ > 0 for some
periodicity of the perturbation, then the system is unstable for that period, while if σ < 0, it is
stable. The situation of σ = 0 is marginally stable. The periods with the largest growth rates σ may
be expected to dominate the periodicity of the initial pattern of fingers, as long as the nonlinearities
remain reasonably small. Often multiple modes near the fastest growing ones have positive growth
rates, and exactly which modes grow may evolve with time during the linear growth regime. This
will turn out to be the case for the present problem.
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Linear stability theory is inherently limited however. As soon as the amplitude of the instability has
grown significantly, the modes begin to interact and violate the linearizing assumptions of the theory.
At that point, linear theory breaks down and a nonlinear theory is required. Going beyond linear
theory is typically impossible analytically, and one must resort to numerical simulation, although a
few general techniques do exist [4].

Linear stability analyses of the viscous fingering problem go back nearly 60 years, and details are
still actively being worked on today. A linear stability theory for a moving, flat interface in was first
given by Chuoke [5] and at almost the same time by Saffman and Taylor [6]. Since the latter were
more famous, the whole instability is often called the Saffman Taylor problem. For an expanding
circular bubble, which is the case for our experiment, the linear stability analysis was first carried
out by Paterson [7]. In Appendix C, we solve the linear stability problem for flat interfaces and for
circular expanding bubbles for a simple 2D fluid model. Then we review some of the more recent
developments, and outline a more complete model that we can use to interpret data.

The key results may be summarized as follows;

• The stability of a circular bubble of radius R expanding at radial speed v depends on two
dimensionless numbers; the ratio R/b, where b is the gap spacing of the plates and the capillary
number Ca = µv/γ, where µ is the molecular viscosity and γ is the surface tension.

• As the bubble radius grows, it passes through a sequence of radii (R/b)no , with no = 2, 3, 4...,
such that it becomes unstable to larger and larger numbers of fingers (i.e. more and more
values of n acquire positive growth rates σn). For (R/b)no < (R/b) < (R/b)no+1, the bubble
is unstable to n = 2, 3, 4 ... no fingers.

• To predict the number of fingers we should see at the end of the linear growth regime, we must
calculate the accumulated growth of all the possible modes n, and choose the “winner”. A
simple and traditional approach is to calculate the fastest growing mode at the initial radius
R0 and velocity v0, on the assumption that this mode will have a head start and grow for
the longest time. This is clearly inadequate if the initial radius is very small, since many new
modes will enter the race as the bubble grows. With both R and v time dependent, it is
more reasonable to calculate the accumulated growth of each n as an integral of over the time
dependent growth rate σn.

• The simplest linear stability theory is only valid in the limit of small Ca (i.e. slowly expanding
bubbles), so we must use a more general model for Ca ∼ O(1). For larger Ca, surface tension
effects become progressively less important and the number of fingers is thought to only depend
on the ratio R/b, independent of Ca. Linear stability in this limit is not very well understood.

Details are given in Appendix C.2, where a python code that carries out a time integration of the
predicted finger growth, linear theory.py, is described. The result is a sort of spectrum of the
predicted relative amplitudes of the fingers with various n.

To study the linear regime experimentally, one must grow unstable circular bubbles under various
conditions, use image analysis to extract their outlines for the early stages of growth and use these
to measure their mean radii and radial growth speed as a function of time. Then, by choosing an
appropriate time to mark the end of the linear regime, one can compare the number of (small)
fingers observed in the images at that time with the number predicted by linear theory.
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Figure 3: Features of the nonlinear regime. Time progresses upward. (a) Shadowing: one finger
is crowded out, so three fingers become two. (b) Tip splitting: one finger broadens and splits into
two.

2.3 nonlinear theory

There is not much that analytic theory can do in the strongly nonlinear regime. Detailed simula-
tions [8] are useful, but tend to lack explanatory value. They merely reproduce experiments without
really explaining them in a satisfying way. Interest in highly nonlinear pattern-forming systems tends
to be focussed on universal features which are found across many diverse systems [9, 10, 11]. Radial
viscous fingering serves as a paradigm experimental example of a nonlinear Laplace instability.

2.3.1 general features of the nonlinear regime

When the fingers have grown to a sufficiently large amplitude, they begin a complex nonlinear
interaction. All radially growing Laplace unstable systems show a number of generic features
that emerge from this interaction. Two phenomena, which are in some sense opposites, are often
observed: shadowing and tip splitting. Shadowing (also sometimes called shielding) occurs when
three growing fingers compete with each other. If the centre finger falls a bit behind the others, it
will tend to lose driving forces and stop growing. The outside fingers crowd it out and “put it in
the shade”. Often these small fingers will even retract, due to surface tension, while the larger ones
carry on. Shadowing has a tendency to decrease the number of viable growing fingers in the early
stages of the nonlinear regime. Fig. 3(a) shows the effect. Shadowing is commonly observed in all
Laplace unstable systems because growth is always fastest at the farther reaching tips, and these
consume all the driving forces.

Tip-splitting tends to generate new fingers from mature existing ones, and thus increases the number
of fingers. Fig. 3(b) shows this effect. Once a finger has survived shadowing and advanced radially, it
tends to develop a broad, growing tip. This tip region is susceptible to the same sort of instability as
the original growing circular bubble was. Broad tips bifurcate into two fingers, which then continue
outward and eventually compete with each other. Often one of such a pair will later shadow the
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other. The result is a complex bifurcating pattern in which a few large fingers develop many side
branches from successive splitting and shadowing events. A highly developed fingering pattern may
be described as a fractal. Many branching systems [3] exhibit these two characteristic, universal
features.

2.3.2 fractal aspects

Fractals are self-similar geometric objects. A physical object may reasonably described as a random
fractal if it is statistically self-similar over some suitably wide range of length scales. The highly
ramified bubbles produced by the outworking on the nonlinear interactions of the Laplace instability
are statistically self-similar in this sense. Many processes that produce highly branched structures
may be described as random fractals. Classifying diverse fractal objects or processes is a way of
establishing their universal features.

Paterson [9] pointed out that radial viscous fingering, in a certain limit, could be mapped onto
diffusion-limited aggregation (DLA), a paradigm model of a process that produces fractal objects.
DLA has an enormous literature [10]. In the DLA model, a particle is allowed to make a random
walk until it encounters a fixed “seed”. At that point, it sticks to the seed and forms a cluster. A
new diffusing particle is then randomly released outside the cluster until it sticks, and the process
is repeated until the cluster becomes a large ramified object. The growth of a DLA cluster exhibits
a type of Laplace instability, but with none of the smoothing effect of the surface tension that is
present in radial viscous fingering. The connection between the two becomes complete only in the
limit of small λmax, the length scale of the fingering instability. Experiments done in this limit [11]
show the striking similarity of form with DLA.

The main defining characteristic of random fractal objects is that their forms can be understood in a
scale-free manner by certain power-law relationships. The highly ramified bubbles cover a roughly
circular region, but do not fill it completely the way a “solid” 2D bubble would. They may be
said to have a dimension which is greater than one (a non-area-filling line) and less than two (an
area-filling circle) A non-integer fractal dimension D is a way of making this idea precise. Known
variously as the Hausdorff, Minkowski-Bouligand, or simply the box-counting dimension, it is the
exponent in the power law that emerges from the scaling relationship between the number N(ε) of
boxes of size ε that are required to cover the object and the box size ε . Typically the largest box
is a single one that covers the whole image, while the smallest is a single pixel. We find

N(ε) ∼ ε−D → D = − logN(ε)

log ε
. (7)

For an ordinary 2D space-filling object, like a circle, this definition recovers the usual dimension
D = 2. For many ideal, mathematical fractals, a non-integer value of D can be calculated exactly.
The Sierpinski triangle, for example, has a dimension of D = log 3/ log 2 ≈ 1.58496. Planar DLA
clusters, which must be generated numerically, have a dimension D ≈ 1.71. You can experiment
with making DLA clusters using the python code DLA.py, supplied on the experiment web page.
The code box count.py implements the box-counting algorithm, plots the power-law and fits it to
calculate D.

Another way to arrive at a fractal dimension D is to measure the radius of gyration Rg of the object
as its area grows. If I is the moment of inertia, M is the total mass, and m is the mass of a pixel
located at radius ri and M = mA, where A is the number of pixels in the cross-sectional area, then

I =
∑
i

mr2i = MR2
g R2

g =
1

A

∑
i

r2i . (8)
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It can be shown [10, 12] that for a growing fractal object with dimension D < 2, the area increases
more slowly than R2

g, such that

A ∼ RDg Rg ∼ A1/D logRg =
1

D
logA+ const. (9)

Thus, D can be found by determining the slope of a log-log plot of Rg vs. A. Ideally, this dimension
will agree with the one arrived at by box counting.

In the experiment, we will generate highly nonlinear bubbles and measure their fractal dimensions
D and examine how this dimension emerges as the bubble develops.

3 Experiment

3.1 overview

The parameters that may be varied in the experiment are the pressure of the injected air pg and
the spacing between the plates b. The pressure is set by the regulator on the air tank and measured
by the large gauge in pounds per square inch (psi). The pressure indirectly controls the speed v
of the bubble inflation, which will be measured later from images. The plate spacing is set by six
plastic spacers that are clamped in place with brass finger nuts.

Fluid properties are given in Appendix A. Spacer dimensions are given in Appendix B.

3.2 important safety notices

• This experiment uses compressed air. Make sure you understand the safe handling
of the air cylinder and pressure regulator. Always unscrew the red regulator knob
all the way and open the vent toggle valve before opening the main supply valve
on the top of the tank. Close the main supply valve when leaving the experiment
unattended. See Fig. 4 and Section 3.4.3 below.

• This experiment uses mineral oil. Oil spilled on the floor may cause a slip hazard.
Promptly clean up all small spills with the paper towels provided. Discard oily
paper towels in the container provided.

3.3 general remarks

• This experiment can be messy! While the mineral oil is safe to handle, you may wish to
wear old clothes or cover your good clothes with a lab coat. You can use latex gloves, if you like.
Wipe your hands before touching the computer.

• The oil should rise a few mm above the gap between the plates, but not more than this.
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• When an oily hose is not in use, clamp it to the elevated support with the big paper clips
provided. Wipe up oil drops on top of the circular plate as these will cause distortions in the
images.

• Keep the lid on the tank when not in use to prevent contamination.

• Spacers can be gently washed with water and soap and dried completely before using again.
Spacers can also just be wiped and left on a few paper towels to soak up the oil and then used
without being washed.

• If the oil is really dirty, it can be changed by draining it into the waste bottle by opening the tank
valve, followed by refilling. The brass finger nuts can be removed to allow the plate to gently
rest on the tops of the screws temporarily, while oil is draining. Lift the plate by the handles
with no hoses attached. Draining the oil may be extremely slow. Do not do this unless the
oil is really dirty.

• Thorough cleaning requires the drained plate to be washed with plenty of water and dish soap
in the sink (a task not to be undertaken lightly). The empty tank itself can be washed with
water and dish soap, draining the oil/water/soap mixture into the waste container. Take care
that the waste container does not overflow! The tank and plate must be completely dry and free
of soap and water before any new oil is added. Be very careful not to scratch the tank
or the plate. Put something soft in the bottom of the sink before standing the plate in the
sink for washing. Only wash with soft sponges. Do not wash the experiment unless it is
absolutely necessary.

3.4 suggested procedure

3.4.1 initial set up of the Hele-Shaw cell

To set the cell spacing b, loosen the brass finger nuts and lift the plate by the handles. This will be
easier with no hoses attached. The six plastic spacers should be positioned just outside each screw,
to minimize blockage of the flow. The brass finger nuts should have a soft plastic washer between
them and the circular plate. Do not over-tighten! Make sure that all six spacers are matched in
thickness before tightening the finger nuts. Spacer dimensions are given in Appendix B.

The oil between the plates should be clean and free of all small bubbles. Even very tiny bubbles
(which might be hiding under the brass inlet fitting) will strongly effect the fingers as they grow.
Use the peristaltic pump, described below, to clear the cell.

The air inlet pipe should be stretched straight and clamped to the back of the Hele-Shaw tank so
that it is in the three o’clock position, as viewed by the camera. This positioning is important for
later masking it out of the images.

3.4.2 setting up the camera and lighting

The DC voltage applied to the LED light should be fixed at 40V. The camera is controlled by the
FlyCapture2 program. Adjust the focus of the camera with a bubble in the cell by zooming up
the image on the screen to see individual pixels. Leave the focus and aperture settings fixed for the
experiment. Take a calibration image of the cell with all pipes removed by including a plastic ruler
laid on top of the circular plate.
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Figure 4: Parts of the air pressure regulator system.

You can use all the default settings of the FlyCapture2 program except the frame rate. In the
camera control dialog window, uncheck the auto box on the frame rate. The frame rate can be
set to a precise number by typing in the box. The maximum is 120 fps. The maximum will be
needed for the fastest bubbles.

When you press record, you will get the record settings window. Here you should set the
directory and file name for the run. It is a good idea to use a name that contains information
not already recorded by the camera, such as the pressure, the setting of the needle valve, the
frame rate, and the plate separation, as indicated by the letter of the spacer. Something like
25psi needle open 120fps D. The program will add a date and time stamp and a frame number.
Use a new directory for each run.

Saving options should be set to capture a few hundred frames; a few seconds worth is usually
enough. Image format should be set to TIFF, with compression method set to LZW.

Click the Start Recording button just after you open the inlet toggle valve.

3.4.3 recording the growth and fingering of a bubble

A run of the experiment consists of quickly opening the inlet toggle valve to apply air pressure to the
inlet pipe while simultaneously recording a burst of images with the camera. You can make growing
bubbles either from a “standing start” by suddenly opening the valve with no bubble between the
plates, or you can prepare a small stationary circular bubble by slightly cracking open the inlet
toggle valve before later suddenly applying the full pressure. An initial bubble creates a slightly
“cleaner” (i.e. better defined) initial condition for the growth of the instability.

You may wish to try pressures that are too small to easily read with the large gauge. You can also
use the needle valve (see below) to reach lower flow rates. The highest pressures (about 50 psi) are
only needed for the thinnest spacers.

A run is over when the bubble reaches the edge of the circular plate and air begins to leak out. The
inlet toggle valve can be closed once this happens.
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To set up the air pressure system (see Fig. 4):

• Unscrew the red pressure regulator knob all the way before opening the main supply valve on
the top of the air tank. This prevents accidentally supplying too high a pressure to the gauge.

• Make sure the inlet toggle valve is closed and the vent toggle valve is open. The auxiliary
valve should be wide open.

• Open main supply valve. The small gauge on the regulator will show the pressure in the tank.

• Screw the red pressure regulator knob in and out until the desired pressure is reached on the
large gauge. You will hear air escaping the vent.

• Close the vent toggle valve. The pressure will pop up slightly.

• Now you may either completely open the needle valve (it takes several turns to do this), in
which case the inflation rate is controlled by the pressure you have selected on the regulator.
Or you may open the needle valve just slightly, in which case the flow will be restricted, leading
to slower bubble inflation.

• If you wish to make an initial static bubble, open the inlet toggle valve very slightly to slowly
inflate a small circular bubble.

• When the air pressure system is set up and you are ready to shoot, quickly open the inlet
toggle valve and click the mouse to trigger the camera. The pressure on the large gauge will
drop back down to what you set before.

3.4.4 resetting the Hele-Shaw cell after making a bubble

To reset the Hele-Shaw cell for another shot, do the following:

• Disconnect the air inlet pipe and attach the pipe leading to the inlet of the peristaltic pump
(it should be clipped to the vertical support when not in use, to avoid oil dripping).

• Run the peristaltic pump near its slowest rate to suck oil and air out from the centre of
the circular plate. (Pumping too hard may cause the pipe to come loose, spilling oil.) The
output of the pump can be returned to a corner of the Hele-Shaw tank.

• Keep pumping until all the air and small bubbles have been removed. This can take a while.

Vigorous pumping with the peristaltic pump can cause the Hele-Shaw plates to bow together. When
the oil-filled pipe is removed, the un-bowing of the plates will suck air into the cell. To avoid this,
pump slowly and wait a few minutes after turning off the peristaltic pump before disconnecting the
pipe.
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3.4.5 shutting down the experiment

When you are finished with the apparatus, do the following:

• Turn off the light and disconnect the pipes to the Hele-Shaw cell. Elevate the inlet and outlet
of the peristaltic pump by clipping them to the vertical support.

• Leave the Hele-Shaw cell full of oil to avoid bubbles getting stuck. Wipe up all stray droplets
of oil and throw out all oily paper towels.

• Put the lid on the Hele-Shaw cell.

• Shut the main supply valve on the top of the air tank.

• Clear all your images and code off the computer when you are completely done with them.
Otherwise, put them in a directory with your name on it.

Remember that the experiment may be used by someone else during the week.

4 data analysis tools

In the experiment the data are mostly in the form of images. An image is a 2D position measurement.
Every pixel is a measured data point. We will be using 8 bit binarized images — images for
which every pixel is either black (greyscale level 0) or white (greyscale level 255). All images must
be in a format that preserves pixel-level information with lossless compression. Tagged Image Files
(.tif) format with LZW compression achieves this. The camera should be set to save images in this
format. Do not use .jpg images except to be used qualitatively as frames in movies. By default, the
python image library (PIL) saves images in uncompressed .tif format, which is fine.

To analyze images, we will use a combination of python codes and an open source application
called Image J. It is easy to take an overwhelming number of images in this experiment. Storage
capacity may become a limitation. Be judicious about choosing frame rates, deleting useless images,
decimating the data etc. to avoid having more images than can be reasonably analyzed. It’s a good
idea to do some preliminary runs and then try the analysis on a few images first before taking any
detailed data. Image analysis may require long computation times.

Read the comments in the python codes for details about how they work. Only a rough outline is
given here. Of course you can modify any of the analysis codes as you see fit. The following are
merely suggestions.

4.1 probing the linear instability

To study the linear instability, it is necessary to examine the shape of the growing bubble at early
times, as a function of pressure pg and plate separation b. Low pressures and large plate separations
may be easier to study, as fewer fingers are produced.
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4.1.1 data analysis workflow for the linear regime

• Use Image J and the image of the hole in brass inlet fitting in your calibration image to
locate the x, y coordinates of the centre of the cell in pixels. Measure the number of pixels in
a long interval of the image of the plastic ruler and use that to convert pixels to length units.
Also estimate the width of the inlet pipe and the radius of the inlet fitting in pixels.

• Use the code process FVF images.py to crop and binarize the images with empty pipe =

True. Estimate an outer crop radius in pixels that cuts off most of the long fingers of the
nonlinear regime. The code will make a new directory with the processed images. If you have
selected the threshold values well, the precessed images contain only clear black outlines of
the bubble and the initial stages of finger growth. You can decimate the number of images
analyzed to reduce the effective frame rate (but keep track of this number, if you do this).
Try just a few images first.

• Use the code mean radius FVF.py to find the mean radius and its statistics. The code reads
all the images in the directory made by process FVF images.py. This will make a plot of the
radii vs. frame number and store the data in a text file.

• Scrutinize the images and the plot of the radii to estimate the frame number when the linear
regime ends. Count the fingers in that frame. The fingers need to be large enough to
count reasonably unambiguously, but not so big that they exhibit shadowing or tip splitting.
These measurements will be somewhat uncertain, due to the ill defined nature of the duration
of the linear regime and what counts as a finger. Some fingers may be obscured by the inlet
pipe. Experiment with different criteria and estimate the error in the counted number of
fingers. It is probably a good idea to average the number of fingers over several runs with the
same parameters.

• Use the code linear theory FVF.py to analyze the data stored in the text file by
mean radius FVF.py. You will need all the calibration data to convert pixels to length and
frame rates to time (accounting for any decimation). You will also have to specify the frames
to be included in the linear regime.

The code uses a polynomial fit to the radius and the derivative of this fit to get the varying
value of v, and hence Ca. It then calculates the predicted number of fingers in two ways. First,
by calculating nmax from Eqn. 63, using initial data R0/b and Ca0, and then by carrying out
the full time integration of Eqn. 66. The peak of the resulting growth curve is the predicted
number of fingers. Its width gives some measure of the uncertainty in the prediction.

4.2 characterizing the strongly nonlinear pattern

To measure the statistical fractal aspects of the finger patterns, it is necessary to produce binarized
and flood-filled bubble images. That is, images in which the interior of the bubble is black and the
exterior white — with a minimum of stray white or black pixels in each region. The part of the
bubble obscured by the inlet pipe has to be dealt with. An example of a binarized flood-filled image
is shown on the experiment web page.
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4.2.1 data analysis workflow for the nonlinear regime

• Use Image J to determine an outer crop radius which is large enough to enclose the fully
developed bubble, but excludes the handles etc. Choose the width of the inlet pipe and the
radius of the inlet fitting in pixels and determine the x, y coordinates of the centre of the inlet,
as above. Discard images where the outermost fingers are cut off by the cropping.

• Use the code process FVF images.py to crop and binarize the images with empty pipe =

False and one or more of the other options for dealing with the inlet pipe, either reflect pipe

or rorschach, set to True. You can also use empty pipe = True and set edge pipe =

True. The result will be directories containing the binarized images with various methods
for excluding or filling in the inlet pipe region.

The idea of these techniques is to fill the inlet pipe region with something that is at least
statistically similar to the rest of the bubble (or not).

• Use the Image J tool to manually flood-fill the interior of the bubble in the binarized images.
For this to work, there must be no gaps in the outline of the bubble. Gaps can be filled by
using tools from the Image J Process→ Binary menu. The function Dilate is especially useful
for closing gaps in the outline. See the manual pages for the Binary menu for details. You
can also just edit the images manually by using the Paintbrush tool to colour pixels directly.

Image J has a useful Edit → Undo feature for when an attempt to flood-fill goes awry.

• Once the images are properly binarized and flood-filled, their fractal dimensions can be found
using the code box count.py. You can also use the Image J function Analyze → Tools →
Fractal Box Count to do almost exactly the same thing. Several fractal images are posted on
the experiment web page that you can test these algorithms on.

• You can also, in principle, determine the fractal dimension D from the area evolution of the
radius of gyration of the flood-filled pattern, as discussed in Sec. 2.3.2 above.

5 questions

The following are some rough ideas for things to study.

5.1 linear regime

• How does the initial capillary number Ca0 of the expanding bubble, which is proportional to
its initial velocity v0, vary with the experimental parameters, the pressure pg and/or plate
separation b ? Does it depend on the presence of an initial bubble and its dimensionless radius
R0/b ?

• How consistent is the counted number of fingers at the end of the linear regime from shot to
shot, under nominally identical initial conditions?

• How does the counted number of fingers at the end of the linear regime depend on the pressure
pg and plate separation b ? How does it depend on Ca0 and/or R0/b? Plot the counted number
of fingers against Ca0 and/or R0/b, with other things held constant.
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• How well does linear stability theory predict the number of fingers? How does the prediction
made using only the initial radius R0 and velocity v0 (and hence Ca0 and R0/b) compare to
the prediction using the full time integration of the growth via Eqn. 66? Plot the counted
number of fingers against the number predicted by various versions of linear theory.

• How strongly does the agreement or disagreement with linear theory depend on the time you
choose to call the end of the linear regime?

• Are there regimes of dimensionless parameters for which linear theory is more or less successful
at predicting the number of fingers? Are there systematic trends in the degree of agreement
or disagreement with linear theory?

• In the analysis, it is possible to “turn off” the wetting and/or viscous normal stress terms in
the expression for the growth rate Eqn. 63. What is the contribution of these effects to the
agreement or disagreement between the predicted number of fingers and the number found in
the experiment?

• All of the analysis assumed that the flow is in the low Reynolds number, Stokes limit. Is this
a good assumption? The Reynolds number, Re = bv/ν = bρv/µ is actually proportional to
the capillary number, with Re = (bργ/µ2)Ca ≈ 1 Ca, so large Re also corresponds to large
Ca.

5.2 nonlinear patterns

• How does the box-counting dimension D of radial viscous fingering compare to DLA or other
fractal patterns?

• How does D emerge as the pattern grows in size? Does it approach a clear limit?

• Does D vary under different ways of choosing the boxes? How does the quality of the linear
log-log fit whose slope is D depend on parameters? The later is a measure of how “good” a
fractal (close to self-similar) the pattern is.

• Do all fully developed patterns have the same dimension D? How does it depend on the
pressure pg or plate spacing b?

• How does the box-counting dimension D compare to the dimension D found from the scaling
of the area with the radius of gyration?

• Tip splitting and shadowing are in competition in setting the number of fingers. Which one
wins? Find all the local finger tips (suitably defined) and measure their radial positions. Plot
a histogram of the number of local finger tips as a function of their radii. How does this
histogram evolve as the pattern grows?
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property symbol value units temperature

surface tension γ (3.3 ± 0.1)× 10−2 N/m
density ρ (0.860 ± 0.001)× 103 kg/m3

molecular viscosity µ 0.180 ± 0.002 kg/(m s) 20◦C
0.155 ± 0.002 22.5◦C
0.135 ± 0.002 25◦C

Table 1: Properties of the mineral oil.

spacer letter colour thickness (mm)

A orange 0.791 ± 0.004
B transparent 1.051 ± 0.003
C transparent 1.303 ± 0.003
D transparent 1.512 ± 0.003
E white 2.334 ± 0.003
F white 3.206 ± 0.005

Table 2: Thicknesses of the spacers.

A fluid properties

Table 1 shows the properties of the mineral oil used. The mineral oil is “heavy industrial grade”,
supplied by McMaster-Carr. Other oily liquids with different properties could also be used (e.g.
baby oil, cooking oil). It is important that the fluid wet the plastic plates completely; oils and other
non-polar hydrocarbons do this, but water does not. See the python code viscosity vs T.py for
a function that accounts for the temperature dependence of µ. The capillary number is given by
Ca = µv/γ. The kinematic viscosity, which is needed to calculate the Reynolds number Re = bv/ν,
is defined to be ν = µ/ρ.

B spacer dimensions

Table 2 shows the dimensions of the spacers. With some care, spacers can be stacked to make larger
thicknesses.
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C linear stability theory

We begin our outline of linear stability theory in Sec. C.1 with the classic case of the stability of
a moving flat interface, and then in Sec. C.2, we generalize this result to an expanding circular
bubble. We employ a simplified 2D model of the Hele-Shaw flow in which the pressure jump
boundary condition is simply proportional to the curvature of the interface in the plane of the cell,
as in Eqn. 6. After decades of very detailed work [13, 16, 17, 18], including important experiments
by Maxworthy [18], it has been shown that this simple boundary condition fails to account for some
additional 3D and viscous effects, which have been incorporated more recently by (among others)
Dias et al [17]. In Sec. C.3, we outline these effects and present (without detailed derivation) the
result for the linear growth rate in a full theory that includes them. In Sec. C.4, we tie up a few
loose ends and in Sec. C.5, we describe a practical way to apply the full linear stability theory to
experimental observations.

It is fair to say that work on this problem is still ongoing with agreement with experiment still
somewhat lacking, even at the level of linear stability. Some recent papers suggest going beyond
the D’Arcy approximation [19].

C.1 linear stability of a 2D, moving flat interface

The derivation here is adapted from Couder [2]. We consider a 2D fluid in the xy plane with an
initially flat interface located at x = vt. The air bubble occupies x < vt, while the oil fills x > vt.
Since the air is assumed to have zero density and zero viscosity, it is just at constant pressure p = pa.
The oil is moving uniformly toward +x at constant speed v = 〈~u〉. The pressure in the oil for the
flat interface can be found by integrating Eqn. 4

v = 〈~u〉 = − b2

12µ

(
dp

dx

)
→ v(x− x0) = − b2

12µ
(p− p0) , (10)

where we take x0 = vt and p0 = pa. Since the interface is flat, Eqn 6 implies ∆p = p(x0)− pa = 0.
This solves for the pressure in the oil for what is known as the base state (superscript (0)):

p(x, t) = p(0)(x, t) = pa −
12µ

b2
v(x− vt) . (11)

Now consider a small perturbation of the position of the interface from x = vt to

x = ξ(x, y, t) = vt+ ξ̂eσteiky , (12)

where ξ̂ is the (formally infinitesimal) amplitude and σ the growth rate of the perturbation, which
is sinusoidal in the y direction with wavenumber k. Our objective is to find σ(k). Next, we expand
the pressure in the oil as follows

p = p(0) + p(1) = p(0) + p̂(x)eσteiky . (13)

This has to be a solution of the Laplace equation, Eqn. 3, in the oil and in particular we know
that p(1) must die away to zero as x→ +∞. We know from general principles that solutions of the
Laplace equation do this exponentially with the wavelength of the disturbance on the boundary, so
we put p̂(x) ∼ e−k(x−vt) so that

p(1) = p̃ e−k(x−vt)eσteiky , (14)
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where p̃ is another infinitesimal amplitude. You can check that this is indeed a solution of the
Laplace equation. Next, using Eqn. 5, we match the x component of the velocity

〈~u〉x = 〈~u〉(0)x + 〈~u〉(1)x =
∂ξ

∂t
= v + ξ̂σeσteiky . (15)

Now we can use Eqn. 4 at the interface x = ξ to find the relationship between the amplitudes

− b2

12µ

∂

∂x

(
p(0) + p(1)

)∣∣∣∣
x=ξ

= 〈~u〉(0)x + 〈~u〉(1)x (16)

p̃

(
b2k

12µ

)
e−k(x−vt)eσteiky

∣∣∣∣
x=ξ

= ξ̂σeσteiky , (17)

p̃ = 12

(
µσ

b2k

)
ξ̂ (18)

where we can safely take x = ξ = vt, to lowest order, in the exponential. From this we conclude
the perturbed pressure in the oil is

p(1) = 12

(
µσ

b2k

)
ξ̂e−k(x−vt)eσteiky . (19)

Now we need to impose the surface tension boundary condition Eqn. 6 with

κ =
∂2ξ

∂y2
, (20)

for our simplified 2D model. Higher order terms in the curvature may be neglected. Applying
Eqn. 6 gives

∆p|x=ξ =

[
p− pa

]
x=ξ

=

[
p(0) + p(1) − pa

]
x=ξ

= γ
∂2ξ

∂y2
(21)[

pa −
(

12µ

b2

)
v(x− vt) +

(
12µσ

b2k

)
ξ̂e−k(x−vt)eσteiky − pa

]
x=ξ

= (22)

−
(

12µ

b2

)
v(vt+ ξ̂eσteiky − vt) +

(
12µσ

b2k

)
ξ̂e0eσteiky = (23)

= γ
∂2

∂y2

(
vt+ ξ̂eσteiky

)
= −γk2ξ̂eσteiky (24)

−
(

12µv

b2

)
+

(
12µσ

b2k

)
= −γk2 , (25)

again using x = ξ = vt in the exponential. From this we finally get the so-called dispersion relation

σ(k) = vk − γb2

12µ
k3 , (26)

which is plotted in Fig. 5. Let us think carefully about what this result means. Whenever σ(k) > 0
for some k, the interface is unstable to fingering at that wavenumber. The plot shows that the
interface is always unstable for a range of k between zero and ko, for all positive v. The case of
negative v, which describes a front of oil moving into into an air-filled gap, is always stable with
σ(k) < 0 for all k.
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Figure 5: The dimensionless dispersion relation σb/v vs. kb, for various values of Ca = µv/γ. Ca
is effectively the dimensionless interface velocity. The solid points show the maximum growth rates
kmaxb. Adapted from Couder [2].

The wavenumber of maximum growth rate kmax is the peak of σ(k), where

dσ

dk

∣∣∣∣
k=kmax

= 0 → kmax =
2

b

√
µv

γ
. (27)

The growth rate at kmax is given by

σmax = σ(kmax) =
2v

b

√
µv

γ
− 2γ

3b

(
µv

γ

)3/2

. (28)

It turns out that the largest unstable wavenumber ko =
√

3 kmax. The corresponding wavelength of
maximum growth rate is λmax = 2π/kmax is

λmax = πb

√
γ

µv
. (29)

In dimensionless terms (
λ

b

)
max

= πCa−1/2 where Ca =
µv

γ
(30)

is the dimensionless capillary number. In dimensionless form, the dispersion curve is

(σb/v) = (kb)− 1

12 Ca
(kb)3 . (31)

This is what is actually plotted in Fig. 5 for various values of Ca ∼ v. The dimensionless maximum
growth rate is simply

(σb/v)max =
4

3
Ca1/2 . (32)
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Thus, linear theory predicts that fingers will grow from infinitesimal perturbations (any tiny noise
is enough), and grow fastest with a spacing of λmax. But there exists a certain range of wavelengths
around λmax that also have significant positive growth rates. There exists a a small length scale
λo = 2π/ko below which all perturbations are smoothed out by surface tension. This is the main
result of the calculation.

We now generalize this result to a circular expanding bubble.

C.2 linear stability of a 2D expanding circular bubble

The linear stability of an expanding circular bubble was first examined by Paterson [7]. Our
treatment of this case is adapted from Refs. [7, 4, 14]. We consider an expanding circular air bubble
of radius R(t) = vt [15]. Inside the bubble, for r < R, the pressure is constant at pa. In the oil
outside, for r > R the pressure is p(r). Following similar steps as in the previous section, we first
find the pressure p(0)(r) in the base state.

In circular coordinates, the Laplace equation for p(r) is

∇2p =
1

r

d

dr

(
r
dp

dr

)
= 0 , (33)

which can be immediately integrated twice to give

r
dp

dr
= A

dp

dr
=
A

r
p(r) = A log r +B , (34)

with A,B constants. At r = R, we have

p(R) = A logR+B = pa −
γ

R
, (35)

where the last term is the contribution of surface tension. Take a moment to think carefully about
the sign of this term. Subtracting Eqn. 34 from Eqn. 35, we eliminate B to get

p(r) = A log

(
r

R

)
+ pa −

γ

R
. (36)

We can find A using Eqn. 4,

〈~u〉 = − b2

12µ

(
dp

dr

)
= − b2

12µ

(
A

r

)
(37)

v = 〈~u〉|r=R = − b2

12µR
A (38)

A = −12

(
µvR

b2

)
. (39)

So the base state pressure in the oil is

p(0) = pa −
γ

R
− 12

(
µvR

b2

)
log

(
r

R

)
. (40)

Now we are ready to perturb the position of the interface from r = R = vt to r = ξ, with

ξ = vt+ ξ̂eσteinθ , (41)
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with ξ̂ an infinitesimal amplitude and n = 2, 3, 4.... Now the perturbation is “quantized” because
the circumference of the bubble has a finite length and only an integer number of infinitesimal
fingers will fit around it. n = 1 is omitted because ξ ∼ eiθ just shifts the circular bubble off centre,
so it does not grow in volume.

Next we write the pressure perturbation as

p(r) = p(0) + p(1) = p(0) + p̂ eσteinθ . (42)

As before, we need the infinitesimal amplitude p̂(r) to die away as r → +∞, and for p(1) to obey
the Laplace equation. This can be accomplished by choosing p̂ = p̃(r/R)−n. The Laplace equation
becomes

∇2p(1) =

(
1

r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

)[
p̃

(
r

R

)−n
eσt einθ

]
= 0 . (43)

You can confirm that this is indeed the case. Next we invoke the boundary condition Eqn. 5 at the
bubble surface to match the radial velocity

〈~u〉r = 〈~u〉(0)r + 〈~u〉(1)r =
∂ξ

∂t
= v + ξ̂σeσteinθ (44)

Now we can use Eqn. 4 at the interface r = ξ to find the relationship between the amplitudes

− b2

12µ

∂

∂r

(
p(0) + p(1)

)∣∣∣∣
r=ξ

= 〈~u〉(0)r + 〈~u〉(1)r (45)[
v − ξ̂

(
v

R

)
eσteinθ −

(
b2

12µ

)
p̃(−n)r−n−1Rn eσteinθ

]
r=ξ

= v + ξ̂σeσteinθ , (46)

p̃ = 12

(
µR

nb2

)(
σ +

v

R

)
ξ̂ , (47)

where we have used r = ξ = R, to lowest order. We finally get

p(1) = 12

[
µR

nb2

](
σ +

v

R

)
ξ̂eσt

(
R

r

)n
einθ . (48)

We can now apply the surface tension boundary condition Eqn. 6. The full expression for the
in-plane curvature κ is somewhat more complex in 2D polar coordinates:

κ = −ξ
2 + 2

(∂ξ
∂θ

)2 − ξ(∂2ξ
∂θ2

)(
ξ2 +

(∂ξ
∂θ

)2)3/2 . (49)

The negative sign in front is there to ensure that our sign convention has κ = −1/R for a circular
bubble. Putting in ξ from Eqn. 41 and doing a lot of expanding and neglecting of higher order
terms, we arrive at

κ = − 1

R
−
(
n2 − 1

R2

)
ξ̂eσt einθ . (50)
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Then Eqn. 6 becomes

∆p|r=ξ =

[
p− pa

]
r=ξ

=

[
p(0) + p(1) − pa

]
r=ξ

= γκ (51)[
pa −

γ

R
− 12

(
µvR

b2

)
log

(
r

R

)
+ 12

[
µR

nb2

](
σ +

v

R

)
ξ̂eσt

(
R

r

)n
einθ − pa

]
r=ξ

= γκ (52)

−12

(
µvR

b2

)
log

(
1 +

(
ξ̂

R

)
eσteinθ

)
+ 12

(
σ +

v

R

)(
µR

nb2

)
Rnξ̂

(
R+ ξ̂eσteinθ

)−n
= −γ

(
n2 − 1

R2

)
ξ̂eσt einθ (53)

−12

(
µvR

b2

)((
ξ̂

R

)
eσteinθ

)
+ 12

(
σ +

v

R

)(
µR

nb2

)
ξ̂eσteinθ = −γ

(
n2 − 1

R2

)
ξ̂eσt einθ (54)

−12

(
µv

b2

)
+ 12

(
σ +

v

R

)(
µR

nb2

)
= −γ

(
n2 − 1

R2

)
, (55)

which finally reduces to the dispersion relation for discrete modes n = 2, 3, 4 ...

σ(n) = (n− 1)

(
v

R

)
− n(n2 − 1)

[
γb2

12µR3

]
. (56)

or, in dimensionless form,

(σb/v) = (n− 1)

(
b

R

)
− n(n2 − 1)

[
1

12 Ca

](
b

R

)3

, (57)

which should be compared to the same result for continuous case, Eqn. 31. The dimensionless
quantity (b/R) plays the role of the dimensionless wavenumber kb in the discrete case because if n
oscillations of wavelength λ fit around a circular bubble of radius R, we have nλ = 2πR = n(2π/k)
so that k = n/R and kb = n(b/R). If we call (kb)n = n(b/R) a sort of discrete wavenumber, then
Eqn. 57 becomes

(σb/v)n =

(
n− 1

n

)
(kb)n −

(
n2 − 1

n2

)[
1

12 Ca

]
(kb)3n , (58)

which is essentially identical to Eqn. 31, for larger values of n, but now with discrete allowed
wavenumbers. To illustrate this, let us choose b/R = 0.15 and a range of values of Ca. Fig. 6 shows
the results.

We can find the mode number with maximum growth rate nmax by setting dσ/dn = 0. Some work
leads to

nmax = int

[
1

3
+ 4 Ca

(
R

b

)2
]1/2

, (59)

in which we understand int to mean the nearest integer.

Just as in the continuous case, there is a largest mode number no such that all modes between n = 2
and n = no have zero or positive growth rates, while all n > no decay. We can find no by setting
σb/v = 0 in Eqn. 57 and solving for n. We find

no = int

[(
12 Ca

(
R

b

)2

+
1

4

)1/2

− 1

2

]
, (60)

in which int means the next smallest integer. It is evident from Eqn. 60 that the range of unstable
mode numbers increases with R/b. In particular, there is a series of threshold radii R = Rno such
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Figure 6: The dimensionless discrete dispersion relation (σb/v) vs. mode number n, for b/R = 0.15
and various values of Ca = µv/γ. Ca is effectively the dimensionless interface velocity. The
larger symbols show the modes with the largest growth rates, which occur at n = 9, 13, 18 for
Ca = 0.5, 1.0, 2.0.

that n = (2, 3, 4 ... no) are all unstable. In dimensionless terms, (R/b)no is given by inverting
Eqn. 60 to get

(R/b)no =

[
no(no + 1)

12 Ca

]1/2
. (61)

This means that really tiny bubbles with R < R2 are completely stable, while bubbles with radii
R2 < R < R3 are unstable with n = 2 and so on. Large bubbles are unstable to a wide, but still
finite, range of 2 < n < no. As a circular bubble grows, it passes through a cascade of radii Rno

and more and more modes acquire positive growth rates and join the race to make fingers. At each
stage, the fastest growing perturbations are the ones near n = nmax, which also increases with the
radius according to Eqn. 59.

C.3 beyond the 2D model: incorporating new effects

Real Hele-Shaw cells live in 3D. They are, at best, quasi-2D. The simple formulation of the previous
sections, which dominates the early literature of the field [4, 5, 6, 7, 14], turns out to omit some
important 3D details. The interface is actually a surface with two radii of curvature. If we assume
that the oil completely wets the plates, then the shape of the interface in the direction perpendicular
to the plates is a semicircle with a radius b/2. This curvature, plus some other subtle effects discussed
below, are incorporated into a more realistic formulation [13, 16, 17] of the pressure jump boundary
condition given by [17]

∆p =

(
π

4

)
γκ+

2γ

b

(
1 + JCa2/3

)
− 2µ

∂u

∂r

∣∣∣∣
r=ξ

. (62)
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The first term is the same as Eqn. 6 except for a strange factor of π/4. This arrises from a rigorous
z-averaging of the in-plane curvature [16]. It the literature, the π/4 factor is often annoyingly
absorbed into the surface tension parameter γ. The second 2γ/b term is the additional pressure
jump due to the second radius of curvature 2/b in the z direction. It has no dynamical effect since
it just shifts pa by a constant amount.

The third term in Eqn. 62 involving Ca2/3 is a dynamic correction to the pressure due to a moving
interface. In effect, Eqn. 6 implicitly assumed a static bubble, which is equivalent to the limit
Ca→ 0. The Ca2/3 correction is just the first nontrivial term in an asymptotic expansion in powers
of Ca1/3 [16]. The dimensionless factor J = 3.80 was calculated numerically by Park and Homsy [16].
The advancing bubble also leaves behind a film of oil on the upper and lower plates, so this is often
called the dynamic wetting term. The thickness of this film scales like bCa2/3 for small Ca and it
can become quite substantial [13, 16, 21]. Indeed, you may observe the film slowly dripping from
the top plate under gravity to form bridging islands of oil after the bubble has formed.

The final new term in Eqn. 62 is perhaps the most surprising. Known as the viscous normal stress
term, it has nothing to do with the surface tension. It comes from properly balancing forces (via
various terms in the viscous stress tensor) across the interface. Remarkably, its crucial significance
in this problem was not appreciated until it was pointed out by Kim et al [20] in 2009, a bit more
than 50 years after Saffman and Taylor’s original paper [6].

When all these new effects are included, the dispersion relation (σb/v)n is considerably more
complex. In our notation, it is given by [17]

(σb/v)n =
1

S +W

{[
n

(
1 +

δ

3

(
b

R

)2)
− S

](
b

R

)
− n(n2 − 1)

(π/4)

12 Ca

(
b

R

)3
}

(63)

S = 1 +
δ

6

(
b

R

)2

n(n+ 1) (64)

W =
nJ

9 Ca1/3

(
b

R

)
, (65)

where δ = 1 and J = 3.80 corresponds to including both wetting and viscous normal stress effects.
Setting δ = 0 turns off viscous normal stress and setting J = 0 turns off wetting. In that case,
Eqn. 63 reduces to Eqn. 57 (except for the pesky factor of π/4). Fig. 7 compares the various
models. The new dispersion curve has the same general features as the simple model, but analytic
expressions for nmax, no, and (R/b)no are cumbersome.

Maxworthy [18] showed experimentally that the traditional 2D theory, plus various extensions of
it to include wetting, greatly overestimated the number of fingers for Ca > 10−2 or so. This more
physically complete theory brings better [17], although perhaps still not perfect [21], agreement
with experiments up to Ca ∼ 1.

C.4 some loose ends

In the above calculations, we have treated the radial speed v and the gas pressure in the bubble pa
as if they were independent parameters. But in fact, the size of pa controls v. In the experiment,
what is measured by the pressure gauge is not pa itself, but rather the so-called gauge pressure
pg = pa − patm, the difference between the bubble pressure and the atmospheric pressure of the air
in the room. What drives the radial flow is really pg, since the oil returns to atmospheric pressure
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Figure 7: The dimensionless dispersion relation (σb/v) vs. mode number n, for b/R = 0.15 and
Ca = µv/γ = 2.0, For the simple model (in green, same as the green points in Fig. 6), with wetting
effects, but no viscous normal stress (blue points, δ = 0) and for the full model of Dias et al [17]
(red points). The larger symbols show the modes with the largest growth rates, which occur at
n = 19 for the simple model and n = 12 for the full model.

when it gets to the edge of the round top plate of the Hele-Shaw cell. The speed v depends on
the viscous resistance of the oil between the radius of the bubble (or the tip of a finger) and the
outer radius of the cell. This is obviously pretty complicated for a fractal bubble, especially when
a finger approaches the outer radius. You may observe the sudden acceleration of such fingers as
they quickly form leak paths that ultimately let the air out of the bubble.

In practice, we just use the measured pg and the setting of the needle valve as proxies for controlling
v and then directly measure R and v from the images. The velocity v only enters the problem via
the dimensionless capillary number Ca. The bubble pressure pa does not enter into the stability at
all, except indirectly. In fact, most theoretical work only considers the case of constant v (and hence
constant Ca), rather than the case of constant pressure, in which v varies. But constant pressure is
much easier to realize experimentally if the injected fluid is a gas.

C.5 applying linear stability theory

We can use linear stability theory to predict the number of fingers we observe, as long as we
remain in the regime where the theory is valid — the limit of small, non-interacting fingers. This
“linear regime” is not sharply defined (the linear theory is only strictly mathematically valid for
infinitesimal fingers), but may reasonably be taken to be the early stages of finger growth, before
obvious interactions, such as shadowing, are observed. The data analysis code mean radius.py

calculates the mean radius of the bubble, as well as the standard deviation and maximum and
minimum radii, as the bubble grows. The standard deviation remains small until the fingers appear,
so you can use the point at which it begins to increase sharply as indicating the end of the linear
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regime. You can also simply scrutinize the images and choose the latest one for which the fingers
are still small but easily counted [18].

To use the linear stability theory, we need to deal with the fact that the growth rate σn depends
on R and v, but these quantities are continuously changing with time as the bubble grows. One
simple idea that is commonly used [18] is to use the mode nmax for which σn is maximum for the
initial values R0 and v0, just as the bubble begins its expansion. This makes some sense because
the modes that get started first have a head start and are likely to grow the largest. They might
even suppress nearby modes via nonlinear shadowing.

To make a more detailed theory which accounts for the modes that join the race later, we must
calculate not eσnt for each n, but an integral [4, 17]

ξn(t) = ξ(0) e In(t) with In(t) =

∫ t

0
σn(t′) dt′ , (66)

where σn(t) comes from Eqn. 63, using the measured R(t) and v(t). Here ξ(0) is the magnitude of
the initial noise in the experiment, assumed to be the same for all modes. In the integral, we only
include contributions for which σn(t) ≥ 0, so that the “noise floor” remains ξ(0) for all modes for
all time. Thus, modes may grow later on as the bubble grows, but once started, no mode decays.
Obviously, this scheme entails some assumptions about the distribution of noise in the experiment.

To predict the number of fingers, we calculate the relative growth of the various n and choose the
number with the largest accumulated relative growth ξn(t)/ξ(0). A numerical scheme is implemented
in the python code linear theory.py to do this from data.

28


	Introduction
	Theory
	general ideas
	linear stability analysis
	nonlinear theory
	general features of the nonlinear regime
	fractal aspects


	Experiment
	overview
	important safety notices
	general remarks
	suggested procedure
	initial set up of the Hele-Shaw cell
	setting up the camera and lighting
	recording the growth and fingering of a bubble
	resetting the Hele-Shaw cell after making a bubble
	shutting down the experiment


	data analysis tools
	probing the linear instability
	data analysis workflow for the linear regime

	characterizing the strongly nonlinear pattern
	data analysis workflow for the nonlinear regime


	questions
	linear regime
	nonlinear patterns

	fluid properties
	spacer dimensions
	linear stability theory
	linear stability of a 2D, moving flat interface
	linear stability of a 2D expanding circular bubble
	beyond the 2D model: incorporating new effects
	some loose ends
	applying linear stability theory


